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Abstract. Let R be a commutative ring with unity. The notion of maximal non λ-subrings
is introduced and studied. A ring R is called a maximal non λ-subring of a ring T if R ⊂ T

is not a λ-extension, and for any ring S such that R ⊂ S ⊆ T , S ⊆ T is a λ-extension.
We show that a maximal non λ-subring R of a field has at most two maximal ideals, and
exactly two if R is integrally closed in the given field. A determination of when the classical
D +M construction is a maximal non λ-domain is given. A necessary condition is given
for decomposable rings to have a field which is a maximal non λ-subring. If R is a maximal
non λ-subring of a field K, where R is integrally closed in K, then K is the quotient field
of R and R is a Prüfer domain. The equivalence of a maximal non λ-domain and a maximal
non valuation subring of a field is established under some conditions. We also discuss the
number of overrings, chains of overrings, and the Krull dimension of maximal non λ-subrings
of a field.

Keywords: maximal non λ-subring; λ-extension; integrally closed extension; valuation
domain
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1. Introduction

All rings considered below are commutative with nonzero identity and all ring

extensions are unital. By an overring of R, we mean a subring of the total quotient

ring of R containing R. By a local ring, we mean a ring with unique maximal

ideal. The symbol ⊆ is used for inclusion, while ⊂ is used for proper inclusion.
Throughout this paper, qf(R) denotes the quotient field of an integral domain R

and R′ the integral closure of R in qf(R). Our work is motivated by the work of

Gilbert on λ-extensions (see [13]). A ring extension R ⊆ T is said to be a λ-extension

(equivalently, T is a λ-extension of R or R is a λ-subring of T ) if the set of all subrings
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of T containing R is linearly ordered by inclusion. Moreover, if T = qf(R), then R

is said to be a λ-domain. It is obvious that if R ⊆ T is a λ-extension and S is

a ring such that R ⊆ S ⊆ T , then S ⊆ T is a λ-extension. This leads us to think on

subrings R of a given ring T such that R ⊂ T is not a λ-extension and R is maximal

with this property. Motivated by this idea, we introduce the notion of maximal non

λ-subrings of a ring. A ring R is called a maximal non λ-subring of a ring T if R ⊂ T

is not a λ-extension, and for any ring S such that R ⊂ S ⊆ T , S ⊆ T is a λ-extension.

Further, if T = qf(R), then R is called a maximal non λ-domain. In this paper, we

establish some characterizations of a maximal non λ-subring.

In Section 3, we discuss the properties of a maximal non λ-subring R of a ring T

and necessary conditions for R to be a maximal non λ-subring of T . We prove that

if R is a maximal non λ-subring of a field K, then R has at most two maximal ideals

(see Proposition 3.1), and if R is a maximal non λ-subring of a ring T , then there

are at most two maximal ideals of R containing the contraction of any maximal

ideal in T (see Proposition 3.4). We characterize the maximal non λ-subrings of

a field K. A determination of when the classical D +M construction is a maximal

non λ-domain is given in Theorem 3.3. It is also shown that if a field R is a maximal

non λ-subring of T =
∏

i∈∆

Ti, where Ti’s are rings for all i ∈ ∆ and |∆| > 2, then

|∆| = 2 (see Corollary 3.2), and when R is not a field then |∆| = 2 under some

conditions (see Proposition 3.5).

In Section 4, we discuss maximal non λ-subrings R of T when R is integrally closed

in T . We prove that if R is a maximal non λ-subring of T and is integrally closed

in T , then T is an overring of R (see Theorem 4.1), and if T is a field, then T = qf(R)

(see Corollary 4.1). For an integrally closed domain R, a necessary and sufficient

condition is given for R to be a maximal non λ-domain (see Theorem 4.3). We show

that if R is an integral domain and R′ is not local, then R is a maximal non λ-domain

if and only if R is a maximal non valuation subring of qf(R) (see Theorem 4.4). We

discuss the spectra of maximal non λ-subrings of a field K. We show that either

both Spec(R) and Spec(R′) are chains of the same dimension or both Spec(R) and

Spec(R′) are (a, b)-Y graphs (see Theorem 4.7). Under some conditions, we also

discuss the number of overrings, chains of overrings, and the Krull dimension of

maximal non λ-subrings of a field.

The set of all R-subalgebras of T (that is, of rings S such that R ⊆ S ⊆ T ) is

denoted by [R, T ]. For any ring R, let Spec(R) (and Max(R)) denote, respectively,

the set of all prime (and maximal) ideals of R. As usual, |X | denotes the cardinality
of a set X and the dimension of a ring refers to the Krull dimension. If R ⊆ T is

a ring extension, then (R : T ) = {r ∈ R : rT ⊆ R} denotes the conductor of R ⊆ T .
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2. Preliminaries

In this section we recall some results on λ-extensions from [13] which are used

throughout the paper frequently.

(A) Let R ⊆ K be a λ-extension, where K is a field. Then either (i) R is a field

or (ii) R is not a field, K = qf(R), and R′ is a valuation domain. See [13],

Proposition 1.3.

(B) An integrally closed domain R is a λ-domain if and only if it is a valuation

domain. See [13], Corollary 1.5.

(C) Let (V,M) be a valuation domain containing a field F such that V = F +M .

Let D be a proper subring of F and set R = D +M . Then R is a λ-domain if

and only if D ⊆ F is a λ-extension. See [13], Proposition 1.6 (c).

(D) Let R ⊆ T =
∏

i∈∆

Ti be a λ-extension, where Ti’s are rings for all i ∈ ∆ and

|∆| > 2. Let πi : T → Ti be the canonical projection and let Ii = Ker(πi) ∩ R

for all i ∈ ∆. Assume that Ii + Ij is a proper ideal of R for all pairs i, j ∈ ∆.

Then |∆| = 2. See [13], Proposition 2.8.

(E) Let K be a field and n a positive integer. Then the ring extension K ⊆
K[X ]/(Xn) is a λ-extension if and only if n 6 3. See [13], Proposition 3.5.

(F) Let R ⊆ T be a ring extension and J an ideal of T . Then R/(J ∩R) ⊆ T/J is

a λ-extension if and only if R+J ⊆ T is a λ-extension. See [13], Proposition 3.9.

(G) Let R be a one-dimensional Prüfer domain with property (#). Then:

(i) Each overring of R has property (#).

(ii) Define the map Φ: {overrings of R} → {subsets of the set of valuation
overrings of R} by Φ(T ) = {valuation overrings of T } and the map Ψ:

{subsets of the set of valuation overrings of R} → {overrings of R} by
Ψ({Vα}) =

⋂
Vα . Then Φ and Ψ are inverse maps and both are inclusion-

reversing.

See [13], Proposition 4.8 case (1), Proposition 4.9.

(H) Let R be a one-dimensional Prüfer domain with property (#). Then:

(i) The overrings of R which are the minimal ring extension of R are precisely

those overrings which are the intersection of all but one of the valuation

overrings of R.

(ii) Let T be a proper overring of R. Then T is a λ-extension of R if and only

if T is a minimal ring extension of R.

See [13], Corollary 4.10.

(I) Let R be a principal ideal domain not equal to its quotient field. Then the

minimal overrings of R are precisely the rings R[1/p], where p is an irreducible

element of R. See [13], Proposition 4.11.
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3. Properties and characterizations

First, we define the maximal non λ-subring of a ring T formally.

Definition 3.1. A proper subring R of a ring T is said to be a maximal non

λ-subring of T if R ⊂ T is not a λ-extension and R is maximal with this property,

that is, if R ⊂ T is not a λ-extension and for any ring S such that R ⊂ S ⊆ T , S ⊆ T

is a λ-extension. Further, if T = qf(R), then R is called a maximal non λ-domain.

First, we discuss the cardinality of Max(R), where R is a maximal non λ-subring

of a field K.

Proposition 3.1. Let R be a maximal non λ-subring of a field K. Then R has

at most two maximal ideals.

P r o o f. Suppose M , N and P are distinct maximal ideals of R. Then we have

R ⊆ RM ∩ RN ∩ RP ⊂ RM ∩ RN . Since R is a maximal non λ-subring of K,

RM ∩ RN ⊂ K is a λ-extension. Therefore, RM ⊆ RN or RN ⊆ RM , which is

a contradiction. Thus, R has at most two maximal ideals. �

In view of case (A), the following result is evident.

Proposition 3.2. Let R be a maximal non λ-subring of a field K and R 6= R′,

where R′ is the integral closure of R in qf(R). Then R′ is a valuation domain with

quotient field K.

Recall from [20] that an integral domain R is called an i-domain if for each over-

ring T of R, the canonical contraction map Spec(T ) → Spec(R) is injective. The

next corollary is a direct consequence of Proposition 3.2 and [20], Corollary 2.15.

Corollary 3.1. Let R be a maximal non λ-subring of a field K and R 6= R′.

Then R is a local i-domain.

A proper ideal I of R (defined in [5]) is said to be a 2-absorbing ideal of R if

whenever xyz ∈ I for x, y, z ∈ R, then either xy ∈ I, or yz ∈ I, or xz ∈ I. We

will show that if R is a maximal non λ-subring of a ring T , then RadR((R : T )) is

a 2-absorbing ideal of R. First, we prove the following lemma.

Lemma 3.1. Let R be a maximal non λ-subring of T and let x, y, z ∈ R be such

that xyz ∈ (R : T ). Then either x2y2 ∈ (R : T ), or x2z2 ∈ (R : T ), or y2z2 ∈ (R : T ).
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P r o o f. Assume xyz ∈ (R : T ). If xy ∈ (R : T ), then there is nothing to prove.

Now, suppose that xy /∈ (R : T ). Then R ⊂ R + xyT . Since R is a maximal non

λ-subring of T , R + xyT ⊆ T is a λ-extension. Thus, either R + xT ⊆ R + yT or

R + yT ⊆ R + xT . Let R + xT ⊆ R + yT . Then xzR + x2zT ⊆ xzR + xyzT ⊆ R

and hence x2zT ⊆ R. Therefore, x2z2 ∈ (R : T ). �

Theorem 3.1. Let R be a maximal non λ-subring of T . Then RadR((R : T )) is

a 2-absorbing ideal of R.

P r o o f. Let x, y, z ∈ R be such that xyz ∈ RadR((R : T )). Then xnynzn ∈
(R : T ) for some n ∈ N. Now by Lemma 3.1, x2ny2n ∈ (R : T ) or x2nz2n ∈ (R : T )

or y2nz2n ∈ (R : T ). Therefore, xy ∈ RadR((R : T )) or xz ∈ RadR((R : T )) or

yz ∈ RadR((R : T )). Thus, RadR((R : T )) is a 2-absorbing ideal of R. �

The next proposition discusses maximal non λ-subrings of quotient rings. The

proof is routine and hence omitted.

Proposition 3.3. Let R ⊂ T be a ring extension and J an ideal of T . Set

I = J ∩ R. Then R/I is a maximal non λ-subring of T/J if and only if R + J is

a maximal non λ-subring of T .

In Proposition 3.4, we show that the contraction of any maximal ideal in T is

contained in at most two maximal ideals of R, if R is a maximal non λ-subring of T .

First, we need the following lemma which is manifestly a consequence of (F).

Lemma 3.2. Let R be a maximal non λ-subring of T and J an ideal of T . Set

I = J ∩R. Then either

(i) J is an ideal of R, or

(ii) R/I is a λ-subring of T/J .

Proposition 3.4. Let R be a maximal non λ-subring of T and J a maximal ideal

of T . Set I = J ∩R. Then there are at most two maximal ideals of R containing I.

P r o o f. If J ⊂ R, then R/I is a maximal non λ-subring of T/J , by Proposi-

tion 3.3. Since T/J is a field, R/I has at most two maximal ideals, by Proposi-

tion 3.1. Therefore, there are at most two maximal ideals of R containing I. If

J 6⊂ R, then R/I is a λ-subring of T/J by Lemma 3.2. Since T/J is a field, (R/I)
′

is a valuation domain, by (A). Therefore, R/I is local, hence the result holds. �

Gilbert in [13] proved that a field K is a λ-subring of K[X ]/(Xn) if and only if

n 6 3. Now, we show that K is a maximal non λ-subring of K[X ]/(Xn) if and only

if n = 4.
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Theorem 3.2. Let K be a field and n a positive integer. Then K is a maximal

non λ-subring of K[X ]/(Xn) if and only if n = 4.

P r o o f. Let K be a maximal non λ-subring of K[X ]/(Xn). Then by (E), we

have n > 4 as K ⊂ K[X ]/(Xn) is not a λ-extension. Note that K[X ]/(Xn) ∼= K[u],

where u = X+(Xn) and un = 0. Thus, {1, u, u2, . . . , un−1} is a basis of theK-vector
space K[u]. Let n > 6. Since K ⊂ K[u6] ⊂ K[u], K[u6] ⊂ K[u] is a λ-extension.

Therefore, either K[u2] ⊆ K[u3] or K[u3] ⊆ K[u2], which is a contradiction. Thus,

4 6 n 6 6. Now, consider the following cases:

Case (i): n = 4. Then we have K[X ]/(X4) ∼= K[u], where u = X + (X4)

and u4 = 0. Let x ∈ K[u] \ K. Then x = a0 + a1u + a2u
2 + a3u

3 for some

a0, a1, a2, a3 ∈ K. Now, K[x] = K[a1u + a2u
2 + a3u

3]. Note that if a1 = 0, then

the dimension of K-vector space K[x] is two and if a1 6= 0, then K[x] = K[u]. In

any case, it follows that K[x] ⊆ K[u] is a λ-extension. Thus, K is a maximal non

λ-subring of K[X ]/(X4).

Case (ii): n = 5. Then we have K[X ]/(X5) ∼= K[u], where u = X + (X5) and

u5 = 0. Now, K[u4] ⊂ K[u2] and K[u4] ⊂ K[u2 + u3]. Since K[u2] and K[u2 + u3]

are not comparable, K[u4] ⊂ K[u] is not a λ-extension. Thus, K is not a maximal

non λ-subring of K[X ]/(X5).

Case (iii): n = 6. Then we have K[X ]/(X6) ∼= K[u], where u = X + (X6) and

u6 = 0. Now, K[u4] ⊂ K[u2] and K[u4] ⊂ K[u2 + u5]. Since K[u2] and K[u2 + u5]

are not comparable, K[u4] ⊂ K[u] is not a λ-extension. Thus, K is not a maximal

non λ-subring of K[X ]/(X6). �

For a valuation domain (V,M) containing a field F such that V = F + M , we

characterize the classical D +M construction to be a maximal non λ-domain.

Theorem 3.3. Let (V,M) be a valuation domain containing a field F such that

V = F + M . Let D be a proper subring of F and set R = D + M . Then R is

a maximal non λ-domain if and only if D is a maximal non λ-subring of F .

P r o o f. If R is a maximal non λ-domain, then D ⊂ F is not a λ-extension,

by (C). Let D ⊂ B ⊆ F and let x ∈ B \ D. We assert that D + M ⊂ B + M .

Suppose instead that D+M = B +M . Then x = y+ z for some y ∈ D and z ∈ M .

Therefore, x − y ∈ M . Since B ∩ M = {0}, x = y ∈ D, which is a contradiction.

Hence, D + M ⊂ B + M . Now, by [6], Theorem 3.1, B + M is an overring of R.

Therefore, B +M ⊆ qf(R) is a λ-extension. Thus, B ⊆ F is a λ-extension, by (C).

Hence, D is a maximal non λ-subring of F .

Conversely, if D is a maximal non λ-subring of F , then R is not a λ-domain,

by (C). Let R ⊂ S ⊆ qf(R). Then by [6], Theorem 3.1, either S is an overring of V

or S = B + M , where D ⊂ B ⊆ F . If S is an overring of V, then S ⊆ qf(R) is

328



a λ-extension, by (B). Let S = B +M , where D ⊂ B ⊆ F . Since D is a maximal

non λ-subring of F , B ⊆ F is a λ-extension. Therefore, S ⊆ qf(R) is a λ-extension,

by (C). Thus, R is a maximal non λ-domain. �

Example 3.1. Let F = Q(
√
2,
√
3) and V = F [[X ]] = F +M , where M = XV .

Let D = Q and set R = D +M . Clearly D is a maximal non λ-subring of F . Then

by Theorem 3.3, R is a maximal non λ-domain.

Gilbert in [13] proved that if R is a λ-subring of T =
∏

i∈∆

Ti, where Ti’s are rings

for all i ∈ ∆, then |∆| = 2 under some conditions. Retaining the same conditions,

we obtain a similar result on maximal non λ-subrings.

Proposition 3.5. Let R be a maximal non λ-subring of T =
∏

i∈∆

Ti, where Ti’s

are rings for all i ∈ ∆ and |∆| > 2. Let πi : T → Ti be the canonical projection and

let Ii = Ker(πi) ∩R for all i ∈ ∆. Assume that Ii + Ij is a proper ideal of R for all

pairs i, j ∈ ∆. Then |∆| = 2.

P r o o f. Let i, j, k be distinct elements in ∆. Set

A = {t ∈ T : there exists r ∈ R such that πi(t) = πi(r) and πj(t) = πj(r)},
B = {t ∈ T : there exists r ∈ R such that πi(t) = πi(r) and πk(t) = πk(r)},
S = {t ∈ T : there exists r ∈ R such that πi(t) = πi(r), πj(t) = πj(r) and

πk(t) = πk(r)}.

Clearly, R ⊆ S and hence the following cases arise:

Case (i): R ⊂ S. Then S ⊆ T is a λ-extension. Therefore, A ⊆ B or B ⊆ A.

Suppose that A ⊆ B. We assert that Ik + Ii = R. Let s ∈ R. Consider the element

t ∈ T such that πk(t) = πk(s) and πl(t) = 0 for all l 6= k. Since πi(t) = πj(t) = 0, we

have t ∈ A, and so t ∈ B. Thus, there is an element r of R such that πi(t) = πi(r)

and πk(t) = πk(r), that is, πi(r) = 0 and πk(r) = πk(s). Hence, r ∈ Ii and s− r ∈ Ik

and so s = (s − r) + r ∈ Ik + Ii. Since s ∈ R was arbitrary, Ik + Ii = R, which is

a contradiction. Similarly, B 6⊆ A.

Case (ii): R = S. Let Pi = Ker(πi)∩A for all i ∈ ∆. Now, if R = A, then A ⊆ B,

which is a contradiction by case (i). We may now assume that R ⊂ A. Then A ⊆ T

is a λ-extension. Now, by (D), it is enough to show that Pi + Pj is a proper ideal

of A for all i, j ∈ ∆. Suppose that Pi+Pj = A. Then x+ y = 1 for some x ∈ Pi and

y ∈ Pj . Since Ii + Ij is a proper ideal of R, x ∈ A \ R or y ∈ A \R. Let x ∈ A \R.
Then there exists r ∈ R such that 0 = πi(x) = πi(r) and πj(x) = πj(r). Therefore,

r ∈ Ii and x− r ∈ Pj . Since 1−x ∈ Pj , x− r+1−x = 1− r ∈ Ij . Thus, Ii+ Ij = R,

which is a contradiction. Hence, Pi + Pj is a proper ideal of A for all i, j ∈ ∆. �
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In the next corollary, we discuss the decomposable rings having a field which is

a maximal non λ-subring.

Corollary 3.2. Let K be a field. Assume that K is a maximal non λ-subring of

T =
∏

i∈∆

Ti, where Ti’s are rings for all i ∈ ∆ and |∆| > 2. Then |∆| = 2.

P r o o f. Let πi : T → Ti be the canonical projection and let Ii = Ker(πi)∩K for

all i ∈ ∆. Then Ii = 0 for all i ∈ ∆. Now, the result follows from Proposition 3.5. �

Remark 3.1. Note that the condition Ii + Ij is a proper ideal of R for all pairs

i, j ∈ ∆ is necessary in Proposition 3.5. For example, take R = Z6 and T = Z6 ×
K1×K2, where K1 = Z6/2Z6 and K2 = Z6/3Z6. Then I2 + I3 = Z6, where Ii is the

same as defined in Proposition 3.5. Also, we have [R, T ] = {R,Z6×K1,Z6×K2, T }.
Thus, R is a maximal non λ-subring of T .

4. When R is integrally closed in T

In this section, we will study both R and T under the assumption that R is

a maximal non λ-subring of T such that R is integrally closed in T . We start this

section with Theorem 4.1, where we prove that T is an overring of R. First, we

establish that if R is a maximal non λ-subring of T , then R ⊂ T is a P -extension.

Recall from [16] that a ring extension R ⊆ T is called a P -extension if each s ∈ T is

a root of some f(X) ∈ R[X ] such that at least one of coefficients of f is a unit of R.

A ring extension R ⊆ T is said to be an INC extension (see [18]) if for any two prime

ideals Q1, Q2 ∈ T such that Q1 ∩R = Q2 ∩R, we have Q1, Q2 are incomparable.

Lemma 4.1. Let R be a maximal non λ-subring of T . Then R ⊂ T is a P -

extension.

P r o o f. Let x ∈ T \ R. We may assume that x6 /∈ R. Then R[x6] ⊆ T is

a λ-extension. Therefore, R[x2] ⊆ R[x3] or R[x3] ⊆ R[x2]. Thus, R ⊆ T is a P -

extension. �

Theorem 4.1. Let R be a maximal non λ-subring of an integral domain T such

that R is integrally closed in T . Then T is an overring of R.

P r o o f. Let K be the quotient field of R. Note that R ⊂ T is a P -extension,

by Lemma 4.1. Let t ∈ T \ R. Now, by [9], Corollary 4, R ⊂ R[t] satisfies INC.

Therefore, if Q is any prime ideal of R[t] and P = Q ∩ R, then by [12], Theorem,

there exists s ∈ R \ P such that R[t]s = Rs ⊆ K. Thus, t ∈ K and hence T is an

overring of R. �
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Now, we have the following immediate corollary of Theorem 4.1.

Corollary 4.1. Let R be a maximal non λ-subring of a field K such that R is

integrally closed in K. Then K is the quotient field of R.

Remark 4.1. The integrally closed condition in the above corollary is necessary.

For, if R = Q and K = Q(
√
2,
√
3), then R is the maximal non λ-subring of K.

In Proposition 4.1, we will show that R cannot be local if R is a maximal non

λ-subring of T which is integrally closed in T . First, we need the following lemma

which is a direct consequence of Lemma 4.1 and [10], Lemma 3.8.

Lemma 4.2. Let R be a maximal non λ-subring of T such that R is integrally

closed in T , and let u ∈ T and P ∈ Spec(R). Then u satisfies at least one of the

following two conditions:

(i) u/1 ∈ RP ,

(ii) u/1 is a unit in TR\P and (u/1)−1 ∈ RP .

Proposition 4.1. LetR be a maximal non λ-subring of T such thatR is integrally

closed in T . Then R is not a local ring.

P r o o f. Suppose R is local. Let u ∈ T . Then by Lemma 4.2, either (i) u ∈ R

or (ii) u is a unit in T and u−1 ∈ R. It follows that if I is any proper ideal of T ,

then I ⊂ R, that is, I is an ideal of R. Let Q be any maximal ideal of T . Then

Q ∈ Spec(R). Therefore, R/Q is a maximal non λ-subring of the field T/Q, by

Proposition 3.3. Note that R/Q is integrally closed in T/Q. Thus, the quotient field

of R/Q is T/Q, by Corollary 4.1. Now, if x +Q ∈ T/Q, then by Lemma 4.2, either

(i) x + Q ∈ R/Q or (ii) x + Q is a unit in T/Q and (x + Q)−1 ∈ R/Q. Therefore,

R/Q is a valuation domain. Thus, by (B), R/Q ⊂ T/Q is a λ-extension, which is

a contradiction. Hence, R is not local. �

Remark 4.2. It is easily seen that if R ⊆ T is a λ-extension, then so is RP ⊆ TP

for all P ∈ Spec(R). Now, if R is a maximal non λ-subring of T , then for any

P ∈ Spec(R), either RP ⊆ TP is a λ-extension or RP is a maximal non λ-subring

of TP . For, if RP ⊂ TP is not a λ-extension, then for any subring E, RP ⊂ E ⊆ TP ,

we have E = SP for some subring S, R ⊂ S ⊆ T . Thus, S ⊆ T is a λ-extension

and hence E ⊆ TP is a λ-extension. However, if R is integrally closed in T , then

RP ⊆ TP is a λ-extension for all P ∈ Spec(R) as we have the next proposition.

Proposition 4.2. Let R be a maximal non λ-subring of T such that R is inte-

grally closed in T . Then RP ⊆ TP is a λ-extension for all P ∈ Spec(R).
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P r o o f. If RP ⊆ TP is not a λ-extension for some P ∈ Spec(R), then RP is

a maximal non λ-subring of TP , by Remark 4.2. Therefore, RP is not local, by Propo-

sition 4.1, which is absurd. Thus, RP ⊆ TP is a λ-extension for all P ∈ Spec(R). �

A pair of rings (R, T ) is said to be a normal pair (see [8]) if R ⊆ T and every

intermediate ring S is integrally closed in T . In the next theorem, we show that if R

is a maximal non λ-subring of T and is integrally closed in T , then (R, T ) is a normal

pair.

Theorem 4.2. Let R be a maximal non λ-subring of T such that R is integrally

closed in T . Then (R, T ) is a normal pair.

P r o o f. By Proposition 4.2, RP ⊆ TP is a λ-extension for all P ∈ Spec(R).

Therefore, by [19], Corollary 2.5, we have (RP , TP ) is a normal pair for all

P ∈ Spec(R). Now, the result follows from [11], Proposition 3.1. �

The next theorem is a characterization of integrally closed maximal non λ-domains.

Theorem 4.3. Let R be an integrally closed domain. Then the following state-

ments are equivalent:

(i) R is a maximal non λ-domain.

(ii) R is a semi-local Prüfer domain with exactly two maximal idealsM and N such

that [(0),M [= [(0), N [, where [(0),M [ is the set of all prime ideals of R properly

contained in M .

P r o o f. (i)⇒(ii) By Proposition 3.1 and Proposition 4.1, R has exactly two max-
imal ideals, say M and N . Thus, RM ⊂ qf(R) is a λ-extension. Since R is inte-

grally closed, RM is integrally closed. Therefore, by (A), RM is a valuation domain.

Similarly, RN is a valuation domain. Thus, R is a Prüfer domain. Now, suppose

P ∈ [(0),M [. If P /∈ [(0), N [, then take T = RP ∩RN . Since RP and RN are not com-

parable, therefore T ⊂ qf(R) is not a λ- extension, hence R ⊂ T ⊂ qf(R) contradicts

the maximality of R. Thus, [(0),M [⊆ [(0), N [. Similarly, [(0), N [⊆ [(0),M [.

(ii)⇒(i) If R is a λ-domain, then R is a valuation domain, by (A). Thus, R is not

a λ-domain. Let R ⊂ S ⊆ qf(R). Then by assumption, S must be local and hence S

is a valuation domain, as R is a Prüfer domain. Now, the result follows from (B). �

The following corollary discusses the integral closures of maximal non λ-domains.

Corollary 4.2. Let R be a maximal non λ-subring of a field K. Then the integral

closure of R in K is a Bézout domain with at most two maximal ideals.
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P r o o f. If R is integrally closed in K, then by Corollary 4.1, K = qf(R). There-

fore, by Theorem 4.3, R = R′ is a Prüfer domain with exactly two maximal ideals.

Thus, R′ is a Bézout domain. If R is not integrally closed in K, then the result

follows from (A). �

A domain R is said to be a maximal non valuation subring of qf(R) (see [7]) if R

is not a valuation domain and every proper overring of R is a valuation domain. In

the next theorem, we show that the concept of maximal non λ-domains is the same

as that of maximal non valuation subrings of a field provided their integral closures

are not local.

Theorem 4.4. Let R be an integral domain. If R′ is not local, then the following

statements are equivalent:

(i) R is a maximal non λ-domain;

(ii) R is a maximal non valuation subring of qf(R).

P r o o f. In view of Proposition 3.2 and our assumption, we must have R = R′,

that is, R is integrally closed.

(i)⇒(ii) Note that by (B), R is not a valuation subring of qf(R). Now, suppose

that R ⊂ S ⊆ qf(R). Then S ⊆ qf(R) is a λ-extension. Also, by Theorem 4.3, R is

a Prüfer domain and hence S is a Prüfer domain. Thus, by (A), S is a valuation

domain. Hence, R is a maximal non valuation subring of qf(R).

(ii)⇒(i) If R is a λ-domain, then R is a valuation domain by (B). Therefore, R is

not a λ-domain. Let R ⊂ S ⊆ qf(R). Then S is a valuation ring. Now, by (B),

S ⊆ qf(R) is a λ-extension. Thus, R is a maximal non λ-domain. �

Recall from [15] that a domain R with quotient field K is said to be

(i) an FO-domain if R has only finitely many overrings,

(ii) an FC-domain if each chain of distinct overrings of R is finite.

The next theorem shows the existence of infinitely many integrally closed maximal

non λ-domains which are FO-domains as well as FC-domains.

Theorem 4.5. Let K be an algebraic extension of the field of rational numbers.

Then there exist infinitely many integrally closed maximal non λ-subrings ofK which

are FC-domains and FO-domains.

P r o o f. By [2], Theorem 3.3, [3], Corollary 1.3 and [4], Proposition 1.1, K has

infinitely many one dimensional valuation domains which are incomparable. Let R1

and R2 be any two incomparable one dimensional valuation domains with quotient

field K. Take R = R1 ∩ R2. Clearly R is an integrally closed domain and by [18],

Theorems 107 and 105, R1 = RM and R2 = RN for some maximal idealsM , N of R.
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Also, R is a one dimensional Prüfer domain with Max(R) = {M,N}. Therefore,
[(0),M [= [(0), N [. Thus, by Theorem 4.3 and [15], Theorem 1.5, R is an integrally

closed maximal non λ-subring of K which is an FC-domain as well as an FO-domain.

Note that R is unique for any pair R1, R2 of incomparable one dimensional valuation

domains with quotient field K and hence the result holds. �

An integral domain R has (#) property (see [14]) if, for any two distinct subsets Ω1

and Ω2 of the set of maximal ideals of R, the intersections
⋂

M∈Ω1

RM and
⋂

M∈Ω2

RM

are distinct. In the next theorem, we characterize the overrings of a one-dimensional

Prüfer domain R with (#) property for which R is a maximal non λ-subring.

Theorem 4.6. Let R be a one-dimensional Prüfer domain with (#) property.

Then the following statements hold:

(i) The overrings of R for which R is a maximal non λ-subring are precisely those

overrings which are the intersection of all but two of the valuation overrings ofR.

(ii) Let T be a proper overring of R. Then R is a maximal non λ-subring of T if

and only if |[R, T ]| = 4.

P r o o f. (i) Note that by (G), R is a maximal non λ-subring of those overrings

which are the intersection of all but two of the valuation overrings ofR. Now, suppose

that T is any overring of R for which R is a maximal non λ-subring. Let Γ denotes

the set of all valuation overrings of T . We assert that there are at least two valuation

overrings of R which are not in Γ. If Γ contains all valuation overrings of R, then

R = T , a contradiction. Now, assume that Γ contains all but one valuation overring

of R. Then by (H), R ⊂ T is a λ-extension, which is a contradiction. Now, we assume

that there are three distinct valuation overrings V1, V2 and V3 of R which are not

in Γ. Set Γi = Γ∪{Vi}, Γij = Γ∪{Vi, Vj} for all 1 6 i, j 6 3. Then for every i, j, R ⊂
⋂

S∈Γij

S ⊂ T by (#) property. Therefore,
⋂

S∈Γij

S ⊂ T is a λ-extension. Now, by [14],

Corollary 2 and (H),
⋂

S∈Γij

S ⊂ T is a minimal ring extension, which is not possible as

⋂

S∈Γij

S ⊂ ⋂

S∈Γi

S ⊂ T . Thus, Γ contains all but two of the valuation overrings of R.

(ii) The necessity follows from part (i). For sufficiency, if |[R, T ]| = 4, then by (H),

R ⊂ T is not a λ-extension. Let S1, S2 be the intermediate rings between R and T .

By the proof of part (i), S1 and S2 are not comparable, as R has (#) property. Thus,

by (H), R is a maximal non λ-subring of T . �

A proper subring R of a ring T is said to be a maximal subring of T (see [2]) or T

is said to be a minimal ring extension of R if there is no ring between R and T .

The next corollary gives the complete structure of the overrings of a principal ideal

domain R for which R is a maximal non λ-subring.
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Corollary 4.3. Let R be a principal ideal domain not equal to its quotient field.

Then the overrings of R for which R is a maximal non λ-subring are precisely the

rings R[1/pq], where p and q are distinct irreducible elements of R.

P r o o f. Note that R is a one dimensional Prüfer domain with (#) property.

Therefore, every overring of R has (#) property, by (G).

Let T be an overring of R such that R is a maximal non λ-subring of T . Then

by Theorem 4.6, [R, T ] = {R,S1, S2, T }, where S1, S2 are incomparable. There-

fore, by (I), we have S1 = R[1/p] and S2 = R[1/q] for some distinct irreducible

elements p, q of R. Thus, T = R[1/pq].

Conversely, assume that p and q are distinct irreducible elements of R. Take

T = R[1/pq]. We claim that R[1/p] is a principal ideal domain. Let I be an ideal

of R[1/p]. Then I ∩R = rR for some r ∈ R. Choose the least non-negative integer j

such that r/pj ∈ I. We may assume that j > 1. We assert that I is generated by r/pj

in R[1/p]. Let s/pi ∈ I such that gcd(s, p) = 1. Then s = ry for some y ∈ R. Now, if

i > j, then s/pi = (r/pj)(y/pi−j). Otherwise, we have s/pi = (r/pj)(ypj−i). Thus,

our claim holds. Similarly, R[1/q] is a principal ideal domain. Therefore, R[1/p]

and R[1/q] are maximal subrings of T , by (I). Now, assume that z = t/piqj is an

arbitrary element in T for some t ∈ R and i, j > 0 such that gcd(t, pq) = 1. If

i = 0, then z ∈ R[1/q]. Similarly, if j = 0, then z ∈ R[1/p]. Now, assume that

i, j > 0. Since gcd(t, pq) = 1, therefore tx + piqjy = 1 for some x, y ∈ R. This

gives 1/p = (t/p)x + pi−1qjy and therefore R[1/p] ⊂ R[z]. Thus, by (I), we have

|[R, T ]| = 4 and hence R is a maximal non λ-subring of T . �

We now recall few definitions from [1] and [17].

(i) A graph is said to be a Y -graph if it can be drawn in the shape of the letter Y .

See [1], Remark 3.5.

(ii) For any ordered set S, the dimension of S is the supremum of lengths n of

chains x0 < x1 < . . . < xn of distinct elements of S. See [17], Definition 7.

(iii) Let a be a positive integer or ∞, let b be a non-negative integer or ∞. An
(a, b)-Y graph is a graph that can be drawn in the shape of the letter Y as

in Figure 1, where the subgraph enclosed between the vertex Q and the two

N1 N2

P

Q

.

.

.

.

.

.

.

.

.

Figure 1. (a, b)-Y graph
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vertices N1 and N2 is of dimension a, while the chain enclosed between the

vertices P and Q is of dimension b. An (a, b)-Y graph is of dimension d = a+ b.

See [17], Definition 7.

The proof of the next theorem, follows mutatis mutandis from the proof of [17],

Theorem 9.

Theorem 4.7. Let R be a maximal non λ-domain. Then exactly one of the

following holds:

(i) Spec(R) and Spec(R′) are chains of the same dimension.

(ii) Spec(R) and Spec(R′) are an (a, b)-Y graph.
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