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ENTROPY SOLUTIONS FOR PARABOLIC EQUATIONS
IN MUSIELAK FRAMEWORK WITHOUT SIGN CONDITION
AND WITH MEASURE DATA

M.S.B. ELEMINE VALL, A. AHMED, A. TOUZANI, AND A. BENKIRANE

ABSTRACT. We prove an existence result of entropy solutions for a class of
strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without
using the sign condition on the nonlinearities and with measure data.

1. INTRODUCTION

Let © be a bounded open subset of R (N > 2) satisfying the segment property,
T >0 and set @ = Q2x]0,T7.
We deal with boundary value problems

b
% + A(u) + g(z,t,u, Vu) = f — div(F) in Q
(P) u(z,t) =0 on 99 x [0,T)
b(-,u)(t=0) =b(-,up) on Q,
where b: Q x R — R a Carathédory function (see assumptions (6.1) and (6.2])),
the term A(u) = —div(a(x,t,u, Vu)) is an operator of Leray-Lions type which

satisfies the classical Leray Lions assumptions of Musielak type (see assumptions
(6-3)—(6-5)), g is a nonlinear order term satisfying the growth condition (see (6.6))
and the datum is assumed to be in L'(Q) + W1 E,(Q).

Under these assumptions, the above problem does not admit, in general, a weak
solution since the field a(z,t,u, Vu) does not belong to (Li,.(Q))" in general. To
overcome this difficulty we use in this paper the framework of entropy solutions.
This notion was introduced by P. Bénilan et al. [6] for the study of nonlinear elliptic
problems.

The study of the nonlinear partial differential equations in this type of spaces
is strongly motivated by numerous phenomena of physics, namely the problems
related to non-Newtonian fluids of strongly inhomogeneous behavior with a high
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ability of increasing their viscosity under a different stimulus, like the shear rate,
magnetic or electric field (see for examples [I8], [I9] and [20]).

In the setting of classical Sobolev spaces, LP(0, T, W'?(Q)), L. Boccardo and
T. Gallouét in [I1] have proved the existence of solutions of (P) where b(z,u) = u
(see also [1], [2], [10]).

In the variable exponent case, in the elliptic case the authors in [4] have studied
the same problem where the nonlinearity g satisfies the sign condition and F = 0
and in [3] the authors have studied the problem (P) where b(x,u) = b(u) and
F=0.

In the Orlicz spaces W' Ly (Q), D. Meskine in [24] proved the existence of
solutions to (P), where b(z,u) = uw and g = 0, in the inhomogeneous Orlicz Sobolev
spaces T/VO1 "LA(Q) for any A € Qps where Q) is a special class of Orlicz functions.
See also [5], [28].

Recently, in the framework of Musielak spaces, Agnieszka, Swierczewska and
Gwiazda in [30] studied the existence of weak solutions of problem (P) in the
case where ¢ = 0 and f € L*°(Q), M.S.B. Elemine Vall and all in [I3] have
proved the existence of entropy solutions of (P) in the case where b(x,u) = b(u),
g(z,t,s,&) = —div(©(z,t,u)) where © a Carathéodory function does not satisfy
any growth condition and F = 0, also in [20] proved the existence of renormalized
solutions of (P) where a = a(z,£) and g = 0 with the right hand side f € L*(Q).

Our novelty in the present paper is to give an existence result of entropy solutions
of the problem (P) in the setting of inhomogeneous Musielak- Orlicz-Sobolev spaces
WO1 " Ly(Q) for which As-conditions are not imposed, losing the reflexivity of the
spaces L, (Q) and Wi Lo(Q). The difficulty encountered during the proof of the
existence of the solution is that the lower order term g does not check the sign
condition and the fact that the second term is a bounded measure.

A large number of papers was devoted to the study the existence of solutions of
elliptic and parabolic problems under various assumptions and in different contexts
for a review on classical results see [9], [17], [18], [19], [211, [22], [26], [21].

This article is organized as follows. In the second section we are going to recall
some important definitions and results of Musielak Orlicz Sobolev spaces. The
third section contains some important lemmas useful to prove our main results. In
the fourth section we introduce some new approximations results in inhomogeneous
Musielak-Orlicz-Sobolev spaces, and trace results. The fifth section consecrate to
the compactness results used in this paper. We introduce in the final section some
assumptions on b(z, s), a(x,t,s,€&) and g(z,t,s,£) for which our problem has a
solution, and will be state and proved our main results.

2. PRELIMINARY
In this section we give some well-known preliminaries properties and results of

the framework of Musielak-Orlicz-Sobolev spaces.

2.1. Musielak-Orlicz-Sobolev spaces. Let 2 be an open set in R™ and let ¢ be
a real-valued function defined in Q x R, and satisfiying the following conditions:
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a) ¢(z,-) is an N-function (convex, increasing, continous, ¢(z,0) = 0,
t t
o(z,t) >0, ¥t >0, lim sup M =0, lim inf M = 00).
t—0,c0 t t—00 2E€Q t

b) (-, t) is a measurable function.
A function ¢, which satisfies the conditions a) and b) is called Musielak-Orlicz
function.

For a Musielak-Orlicz function ¢ we put ¢, (t) = p(x,t) and we associate its

nonnegative reciprocal function o, ', with respect to ¢ that is

oz (ol 1) = plz, 0 ' (1) = t.
The Musielak-Orlicz function ¢ is said to satisfy the As-condition if for some k& > 0;
and a non negative function h; integrable in Q2 we have
(2.1) o(z,2t) < ko(x,t) + h(z) forall z€Q and ¢>0.

When (2.1) holds only for ¢ > ¢y > 0; then ¢ said satisfies Ay near infinity.
Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate -y, and we
write 7 < @, near infinity (resp. globally) if there exist two positive constants ¢
and tg such that for almost all z €

v(x,t) < @(x,ct) forall t>ty, (resp.forallt>0 ie. tr=0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity), and
we write v << ¢, If for every positive constant ¢ we have

t t
lim (sup v(@ e )) =0, (resp. lim (sup v, )) = O) .
t—0 zeN QD(fE,t) t—00 \ 2c QD(SU,t)

Remark 2.1 ([§]). If v << ¢ near infinity, then Ve > 0 there exist k() > 0 such
that for almost all z € 2 we have

(2.2) v(z,t) < k(e)p(x,et), forall ¢>0.

We define the functional
o) = [ plou(o) de.

where u: ) — R a Lebesgue measurable function. In the following the measurabi-
lity of a function u: 2 — R means the Lebesgue measurability.
The set

K () = {u: @ — R measurable : p,q(u) < +oo}
is called the generalized Orlicz class.
The Musielak-Orlicz space (or the generalized Orlicz spaces) L, () is the vector
space generated by K, (£2), that is, L,(12) is the smallest linear space containing
the set K, (§2). Equivalently

|u(2)]
A

L,(Q) = {u : ) — R measurable : p%Q< ) < +4o00,, for some \ > O} )

Let
¥(z,s) = sup {st — p(z,t)}

t>0
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that is, ¥ is the Musielak-Orlicz function complementary to ¢ in the sense of Young
with respect to the variable s.
We define in the space L, () the following two norms:

|ullg.00 = inf >\>0// |>d <1}

which is called the Luxemburg norm and the so called Orlicz norm by:

o= s [ ju(@p(o)] de
[[v]l4 <1

where 1) is the Musielak Orlicz function complementary to . There two norms are

equivalent [25].

The closure in L, () of the bounded measurable functions with compact support

in 2 is denoted by E,(Q). It is a separable space.

We say that sequence of functions u, € L, () is modular convergent to u € L, (£2)

if there exists a constant A > 0 such that

lim p@Q(unA—U) =0.

n—oo

For any fixed nonnegative integer m we define
W™L,(Q) = {u € Ly(Q) :V]a| <m, D*u € Ly,(Q)}

and

WTE,(Q) = {u e E,(Q) :V]ja| <m, D*u e E,(Q)}
where a = (ay, . . ., o, ) with nonnegative integers oy, || = ||+ - -+ |ap| and D%u
denote the distributional derivatives. The space W™ L, () is called the Musielak

Orlicz Sobolev space.
Let

Poalu Z pe0(D%u) and ”quL,Q—lnf{/\>0 PQDQ()\><1}

la|<m

For u € W™L,(), these functionals are a convex modular and a norm on
W™ Ly(Q) respectively, and the pair (W™ Ly (Q), [[ul|}q) is a Banach space if
¢ satisfies the following condition [25]:

(2.3) there exist a constant ¢ > 0 such that in}"2 p(z,1)>c
e

The space WL, () will always be identified to a subspace of the product
H L,(2) =1Ly, this subspace is o(IIL,,IIE,) closed.

lee| <m

We denote by D(£2) the space of infinitely smooth functions with compact support

in Q and by D(Q)) the restriction of D(RY) on Q.

Let W§"L,(£2) be the o(IIL,,IIEy) closure of D(€2) in W™L(12).

Let W™ E, () the space of functions v such that v and its distribution derivatives

up to order m lie in E,(Q), and W' E,(Q) is the (norm) closure of D(Q) in
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W™L, ().
The following spaces of distributions will also be used:

WLy (Q) = {f eD'(Q); f= Y (~1)PIDf, with f, € L,/,(Q)}

lal<m

and

W Ey(Q) = {f eD'(Q); f= > (-1)*D*f, with f, € Ew(Q)} :
lee|<m
We say that a sequence of functions u, € W™L,(Q2) is modular convergent to
u € W™L, () if there exists a constant k£ > 0 such that
. — Up — U
Jim b () = 0.

For ¢ and her complementary function i the following inequality is called the
Young inequality [25]:

(2.4) ts < o(x,t) +¢(z,s), Vi, >0, x €.
This inequality implies that

(2.5) ulllg.0 < pea(u) +1.

In L,(€2) we have the relation between the norm and the modular
(2.6) lullp,0 < poa(u) if [ullpe>1.

(2.7) lullp.0 = po.alu) if [lufpo <1.

For two complementary Musielak Orlicz functions ¢ and 1, let v € L,(€2) and
v € Ly () then we have the following Hélder inequality [25]

(28) | [ wt@yeta)ds| < lullpallollo.

2.2. Inhomogeneous Musielak-Orlicz-Sobolev spaces. Let ) be a bounded
open subset of RY, T'> 0 and set Q = Q x [0,T]. Let m > 1 be an integer and let
wand 1 be two complementary Musielak Orlicz function. For each a@ € NV, denote
by Dg the distributional derivative on ) of order a@ with respect to = € RY. The
inhomogeneous Musielak-Orlicz-Sobolev spaces are defined as follows

W™ Ly(Q) = {u € Ly(Q) : Diu € Ly(Q),V]a| <m},
and
W™ EL(Q) = {u € E,(Q) : Dfue E,(Q),V]a| < m} .
This second space is a subspace of the first one, and both are Banach spaces with

the norm
[tllma =Y IDSulpq-

|| <m
These spaces constitute a complementary system since €2 satisfies the segment
property. These spaces are considered as subspaces of the product space IIL,(Q),
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which have as many copies as there is « order derivatives, |a| < m. We shall also
consider the weak topologies o(IIL,,IIEy) and o(IIL,, IILy,).

If u e W™*L,(Q) then the function t — u(t) = u(-,t) is define on [0, 7] with va-
lues in W™ L, (Q). If u € W™ *E,(Q) the concerned function is a W™ E,(£2)-valued
and is strongly measurable.

Furthermore, the embedding W™*E,(Q) C L'(0,T, W™E,(f)) holds. The

space W™ *L,(Q) is not in general separable, for v € W™*L,(Q), we cannot
conclude that the function w(t) is measurable on [0, T.
However, the scalar function t — ||u(t)||,.0 € L' (0,T). the space Wy " E,(Q) is
defined as the norm closure of D(Q) in W™*E,(Q). We can easily show as in [16]
that when Q) has the segment property then each element u of the closure of D(Q)
with respect to the weak * topology o(IIL,,IIE,) is limit in W™® L, (Q) of some
subsequence (v;) € D(Q) for the modular convergence .i.e there exist A > 0 such
that for all |a| <m

Dv,; — D2

/ @(x,M)dxdt —0 as j— +o0,
Q A

which gives that (v;) converges to u in W"*L,(Q) for the weak topology

o(IIL,,IIL,). Consequently

WU(HLWHEw) _ D)

The space of functions satisfying such property will be denoted by Wj"" L, (Q).
Furthermore Wy E,(Q) = W)""L,(Q) NIIEL(Q).
Thus both sides of the last inequality are equivalent norms on Wy""L,(Q). We
then have the following complementary system
(W(;”’xL@(Q) F>

W Ey,(Q) Fo)
F states for the dual space of Wj""E,(Q) and can be defined, except for an
isomorphism, as the quotient of IIL, by the polar set Wy E,(Q)*. Tt will be
denoted by F = Wy ™" L,(Q) with

WLy (Q) = {f = > Difawith fa € Lw(Q)}'

lal<m

(1L, Ly)

This space will be equipped with the usual quotient norm

lulr =inf Y | fal

lal<m

+,Q

where the infimum is taken over all possible decompositions
f=Y Difa fa€Ly@).
lo]<m
The space Fj is then given by
Fo={f=Y Difa with fu€E,Q)}

la|<m
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and is denoted by W™ """ E,(Q).

3. SOME TECHNICAL LEMMAS

We list here some technical lemmas which will be used in the proof of our main
result. We start by the following approximation result.

Lemma 3.1 ([7]). Let Q be a bounded Lipschitz domain in RN and let ¢ and
1 be two complementary Musielak-Orlicz functions which satisfy the following
conditions:

i) There exists a constant ¢ > 0 such that ing2 o(z,1) > ¢
e

1
il) There exists a constant A > 0 such that for all x, y € Q with |x — y| < 3

we have

(3.1) Pl t) < tl‘)g(u‘iy\) , Vt>1.
iii)

(3.2) If D CQ is a bounded measurable set, then / p(x,1)dr < co.
D

iv) There exists a constant C > 0 such that ¥(z,1) < C a.e. in Q.

Under this assumptions, D(Q) is dense in Ly(Q) with respect to the modular
topology, D(RY) is dense in Wy L,(Q) for the modular convergence and D() is
dense in W' L, () the modular convergence.

Consequently, the action of a distribution S in WL, () on an element u of
Wy Ly,(Q) is well defined. It will be denoted by < S,u >.
Truncation Operator. For k£ > 0 we define the truncation at height k: T,: R — R
by:

s it |s| <k,
(3.3) L) =Yrs it |s|> k.
Lemma 3.2 ([21]). Let (f,), f € L*(Q) such that
i) fn >0 a.e in Q.
) fro— [ a.e. in Q.

iii) /fn da:—>/f

then f, — f strongly in L* ().

Now, we give the modular Poincaré’s inequality in Musielak-Orlicz spaces in the
following lemma.
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Lemma 3.3 ([I4]). Under the assumptions of Lemma[3.1, and by assuming that
o(z,t) decreases with respect to one of coordinates of x, there exists a constant
¢ > 0 which depends only on Q) such that

(3.4) / oz, Ju(z)]) de < / o(z,c|Vu(z)|)de Yu € WyLy(Q).

Q Q
Proof. Since ¢(z,t) decreases with respect to one of coordinates of x, there exists
io € {1,..., N} such that the function 0 — @(z1,...,2iy—1,0, Tig+1,-- -, TN, 1) IS
decreasing for every xi,...,%i,—1, Tig+1,-- -, &N € R and Vt > 0.

To prove our result, it suffices to show that

ou 1
(3.5) oz, ju(z)]) de < <p(x, 2d) (:C)D der, Yue WyL,(Q)
Q Q Oy,

with d = max(diam(Q), 1) and diam(2) is the diameter of €.
First, suppose that u € D(Q), then

(P(-T, |u($17 oo axN)D
Tio | Ou

Sgp(m,/ Do ($17...,xi0_1,07xi0+17...7xN)dU>
—00 Lig

1 [t ou
Sd/_oogo(x’d‘axio (xla'"axio—laoaxio-i-la'--;xN))do-
1 [tee ou
S E So(xlw"axiofl7aaxio+17'“axNad‘T (l‘la"'amiofla07Ii0+17~-~7x]\7))d0-~
—oo Lig

By integrating with respect to x, we get

/wx, (s, ..., ox)]) do
Q

Lo[ree
S/E/ (p(x]_,...,xi07170,$i0+17---,x1\[7
Q —o0

ou
d‘ (xl,...,xio_l,a,xi0+1,...,a:N)>dadx,
89%
: ou .
since gp(ml, s Xig—15 0, Tig 1y - - - ’IN’d’Tm ’(ml, ey Tig—1, O Tig4ly - - - ,xN)) in-
10

dependent of x;,, we can get it out of the integral to respect of z;, and by the fact
that o is arbitrary, then by Fubini’s Theorem we get

(3.6) /Q<p(x,|u(x)|)dxé/<ﬂ(xad‘éii

Q
For u € Wy L,(f2) according to Lemma we have the existence of u,, € D(Q)
and A > 0 such that

(a:)) dx, YueDQ).

EW,Q(L)\_U> =0, as n-— +oo,
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hence
/Qg0<;v,|un/\_u|)dx—>0, as n — 400,
/gp(m,'vun%w)dx—ﬂh as n — 400,
u: —u a.e. in 2, (for a subsequence still denote u,,) .

Then, we have

|u(z)| . / [un ()]
L A § <
/Q‘p(x’ 24\ )dx—ibmlfi Q“’(x’ 24\ )dx

1 | du.,
< Timi L
< gt [ o{n ez o)
L. 1 | dun, ou ou
- TPE}JPOEJ A @(z, ﬁ 8xi0 (ZZ?) B 8$i0 (1:) + 6.’117;0 (ZE)D du

1 1| 0u ou
- 1. . f — n _
2 nl—:‘rnoo A (P(l', A 3£L'i0 (37) 8{E¢0 (x)D dr

+3 oo 3l ol &

1| Ou
< — .
< [ (e 3lgm@|) s
Hence

/Q<p(x, lu(z)|) dz < /Qcp(xﬂd‘ 881”1:0 (x)D dr, Vu€WiL,(Q).

IN

O

Lemma 3.4 (The Nemytskii Operator [21]). Let Q be an open subset of RY with
finite measure and let p and v be two Musielak Orlicz functions. Let f: Q@ x RP —
R? be a Carathodory function such that for a.e. x € Q and all s € RP:

(3.7) |f(z,8)] < e(@) + kg p(a, ko s)

where k1 and ko are real positives constants and c(-) € Ey ().
Then the Nemytskii Operator Ny defined by Ny(u)(x) = f(z,u(x)) is continuous

from
(P(E¢(Q), kiz)p -11 {u € Ly(Q) : d(u, B, (Q)) < kig}

into (Ly(Q))? for the modular convergence.
Furthermore if c(-) € E,(Q) and v << 1 then Ny is strongly continuous from

1
(PEAD), )" 1o (B,(@)".
Lemma 3.5. Assume that (6.3))-(6.5) are satisfies and let (z,), be a sequence in
Wy L,(Q) such that
i) 2, =z in Wy L,(Q) for o(I1L,, I1E).
ii) (a(-t,2n, V2n))n is bounded in (Ly(Q))N.
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iii) / (a(x,t, Zny Vin) — a(x, t, zp, VZXS)) (Vz, — Vzxs)de — 0
Q

as n,s — 00. where x is the characteristic function of
Qs ={xeQ:|Vz| <s}.

Then, we have

2z, — 2z for the modular convergence in Wy Ly,(€).

Proof. Let s >0 and Q; = {x € Q: |Vz| < s} and denote by x, the characteristic
function of €.
Fix r > 0 and let s > r, we have

0< / (a(z,t,2n, Vzn) — a(z,t, 20, V2)) (Vz, — Vz)dx
Q.

< / (a(z,t, 2, V) — a(,t, 20, V2)) (Vzn — Vz) da
Q

s

= / (a(az,t, Zns Vi) — alx, t, 2y, VZXS))(Vzn — Vzxs)dx
Qs

< / (a(m,t, Zn, Vzp) — a(x,t, 2, VZXS))<VZn — Vzxs)dx.
Q
By iii), we obtain

lim (a(z,t,2n, Vzn) — a(z,t,2,,V2)) (V2 — Vz)dz = 0.

n——0o0 Jo
So as in [I6], we have
(3.8) Vz, — Vz a.e. in Q.
On the other hand, we have

/a(m,t,zn,Vzn)Vzndx:/ (a(x,t,zn,Vzn)fa(x,t,zn,VZXS))(VzanzXS)dx
Q Q

+ / a(x,t, zn, Vzxs)(Vz, — Vaxs) dx
Q

(3.9) +/ a(x,t,zn, Vzn)Vzxs do.
Q

Since (a(-,t, 2, Vz,))n is bounded in (Ly(Q))" and using the almost every where
convergence of the gradients we obtain

a(x,t, zn, Van,) = a(x,t,2,Vz) weakly in (Lw(Q))N for o(IILy,I1E,),
which implies that
(3.10) /a(x,t, Zn, Vin )Vzxs de — / a(z,t,2,V2)Vzxsde.
Q Q
Letting s — oo, we obtain

(3.11) / a(x,t,2,Vz)Vayxsde — | a(z,t,z,Vz)Vzdz.
Q Q
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On the other hand, it is easy to see that second term of the right hand side of (3.9)
tends to 0, as n — 00, consequently, from iii), (3.10) and (3.11)), we have

(3.12) / a(x,t,2,, Vz,)Vzyde — | a(x,t,2,V2)Vzdr.
Q Q

Using (|6.5) and the convexity of ¢, we have

Ve — Vz|\ 1 1
- )< = . — . A
ago(x, 5 ) < Qa(a:,zn,Vzn) Vzn, + 2a(x7z,Vz) Vz
Then by (3.12) we get

lim sup/ gp(m,w) dr=0.
E

meas(E)—0 peN 2
Then by using Vitali’s theorem one has

z, — z for the modular convergence in Wy L, ().

4. APPROXIMATION AND TRACE RESULTS

In this section, Q be a bounded Lipschitz domain in RY with the segment
property and [ is a subinterval of R (both possibly unbounded) and Q = Q x I. Tt
is easy to see that @) also satisfies Lipschitz domain.

Definition 4.1. We say that u,, — u in W™ "Ly (Q) + L'(Q) for the modular
convergence if we can write

Up, = E Du® +u and u= g Dou® + P,
o<1 lo]<1

with u2 — u® in L, (Q) for the modular convergence for all |a| < 1, and u? — u"

strongly in L'(Q).
We shall prove the following approximation theorem, which plays a fundamental
role when the existence of solutions for parabolic problems is proved.

Theorem 4.1 ([27]). Let ¢ be an Musielak-Orlicz function satisfies the assumption
B

Ifu e WH* L, (Q) (respectively u € Wol’ach,(Q) ) and % EW M Ly(Q)+ LYQ),
then there exists a sequence (v;) € D(Q) (respectively D(I,D(2))) such that

v, 0
v; — u in W' L,(Q) and e RN W5 Ly (Q) + LY(Q) for the modular
convergence.

ot ot

Lemma 4.1 ([27]). Let a < b € R and let Q be a bounded Lipschitz domain in
RY. Then

{u € WH* L, (Qx)a,b]) : % € WLy (Qx]a, b)) + Ll(Qx}a,b[)}

is a subset of C(]a,b[, L*(2)).
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In order to deal with the time derivative, we introduce a time mollification of a
function u € Wy " L,(Q).
Thus we define, for all > 0 and all (z,t) € Q

(4.1) uy(z,t) = /_ t(x,0)exp(u(o —t))do

where (z,t) = u(z,t) X[, ().
Throughout the paper the index i always indicates this mollification.

Lemma 4.2 ([27]). Ifu € L,(Q) then u, is measurable in Q and % = p(u—uy,)
and if u € K,(Q) then
/ o(x,u,)dedt S/ o(z,u)drdt.
Q

Q
Lemma 4.3.

(1) If u € Ly(Q) then u, — u for the modular convergence in L,(Q) as
1 — 0.

(2) Ifu € Wy " Ly(Q) thenu, — u for the modular convergence in Wy'* L,(Q)

as p — oo.

Proof.

(1) Let (vg)x C D(Q) such that vy — win L,(Q) for the modular convergence.
Let A > 0 large enough such that

%EK@(Q), /ng(x,vk;u)dxdt—%) as k — 400.

On the one hand, for a.e. (x,t) € Q, we have

-tz = e < |

On the other hand, one has

/ng(x, uu?);u) dxdtﬁi/@go(m,u“_)\(vk)”) dx dt

—|—:1))/ng<$,W)dxdt—f—;/cgcp(x,vk/\_u)dxdt

L=(Q)

1 (Vk)p — Uk 1 )
3/Q<p(x,>\)dxdt+3/Qap(x, X )dmdt.
This implies that

/Qw(x, ) dxdt<§/Qso(x, =) d:rdt—i—/@ (.5 HakaLw(Q)) dudt .
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Let € > 0 there exists kg > 0 such that Vk > kg, we have

/ cp(x, vk/\_u) drdt <e
Q

and there exists pg > 0 such that Yu > pg and for all k > kg

ik

Loo

Then, we get

Uy — ovy, H
R — < — .
/ng<x, = )dacdt e+ H 0 /ng(x,l)dxdt

Finaly, by using (iii) of Lemma and by letting 4 — 400, there exits
w1 > 0 such that

/go(ac,u“_u)dxdtge, forall p>p.
Q

3\

(2) Since for all indice a such that || < 1, we have D5 (u,) = (Dgu),,
consequently, the first part above applied on each D3 u, gives the result.

O

Remark 4.1. If u € E,(Q), we can choose \ arbitrary small since D(Q) is (norm)
dense in E,(Q).
Thus, for all A > 0, we have

/ ga(x,u“_u>dxdt—>0 as p — +00.
0 A
and u,, — u strongly in F,(Q). Idem for W"*E,(Q).

Lemma 4.4. Ifu, — u in Wol’xLW(Q) strongly (resp., for the modular conver-
gence), then (uy), — w, strongly (resp., for the modular convergence).

Proof. For all A > 0 (resp., for some A > 0),

/80(5177 Dz ((n))u = Dz () da?dt—»/ Ds u" Dy u) dxdt — 0
Q

A

n — +00

then (uy), — u, in WH"L,(Q) strongly (resp., for the modular convergence). [

5. COMPACTNESS RESULTS

For each h > 0, define the usual translated 73, f of the function f by 7, f(t) =
ft+h).
If f is defined on [0, T then 71, f is defined on [—h, T — h].
First of all, recall the following compactness results proved by the authors in [27].
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Lemma 5.1. Let ¢ be a Musielak function and 1 the complementary function of
w, we assume that there exists ¢ > 0 such that ¥(x,1) < ¢ a.e. in L.
Let Y be a Banach space such that the following continuous embedding holds
LY(Q) C Y. Then for all e > 0 and all A > 0, there is C. > 0 such that for all
[Vl

u€ W&,sz(Q) with N € K,(Q), we have

Vu
llull1 < eA / cp(ac, M) dedt+T |+ CEHU||L1(07T7}/).
0 A

Proof. Since Wy L,(Q) C L'(Q) with compact embedding, then for all ¢ > 0,
there is C. > 0 such that for all v € W L, ()
(5.1) [0l < ellVaullz, @) + Cellvlly -

Indeed, if the above assertion holds false, there is g9 > 0 and v,, € Wy L,(Q) such
that

[vnllz1 (@) = €ollVunllL, @) + nllvally -

This gives, by setting w,, = 07n7
”vvnHLv,(Q)
lwallzie) = €0+ nllwnlly,  [Vwallr, @) =1.

Since (wy,), is bounded in Wy L,(Q) then for a subsequence
w, — w in Wy L,(Q) for o(IlL,,11E,) and strongly in L'(Q).
Thus, ||w,| 11 (o) is bounded and ||w, |y — 0 as n — +o0.

We conclude w, — 0 in Y and that w = 0 implying that e < [Jwn|[z1() — 0, a
contradiction.
[Vl

Using v = u(t) in (5.1) for all u € Wol’me(Q) with ~ € K,(Q) and a.e.
t € [0,T], we have
lu®)llLr @) < ellVu®)lz, @) + Cellu®)lly -

t
Since / go(:m %‘) dx dt < oo, we have thanks to Fubini’s theorem
Q
t
/ o(x, %D dx < oo for a.e. t € [0,T] and then
Q
Vu(z,t)
< -~ 7 7
IVl <A [ o |52 ) ot 1),

which yields

o <A [ o] T4 ) do+ 1) + clutoly.

Integrating this over [0, 7] yields

|Vl
||U||1 S EA / e\x, dl‘dt—FT +Cgl|u||Ll(0’T,y) .
( Q ( A ) )
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We also prove the following lemma which allows us to enlarge the space Y
whenever necessary.

Lemma 5.2. Let ¢ be a Musielak function and 1 the complementary function of
©, we assume that there exists ¢ > 0 such that ¥(z,1) < ¢ a.e. in Q.

If F' is bounded in Wol’me(Q) and is relatively compact in L*(0,T,Y) then F is
relatively compact in L'(Q) (and also in E.(Q) for all Musielak function v < ¢).

Proof. Let € > 0 be given. Let C > 0 be such that / <p( | Cf|) dxdt <1 for

Q
all feF.
By the previous lemma, there exists C > 0 such that for all u € VVO1 * L, (Q) with

\%
% € K@(Q)v

2eC Vu
Il < gy (] (n 5a) de+ T) + Colullonn).

Moreover, there exists a finite sequence (f;); in F' satisfying
€
VfeF, 3f; suchthat |[f— filloiory) < Yol
€

So that,

Vf-=Vf;
If - lep(Q)_ﬁ(/ (o T dwar 4 1) 4 s~ flor

<e

and hence F is relatively compact in L' (Q).
Since v < ¢ then by using Vitali’s theorem, it is easy to see that F is relatively
compact in E.(Q). O

0
Remark 5.1. If ' ¢ L'(0,T, B) is such that {a—{  f e F} is bounded in

F c LY0,T, B) then ||7,f — fllzro,r,By — 0 as h — 0 uniformly with respect
to feF.

Lemma 5.3. Let ¢ be a Musielak function. If F' is bounded in W L,(Q) and

{g{ fe F} is bounded in W~1"Ly(Q), then F is relatively compact in L*(Q).

Proof. Let v and 6 be two locally integrables Musielak functions such that v < ¢
and 6 < 1 near infinity.
For all 0 < t; <te < T and all f € F, we have

H£3®dww® /|me&mﬂ

< Cillfllwre e,

<Glflwi=p, @)
<,
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where we have used the following continuous imbedding

Wy " Lo(Q) C Wy " EL(Q) C L*(0, T, Wa L, (Q)).

ta
Since the imbedding Wy L., (€2) C L' () is compact we deduce that ( f(t) dt)feF
t1
is relatively compact in L'(€2) and W~11(Q) as well.

On the other hand, a—f : f € Flisbounded in WYL, (Q) and L* (0, T, W11 (Q
ot v

as well, since
Wb Ly (Q) C W Ey(Q) C L' (0, T, W™ Ep(Q)) C L' (0,7, W~ 1(Q)) ,

with continuous imbedding. By Remark 3 of [15], we deduce that
T f — fllzro,0,w-11(q)) — 0 uniformly in f € F' when h — 400 and by using
Theorem 2 of [I5], F is relatively compact in L*(0, 7, W~ 51(Q)).
Since L'(Q) ¢ W~ 5(Q) with continuous imbedding we can apply Lemma [5.2] to
conclude that F is relatively compact in L'(Q). O

Lemma 5.4. Let ¢ be a Musielak function.
Let (un)n be a sequence of WHTL,(Q) such that

u, —u  weakly in WY L,(Q) for o(IlL,,11Ly)

and
Oun
% = hy + kn in D'(Q)
with (hp)n bounded in W% Ly(Q) and (kn)n bounded in the space M(Q) set of
measures on Q.
Then u,, — u strongly in L, (Q).

If further u, € Wy L,(Q) then u, — u strongly in L'(Q).

Proof. It is easily adapted from that given in [I2] by using Theorem 4.4 and
Remark 4.3 instead of Lemma 8 of [29]. O

6. ESSENTIAL ASSUMPTIONS AND MAIN RESULTS

Throughout this paper, we assume that the following assumptions hold true:
Let Q be a bounded open subset of RY (N > 2) satisfying the segment property,
T > 0 and set Q = Qx]0,T7.

In the sequel, we denote by Q, = Qx]0,7[ for every 7 € [0,T]. Let ¢ and ~

two Musielak Orlicz functions such that v < ¢, we denote by ¢ the Musielak

complementary function of . We assume that ¢ and v satisfy the assumptions of

Lemma and that ¢(x,t) decreases with respect to one of coordinates of x.
Let

(6.1) b: @ xR — R is a Carathédory function such that

for every x € Q: b(x, s) is a strictly increasing C'-function, with b(x, 0) = 0.
For any k > 0, there exists A\, > 0, a function Ay in L*(Q) and a function
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By, € L,(2) such that
ob(x, s)

0s

for almost every = € Q, for every s such that |s| < k.
Consider a second-order operator A: D(A) C W, * Ly (Q) — W12 L, (Q) of the

form

Ob(x, s)

(6.2) Ak < < Ag(z) and ‘Vw< 857 )‘ < By(z)

A(u) = —div(a(z, t,u, Vu)) ,

where a: 2x]0, T[xR x RN — R" is a Carathédory function, for almost every
(z,t) € Qx]0,T[ and all s € R, £ #&* € RV,

(6.3) la(@,t,5,6)] < B(ha(w,t) + oz (@, vls]) + ¥ o(x, vIE]) -
(6.4) (a(z,t,5,€) —alx,t,5,67)) (€ — &) > 0.
(6.5) a(z,t,s,8)-& = ap(z, [§])

with hy(z,t) € Ey(Q),h1 > 0€ LYQ),a, B,v > 0.
Assume that g: 2x]0, T[xR x RY — R be a Carathéodory function such that for
a.e. (2,t) € 2x]0,T[ and for all s € R, £ € RY:

(6.6) l9(@,t,5,8)| < ho(z,t) + d(s)e(x, [€])

with ha(z,t) € LY(Q) and d: R — R is a bounded continuous integrable positive
function.
Furthermore let

(6.7) feLY(Q), and F e (E,Q)"Y,
(6.8) ug is a given function in L'(Q) such that b(-,uo) € L'().
We consider the following parabolic problem
W) | Aw) + g0, Vi) = f—div(F)  in Q,
(6.9) u(z,t) =0 on 90 x[0,T],
b(x,u) |t=o= b(z,ug) on .

We will show that the problem has at least one entropy solution in the
following sense.

Definition 6.1. A measurable function u: Q x [0,7] — R is called entropy
solution of if, Ty (u) belongs to D(A) N Wol’ng,(Q) for every k > 0, b(-,ug)
belongs to L'(Q2), and u satisfies the following inequalities

(6.10) b(z,u) € L=([0,T], L (Q)),

(6.11) lim a(z,t,u, Vu) - Vudrdt =0,

M0 Jim< ul<m+1}
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a

nd,
// MS/(T—U)Tk(T)deZ‘dt
QJo or

T t 8'[] u ab(.’l},?") .
+/o /0 <870’/0 or S"(r —v)Tk(r) dr> do dt

¢
+//a(x,a,u,Vu)~VTk(u)S’(u—v)dadzdt
o Jo

+ /Q /O " — v)ale, 0, V) - (Vi — Vo) Ti(w) do da dt
+ /Q /O ' (0,4, V) S (4 — o) T (u) dor e

< /Q/Ot £S5 (u— 0) Ty () de dt
+ /Q /Ot F -V (u— v)8"(u— v)Ti(u) do dz dt

¢
+/ / F VT, (u)S (u —v)dodzdt
o Jo

(6.12) b7 /Q /0 " %S‘; ") & — w(0)) T (r) dr dax

av

for every k > 0, and for all v € Wy"L,(Q) N L=(Q) such that p

WL, (Q) + L' (Q) (recall that T}, is the usual truncation at height & defined
on R by T(s) = min(k, max(s, —k)) and for all increasing function S € W (R)
with S’ has a compact support in R).

belongs to

Inequality (6.12)) is formally obtained through pointwise multiplication of equa-
tion by S'(u — v)Tk(u), and integration by parts. However, all the terms in

(6.12)) have a meaning in D’'(Q).
Indeed, if M > 0 is such that suppS’ C [—~M, M], the following identifications are

made in (6.12))

e S(u) belongs to L*°(Q) since S is a bounded function.

o [ Mgy = [P g0y <
0

or 0 or
L>(Q).
v —1,x TMH'U”OO(H) ab(z7 T) ! 1,z
© 5, EWTLLQ), / S'(r —v)Ti(r)dr € Wy Ly(Q).
g 0 (97“

o S'(u—v)a(z,o,u, Vu)-VTi(u) identifies with S’ (u—v)a(z, o, Ty, (u), VT (u))-
VTi(v) ae. in Q. Since S'(u —v) € L*®(Q) and VTj(u) € (L, (Q))Y, we
obtain from that S'(u — v)a(z, 0, T (), VIi(u)) - VTi(v) € L(Q).
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o We have
S"(u —v)a(z,o,u, Vu) - V(u — v)Tx(u)
= SN(’LL — U)a(a:, g, TJV[HWHOQ (u), VT]V[+HUHOQ (u)) . V(TM+HUHOO (u) — v)Tk(u)
a.e. in Q, and, 8" (u —v)a(x, 0, Tary v (v),
VTl () - V(Tart o) () = 0)Ti(u) € LN(Q).

o S'(u—w)g(x,0,u, Vu)Tj(u) identifies with S'(u — v)g(x, o, Tart o). (1),
VT o) () Tk (u) ae. in Q. Since S'(u — v)Ti(u) € L™(Q), we obtain
from and that

S'(u = 0)g(x, 0, Tar oo (W), Va1 o) o, () T (u) € LY(Q) -
o S'(u —v)fTi(u) belongs to L(Q).
e Moreover Lemma implies that v € C([0, 7], L*(Q2)), then (6.2)) gives

a4 o]l 0o (w0)
’// : MS’(TfU(O))Tk(r)drdx‘
aJo 87"

suM+mm@wwmAAMmmxmm.

We shall prove the following existence theorem.

Theorem 6.1. Assume that (6.1)~(6.8) hold true. Then the problem admits
at least one entropy solution solution (in the sense of Definition .

Proof. We will use a Galerkin method due to Landes and Mustonen [23], we
choose a sequence {wy,ws, ...} in D(Q) such that Uy V), with V), = {wy, ..., wp}
is dense in Hy"(€2) with m large enough such that Hy"(Q2) is continuously embedded
in C'(Q). For every v € H}"(Q) there exists a sequence (v;) C Up—oV} such that
Vp — v in HJ*(Q) and in C' ().
We denote further V, = C([0,7],V}). It is easy to see that the closure of U2 V),
with respect to the norm

[vllero@) = sup {IDgv(z, 1)] = (2,1) € Q}

o<1
contains D(Q). This implies that, for any f € W_l’me(Q), there exists a sequence
(fn) C U2V, such that f, — f strongly in W™ H"Ey(Q).
Indeed, let € > 0 be given. Writing f = Z D¢ f< there exists g¢ € D(Q) such
la<1
Moreover, by setting g = Z D g%, we see that
lal<1

3
that || f¢ — ¢° < .
at 11" = 9°lve < 33775

g

_ < -
Voo = 2meas(Q) We

g € D(Q), and so there exists v € Up2 ), such that [|g
deduce that

If = ollw-rer,@ < D I = 9%lve + g —vlpe <e.
o<1

We shall divide the theorem in several steps.
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Step 1 : Approximate problem
Let us define the following approximations of the data

(6.13) bn(z,s) = bz, Th(s)) + ls, ae. z€), VseR,
n

(6.14)  gn(z,t,8,8) = Th(g(z,t,8,8)), ae. zeQ VseR, VEeRY,
(6.15) f, €CC(Q) suchthat f, — f in LY(Q) and ||fullzr <|fllz: .

Ugn € C°(Q): b (x,ugn) — b(x,up) in LHQ)

and
(6.16) [[br (2, won) || 1 < [[b(, o)1 -
We consider the approximate problem
(6.17)
Up € Vi, Oun € LY 0,T,V,), un(x,0) = ugp(x) ae. in €,
W —div(a(z, un, Vun)) + gn(z, t, un, Vuy,) = f, — div(F) in D'(Q).

Since g, is bounded for all fixed n € N, there exists at least one solution w,, of
(6.17) (this solution u, can be obtained from Galerkin solution (see [23]).

Step 2 : A priori estimates
In this section we denote by ¢;, i = 1,2,... generic positive constants .
S

2
Let D(s) = 5/ d(o) do where d is the function in (6.6)).
0
For k > 0 taking Ty (un)exp(D(|uy])) as a test function in (6.17), we get

[ )0 (D) e

+ / a(z,t, Un, Vup) - VT (un) exp (D(|uy)) da dt
Q
2
+ a/ a(x,t, Un, V) - Vg | Tk (uy)|d(u,) exp (D(|un|)) dx dt
Q
+ / gn (T, Up, Vun )Tk (uy,) exp (D(|un|)) dx dt
Q

= / ST (un) exp (D(|uy)) dz dt + / F - VT (up) exp (D(|un))) dz dt
Q Q

(6.18) + i/QF - V| Ty (uy) |d(un) exp (D(Juy|)) da dt .
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For the first term of the left hand side of last inequality, we have
/MTk(un)eXp( (lunl)) da dt
(6.19) / B (z,un(T)) dz — /Q B} (z,uon) dx
where Bp (z,s) = /S Tk(t)w exp(D([t])) dt
Then, becomoes
/B,c z,un(T)) dz + /Q a(z,t,un, V) - VT (uy) exp (D(|uy)) dz dt
+ a/Q a(z, t, up, V) - Vg [ Ti(un)|d(un,) exp (D(|uy|)) da dt
+ /an(x, tyUn, V)T (uy ) exp (D(|un|)) da dt
= /anTk(un) exp (D(|uyl)) da dt + /Q F - VT (uy) exp (D(|unl)) da dt
(6.20) + Z/QF -V | T (u) |d(un ) exp (D(|uy)) da dt + /Q B} (z,upp) dx .
Using now the conditions and ( .7 we get
/Bk z,un(T)) dx + /Q a(z, t, Uy, V) - VT (uy) exp (D(|un|)) do dt
2 /Q (3, [Vt ) T 1) |t e (D) s
= /anTk(un) exp (D(|un|)) dz dt + /Q F - VT (up) exp (D(|un)) dz dt

+ / [ha (. £) + d(uun ) o, [Vt )] [T ()] exp (D)) dir
Q

(6.21) + Z/QF-VunTk(unﬂd(un)exp (D(|unl)) dacdt—i—/QBZ(ac,uon) dx .

From ([6.13)—(6.16]), and since

2||d
/ By (x, upp) dx < exp (m)kzﬂbn(gc7 uon) |1 ()
O «

2|/d
< exp (w)knb(z,uo)uwm ,
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we have

/B,?(x,un(T))dm + / a(x,t, up, V) - VT (u,) exp (D(|un|)) dx dt
Q Q
+ /Q o(z, |Vun )| Tk (un)|d(uy) exp (D(|un|)) dx dt
2||d[ s
< exp (== Nk (s + el @) + (. w0) 3 )
+ / F - VT (uy) exp (D(|un|)) do dt
Q

(6.22) —|—Z/QF-VunTk(un)d(un)exp (D(Junl)) dar dt .

Then, by using Young’s inequality on the second and third term of the last inequality,
we obtain

/QB,Z(%un(T))dx + /Q a(@,t, uy, Vuy) - VI (uy) exp (D(|un|)) dz dt
+ /Q @@, [Vun|) [T (un)|d(un)exp(D(|un|)) dz dt
<exp (M)k(”ﬂhl @) + Ih2llLr ) + 16(z, wo)ll (o))
+exp 2||d||L1 /w 224D by gpat

ﬁ /Q ol [V T () exp (D (Jun) dr di

o exp (2120 /w 2, cal F)) dz dt

_|_

(6.23) + / (@, [Vun )| Tk (un)|d(un) exp (D(|un|)) d dt
Q
where ¢, is a positive constant depend only on a.
Then, by applying (6.5)) and the fact that B} (z,u,(T)) > 0, we get

200+ 1
2(a+1)

Then by using (6.5)), we have

(6.25) / o(, VT (uy)|) dadt < csk + .
Q

(6.24) / a(@, t, uy, V) - VI (uy) exp (D(|up|)) dedt < ek +co .
Q

By using Lemma we have (T (u,,)) is bounded in Wy L,,(Q), then there exists
vy, such that
(6.26) Ti(un) = vp  in Wy Ly(Q) for o(IlLy, 11E,)

. Ti(un) — v strongly in E,(Q).
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Therefore, we can assume that (T (uy,)), is a Cauchy sequence in measure in €2,
then for all £ > 0 and §,¢ > 0 there exists ng = ng(k, 4, &) such that

(6.27) meas {| Ty (un) — Ti(um)| > 6} < % , Vm,n>mng.
We have by simple calculus
. k . k
e R A T
, [T (un)|
< AR DL
[ e )

< /Qcp(x, M) dx dt

< / cp(x, |VTk(un)\> dedt,  (using Lemma[3.3)
Q
<csk+ea, (using (6.25))) ,

where this c is the constant of Lemma 3.3
Then, by the definition of ¢, we get

L“‘;—m, as ks 400,

(6.28) meas {|un| > k} < ;ggw(% E)

Since Vo > 0

meas {|up, — Up| > 6} < meas {|u,| > k} + meas {|u,| > k}
(6.29) + meas {|T% (un) — Th(um)| > 6} .
Then, we have Ve > 0, there exists kg > 0 such that
(6.30) meas {|u,| >k} < %, meas { || > k} < g, VEk > ko(e) .

Combining (6.27)), (6.29) and (|6.30)), we obtain that for all §,e > 0, there exists
ng = no(0,€) such that
meas{\um — U | > 5} <e, Vn,m>ng.

It follows that (uy )y is a Cauchy sequence in measure, then converges in measure.
Now, we turn to prove the almost every convergence of u,,.
Consider now a C?(R), and nondecreasing function rj, such that r4(s) = s for

k
|s] < B and ri(s) = ksign (s) if |s| > k. Multiplying the approximate equation
(6.17) by 7 (uy), one has
OB}
ké%u”) — div (a(a,t,un, V)i (un)) + a(z, t, un, Vi) - Vugry (un)
+ gn (@, tyun, Vun )1 (un) = fur’ (un) + F - Vugry (u,)  in D(Q),

with B} (z, s) :/ WT‘/(U)C[U.
0 t
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OB} (x,un)
ot
: ory(un) . :
to the properties of r; and Lemma 5.4, we conclude that is bounded in

ot
WL, (Q) + LY(Q).
Thanks to Lemma we deduce that 74 (u,) is compact in L*(Q).

Due to the choice of ry, we conclude that for each k, the sequence Ty (uy)
converges almost everywhere in (), which implies that the sequence u,, converges
almost everywhere to some measurable function u in Q.

Consequently, we get

Ti(un) = Ti(u)  in WgLy(Q) for o(IlLy,I1E,)
Ty (un) — Ti(u) strongly in E, ().

Which yields easily that is bounded in W™*L,(Q) + L*(Q). Due

(6.31)

Step 3 : Boundness of (a(x,t, Tx(uy), VI (uy)))n in (Lw(Q))N
Let w € (E,(Q)Y be arbitrary such that ||wl|,.q = 1, by (6.4) we have

(a(az,t,Tk(un), VTi(un)) = a(a,t, Ti(uwn), = )) (VTk(un) - %) exp(D(Jun)) > 0.

Hence

/Qa(x, t, Tr (un), VTk(un))% exp (D(|un|)) d dt
< / a(@,t, T (un), VTk(un)) VT (un) exp (D(|uy|)) da dt
Q

w w
(6.32) - /Qa<x,t,Tk(un), ;) (VTk(un) - ;) exp (D(|un|)) dz dt,
hence, by using
(6.33) / a(,t, T (tn), VT (1)) VT () exp (D (Jun])) dardt < ek + g
Q

For p large enough (u > 3), we have by using (6.3))

T, Up),
/621/1:,3( o tj;iti ))d:rdt

r o (v, v|Ti(u “L(o(z, |w
B(hy(x,t) + 5 (v (@, v| T (un)))) + 15 (o (z, [w])))
= /wa( 1 3IL )dmdt

5 / g (1) U G TLC) v D)) 4,

u /wm ha(z t))dxdt—i—/ (x,V|Tk(un)|)dxdt+/Qcp(x, |w\)dmdt)
cs(k).

I /\
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Now, since v grows essentially less rapidly than ¢ near infinity and by using the
Remark there exists r’(k) > 0 such that y(z,vk) < r'(k)p(x,1) and so we have

[ (T2

(6.34)
<2 ( /Q a0 dodt+1'(h) [

Q
hence a(x,t, T (uy), E) is bounded in (L, (Q))".

v
Which implies that second term of the right hand side of (6.32) is bounded,

consequently, we obtain

/QCL(QE,IS,Tk(un)7 VTi(up))wdzdt < ca(k),

o(z, 1) dedt + / o(z, |w|) dx dt) .
Q

for allw € (Ly(Q))Y with [|wl,,q < 1.Hence by the theorem of Banach-Steinhous,
the sequence (a(z,t, T (un), VTk(tn)))n remains bounded in (Ly(Q))N.
Which implies that, for all k& > 0 there exists a function I, € (Ly(Q))Y such that

(6.35) a(z,t, T(un), VTk(up)) = I, weak star in (Ly(Q.))™ for o(TILy, TIE,,).

Step 4 : Modular convergence of truncations
Let (v;); be a sequence in D(Q) such that

(6.36) wv; — u  with respect to the modular convergence in Wol"er (@)

and let w; € D(2) be a sequence which converges strongly to ug in L*(Q).
Set w;, ; = Tk (vj)u+exp(—put) Ty (w;) where Ty (v;), is the mollification with respect
to time of T (v;).
Note that wy, ; a smooth function having the following proprieties
9 i i i i
57 Wig) = 1(T(5) —wy ), wy, ;(0) = Ta(vy),  wp 5l <k
wh, ; — Te(w), + exp(—pt) T (w;) in Wy Ly (Q)
for the modular convergence as j — +00;

Tio(w) + exp(—pat) Ti(1w;) — Ti(u) in Wi L, (Q)
for the modular convergence as j — +00.

For m > k we define the function p,, on R by

1 if |s| <m,
pm(s)=<m+1—|s| if m<|s|<m+1,
0 if |s|>m+1

For the sake of simplicity, we denote by e(n, j, i, s) any quantity (possible different)
such that
lim lim lim lim e(n,j,pu,s) =0.

§——00 [L——00 j — 00 N——>00
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If the quantity we consider does not depend on one of parameters n, j, u and s, we
will omit the dependence on the corresponding parameter as an example, £(n) is
any quantity such that

lim lim e(n,j)=0.

Jj——00 Nn——00

We denote also x the characteristic functions of the set

Qs = {(z,t,) €Q: |[VTi(u)| < s} .

1 )
Let D(s) = —/ d(t)dt, taking (Ty(un) — wy, ;)pm(un) exp(D(Jun])) as a test
a Jo ’
function in (6.17]), one has

/ W(Tk(un) — W) pm(wn) exp (D(|un])) da dt
Q
—I—/ a(x, t, U, V) - (VI (uy) — Vwi)j)pm(un) exp (D(|un)) d dt
Q

+ / a(@,t,up, Vig) - Vi p), (un) (T (un) — w), ;) exp (D(|un|)) d dt
Q

(0%

+ : / a(x,t, tn, V) - Vupsign (un ) (Tx (uy) — wz,j)d(un)pm(un)
Q
x exp (D(|un|)) da dt

[ gnl o, T (0 (a) = ) ) (r) ex0 (D)
Q
= /an(Tk(un) - wﬁ’j)pm(un) exp (D(\un|)) dz dt
—|—/ F - (VTi(uyn) — wahj)pm(un)exp (D(Juyl)) dz dt
Q

+ / F -V (Ty(un) — w}, ;) (un) exp (D(|un)) da dt
Q
(6.37)

1

+ S / F - Vuysign (un ) (T (un) — wfl’j)d(un)pm(un) exp (D(|unl)) dz dt .
Q

Firstly, for the first term of the left hand side of (6.37)), by the definition of wf”
and Lemma 5.6 of [28], we get

Oby, (2, Up, i .
038) [ ) Tufu) = ) ) xp (D) > e, 0,510
Secondly, for the third term of the left hand side of (6.37)), we get

/a(x,t, Un, V) - Vunpl, (un) (T (up,) — w:”) exp (D(|un|)) dx dt
Q

dl| 1
< 2kexp (”“%OR)) / a(x,t, uy, V) - Vuy, de dt.

m<|un |[<m+1
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Hence by Lemma 5.1 of [3], we get
/ a(z,t,up, Vup) - Vupph, (un) (T (un) — w:”) exp (D(|unl)) da dt
(6.39) ¢ =e(n,j,p,i,m).
Thirdly, for the fourth term of the right hand side, we get

‘E/F.vunsign (1) (Tit) — )0t (1) 5D (D)) i |
aJQ

[l oo 1l @) i
< 1 exp (T) ) |F| - [V Ty ()| T (1) — w0, | davdit

%

Then, by using the fact that T (u,) — wf” converges to Ty (u) — wy, ; strongly in
E,(Q) and VT,,41(uy) converges weakly to VT,+1(u) in (L, (Q))Y as n — +o0,
then by using the modular convergence on p and j, we get

1

o /QF - Vupsign(u, ) (T, (un) — wi’j)d(un)pm(un) exp (D(|uyl)) da dt

(6.40) = e(n,j, p, 7). -

By a similar calculus, we get
O [ FCT0) ~ 0] ) () 0 (D) = el ).
(6.42) /QF (VT(up) — wal’j)pm(un) exp (D(|un|)) dzdt = e(n, j, 1, %) ,
and
(6.43) /QF -V (Te(uy) — wf”)p;n(un) exp (D(|uy)) dzdt = e(n, j, p, ) .
Now, combining (6.37)—(6.43) and using (6.6]), we obtain

/Qa(x,t,un, V) - (VT (uy) — wahj)pm(un) exp (D(Juy)) dz dt

+ é/ a(x,t, un, V) - Vupsign (un ) (Tx (u,) — wzhj)
Q
X d(un) pm (un) exp (D(|uy|)) dz dt
<e(n,j,p,i,m)+ / ho(x, t)| Tk (uy) — wli7j|pm(un) exp (D(\un|)) dx dt
Q
©4) [ Aot [T DITilue) s lom (1) 0 (D)

Splitting the second term of the left hand side and the third term of the right
hand side of (6.44) on {|u,| < k} and {|u,| > k}, and using (6.5 and the fact that
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(T (up) — wfhj)un >0 on {|u,| > k}, one has

/Qa(x, ty U, V) « (VT (uy) — sz7j)pm(un)) exp (D(|un)) da dt

(67

X d(un ) pm (un)) exp (D(|uy])) dz dt

1 )
+ */ a(z,t, U, V) - Vg [Ty (un) — wy, 5|d(un)
{lun|>k}

- l/ a(x,t, Ty (upn), VIk(ug)) - VI (un) | Tk (un) — wz”|
Q

(07

X () exp (D(|uy|)) da dt
< e, j,prim) + / (2, )| Te(ttm) — 0, 5o 11)) €xp (D(J])) e it
Q
+/ d(un)a(xvtaTk(un)a ka(uﬂ)) : ka(un”Tk(u") - wf’o»j|
Q

X () exp (D(|uy|)) de dt

1 .
+ - / d(un)a(z,t, un, V) - Vug|Ti(un) — w), ;
& S Jun|>k}
(6.45) X pm(un)) exp (D(|uy|)) dz dt .

Then, by simplification, we have
/ a(z, t, U, Vuy) - (VI (uy) — szyj)pm(un) exp (D(|un|)) dz dt
Q

< e(n, j, pyism) +/ ha (2, )| i (un) — w, ;| pm (un) exp (D(Junl)) da dt

Q
2 )
+ E/ d(up)a(z,t, Tk (un), VI(un)) - VI (un)| Tk (un) — w:w-\
Q
(6.46) X pm(tn) exp (D(|un|)) da dt
Similarly, like in (6.41]) and (6.39)), we get
/th(x,t)|Tk(un) - wi’j|pm(un) exp (D(|un|)) dz dt
(647) = E(n,j,ﬂ,i),

and

‘% / d(up)a(x,t, T (un), VI (un)) - VI (wn)| Tk (un) — wft_’j
Q

X pm () exp (D(|un|)) do dt)
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4/|d]|o ||dL1(JR)/
< exp alx,t, Ty (un), VI (uny
= exp (o )mgmgmﬂ( b (tn), VT(1n)

VT (uy) da dt
648)  =c(npdrivm).

Thus, by combining (6.46)), (6.48) and (6.47), one has

/Qa(x,t,un, V) - (VI (upn) — Vwi’j)pm(un) exp (D(|un)) dz dt

(649) < E(nujv Maivm) .

Since pp, (un) = 0 if |u,| > m + 1, one has

/Qa(x,t,Tk(un), VTi(up)) - (VT (up) — wat’j)pm(un) exp (D(|un|)) dz dt

— /{ ‘ a}(m,t,Tm+1(un),VTm_H(un)) . Vwiyjpm(un) exp (D(|un|)) dx dt
Un|>k

(6.50)
S E(n7j7 o, ia m) .

N

Since a(z,t, Tt1(un), VImt1(uy)) converges weak star to {p,41 in (Ly(Q))" and

pm s continuous, we get

/ a(x,t, T1(un), Vi1 (up)) - Vijpm(un) exp (D(Juy)) dz dt
{‘un‘>k}

(6.51) = / Lt - wampm(Tm_,_l(u)) exp (D(|Tpq1(u)])) dedt + e(n) .
{lul>k}
Then, by passing to the limit on j, u and i, we get

/{ | }a(m,t,Tm+1(un), Va1 (un)) - sz7jpm(un) exp (D(\un|)) dx dt
Un | >k

(6.52) =e(n,j,p,1).

Thus, we deduce that,

/Qa(x,t,Tk(un), VTi(un)) - (VTi(up) — wam)pm(un) exp (D(|un|)) da dt

(6.53) <e(n,j, pyi,m).



94 M.S.B. ELEMINE VALL, A. AHMED, A. TOUZANI AND A. BENKIRANE

Remark that,
/Q[a(z,t,Tk(un), VT (tn)) — alz, t, Ti(un), VT (1) )]
% (VT (ttn) — VTk(1)xs) prn (1) exp (D(|ttn])) v dit
<- /Q (@ b, T ), VT () x) (VT (10) — T Th(w) )
% pu () exp (D[ ])) dee it
LﬂQJJM%LVH@QXVHWM3Vw%)

X pm(un) exp (D(|un|)) dz dt
+6(n’j7u’i7m)
(6.54) =Ji+ Jo+e(n, g, pm,i,m).

We shall go to the limit as n, u, 7, ¢ and s to infinity in the integrals of the
right-hand side.
Starting by Ji, we have

J = /Q 0l , Ty (), VT (w)xs) (VT () — VTi(u)x)
X pm () exp (D(|u])) dz dt + £(n)

(6.55) =e(n,j,p,i,m,s).

Concerning J3, one has
= [ 100~ TT4(00) (1) 5 (D) -+,
(6.56) =e(n,j,p,i,m,s),
Combining , and , follows
/Q[a(:c,t,Tk(un), VTi(un)) — alz, t, T (uy), VTk(u)XS)]

X (VT (tn) — VTk(u)Xs) prm(tn) exp (D(|un|)) da dt
(6.57) <e(n,j,pi,m,s).

Since pp (uyn) = 1 in {Juy| < m} and {|u,| < k} C {Jun| < m}, for m large enough,
we get

/Q[a(x,t,Tk(un), VTi(uy)) — a(z, t, T (un,), VTk(u)XS)}
X (VTk(un) - VTk(u)Xs) exp (D(|un|)) da dt

- /Q [a(z. . Ti(un), VTi(un)) — alz,t, Te(un), VT () )]
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X (VT (un) — VTi(w)Xs) prm(tn) exp (D(|un|)) de di
+/ [a(x,t, Tk (un),0) — a(z, t, Tk (uyn), VTk(u)xs)}
{lun|>k}
(6.58) X (VT (un) = VI (w)xs) (1 = pm(un)) exp (D(|un|)) dz dt .

It is easy to see that the last terms of the last equality tend to zero as n tends to
infinity.
Which yields

exp (D(—OO))/Q[a(m,Tk(un),VTk(un))—a(x,t,Tk(un),VTk(u)xs)]

X (VT (un) — VT (u)xs) da dt
(6.59) <e(n,j, pyi,m,s).

Passing to the limit in (6.59) as n and s tends infinity, we get

lim [a(z,t, Ti(un), VI (un)) — a(a,t, Ti(uy), VI (w)xs)]

n,s—-+00 Q

(6.60) X (VT(un) — VTi(u)xs) dedt = 0.
Using Lemma [3.5] we have

(6.61) Ty (up) — Ti(u) for the modular convergence in WOI’ILw(Q) .

Step 5 : Equi-integrability of the nonlinearity sequence

This follows by the same method as in First, note that thanks to , we obtain
that Vu,, converges to Vu a.e. in @ (for a subsequence).

Now, we will show that

(6.62) Gn (T, t, U, Vuy,) — g(z,t,u, Vu) strongly in L*(Q).

Considering for h > 0 the function v = (/ d(s)x{s>h}ds) exp (D(un)) as a
0

2 S

a

0

test function in the approximate problem (6.17), where d(s) = d(t) dt, we

obtain

/QW(/O“" d(8)X{s>h} d3>eXp(D(un))dxdt

+ / a(x,t, un, Vi) - Vi d(Un) X fu, >n} €XP (D(un)) dx dt
Q

2 tn
+ - / a(z,t,un, Vuy) - Vund(un)</ d(s)x{s>h}ds) exp (D(un)) dx dt
Q 0
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+ / gn (T, Up, Vuy,) (/ ' d(8)X{s>h} ds) exp (D(un)) dx dt
Q 0
< / fn (/ d(s)x{s>h}ds) exp (D(un)) dx dt
Q 0
+ / F - Vi d(un) X {u, >h} €xp (D(uy)) da dt
Q
2 Un
+ f/ F - Vu,d(uy) (/ d(s)x{s>h}ds) exp (D(uy,)) dz dt.
[0 Q 0
" Oby,(z

Then, by noting B"(z,r) = / nT’T)</ d(0)X{o>r} da) exp (D(7)) dr, one
0 0
has

/BZ(:E, un(T)) dx + / a(x,t, un, Viin) - Vi d(Un) X fu, >h} €XP (D(un)) dx dt
Q Q

2 tn
+ 7/ a(z,t, up, Vu,) - Vund(un)(/ d(s)X{s>h}ds) exp (D(uy)) da dt
(% Q 0
+ / gn (T, 1, Up, V) (/ d(8)X{s>h} ds) exp (D(un)) dx dt
Q 0
< / fn (/ d(s)x{s>h}ds) exp (D(un)) dx dt
Q 0
+ / F - Vund(un) X fu,>n}y €Xp (D(un)) dx dt
Q
2 Un
+— / F - Vu,d(uy) (/ d(8)X{s>h} ds) exp (D(uy)) da dt
0
/ B (x, uon)
By a simple calculus and by using and the fact that B"(z, u,(T)) > 0, we get
/ a(z,t, un, Vun) - Vupd(tn) X u, >} €xp (D(uy)) da dt
Q
2 Un
+ — / a(z,t, un, Vuy,) - Vugd(uy,) (/ d(8)X{s>h} ds) exp (D(un)) dx dt
(0% Q 0
< / In (/ d(s)x{5>h}ds) exp (D(un)) dx dt
Q 0
+ / hg(x,t)(/ d(s)x{s>h}ds) exp (D(uy)) da dt
Q 0

+ /Q o(x, |Vun|)d(un)(/0un d(8)Xs>h} ds) exp (D(uy)) dz dt
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+ / F -V d(un) X {u,>h} €xp (D(uy)) dz dt
Q

+ — 2 / F - Vu,d(u n)(/oun d(8)X{s>h} ds) exp (D(uy)) dzdt

/B x, Uon)

Then, by (6.5)), one has
/ a(@, t,Un, Vtn) - Vi d(tn) X {u, >hy exp (D(uy)) do dt
Q
+ l/ a(x,t, un, Vuy,) - Vund(un)(/ d(S)X{S>h}d8> exp (D(uy)) dzdt
@ Jg 0
e lldll )
< ( d(s) dS)exp(i) (Ifnllzr @y + Nhellr @ + 116(; voll Ly =)
h (0%
+ / F - Vund(un) X u,>hy €xp (D(uy)) da dt
Q

+ % /Q F- Vund(un)(/oun d(8)X{s>h} dS) exp (D(uy)) dzdt.

Thus, by applying Young’s inequality on the second and third of the right hand
side of last inequality, we get

/Q“(x’ tytn, Viin) - Vit d(tn) X u, >ny €xp (D(un)) du dt
+ ;/(Qa(a:,t,un,Vun) : Vund(un)(/oun d(s)X{S>h}ds) exp (D(uy)) da dt
= (/;oo d(s)ds) P (@) (Wfallzr@y + R2llLr ) + 16, woll Ly w))
* /Q ¢(x’ M)d(“n)xmph} exp (D(uy,)) dz dt
+2(0;11)/Q@(x,IVunl)d(un)x{unM} exp (D(uy,)) de dt
+/Q¢(x, 2|aF|>d(Un)</O“" d(8)X{s>h) ds) exp (D(uy)) dz dt
+/Q§0(x’vun)d(un)</o ) d(s)X{s>n} dS) exp (D(uy,)) d dt .

Hence, by (6.5]), we have

« /Q(p(:r, \Vun|)d(un)x{un>h} exp (D(un)) dx dt
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< (/h-i-oo d(s)ds) exp (W%)
2|F|

% (Ifallzaqey + sl + 15C uolls ey + oo / o (2. ) dudt)
Q

(0%
Iz 2o+ DI
dl| oo ; u dx dt
rosp (T2l | o T oy o

(0%

+ ot 1) /Q (@, |Vun|)d(un) X fu, >n} exp (D(un)) d dt

which yields,

a(2a+1)

2(a+1) /QSQ(% [V |)d(tn) X fu, >n} €xp (D(un)) da dt

< (/;OO d(s)ds) exp (%)

X (|fn||L1(R) + [[hallLr @) + 16(, w0l 1) + (|l o

X /Qz/)(x, @) da:dt)

lldll 2 ) 2+ 1)|F)
osp (TR e (T oy e

«

Since d continuous on @ and @ bounded, then d € L*(Q), then we have

(6.63) lim sup/ o(z, |[Vuy|)d(u,) exp (D(uy)) dedt = 0.
h—+00 neN {un>h}

Similarly, let w® = (/ d(s)x{s<,h}ds)exp(—D(un)) as a test function in the
0
approximate problem (6.17)), we conclude that

(6.64) lim sup/ o(x, [V |)d(u,) exp (D(uy)) dedt = 0.
{un<—h}

h—+o0 neN

Consequently, combining (6.63)) and (6.64)), we conclude that

(6.65) lim sup/ oz, [Vun|)d(u,) exp (D(uy)) dzdt = 0.
P neN S jun|>n}
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which, for h large enough and for a subset E of ), yields

lim / o(z, |[Vuy|)d(u,) exp (D(uy)) dz dt

meas(E)—0 /g

<|ldloe  lim /E o(z, VT (un)]) exp (D(uy)) do dt

meas(E)—0

+ lim / oz, |[Vup|)d(uy,) exp (D(uy)) da dt .
meas(E)—0 J{|y, |>h}NE

So, we conclude that ¢(-, |Vu,|)d(u,) is equi-integrable, which implies that
(-, [Vugl)d(un) — @(, [Vul)d(u)  strongly in L1(Q).

Consequently, using and Vitali’s Theorem, we conclude the equi-integrability
of the nonlinearities.

Step 6 : Passage to the limit
In this step, we shall prove that u is an entropy solution to the problem in
the sense of Definition

Firstly, we prove that u satisfies (6.10)).
For 7 € |0, T}, considering Ty (uy) exp (D(|un|)) x[0,-] as a test function in (6.17)),
then like Step 1, we get

/ %t’un)ﬂ(un) exp (D(un)) drdt < ik + c; .

-

Then, for k > ¢y, we get

/ Wﬂ(un) exp (D(un)) dedt < (e1 + L)k

T

By passing to the limit inf with respect to n, we obtain

l/ ob(z, v) T (u) exp (D(uy)) dedt < i+ 1.
kg, Ot

u(") b
/ sgn(r) (;T’ ) exp (D(|r])) dr < c; +1.
0

Observe that,

w(r) ob(x,r
paatr) < [ sent) P e (D))
O T
which shows that b(z,u) € L>([0,T], L*(Q)).
Secondly, we shall show that « fulfills the condition (6.11]).
Indeed, since a(z,t, un, Vuy) - Vi, = a(z,t, Tarer (un), Vg ()
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“VTr41(uy,) ae. in @, by a simple calculus, we get

/{mg‘un‘gmﬂ}a(x, t, Un, V) - Vu, de dt
- [ (a(a,t. Tor 1), Vs 1 (1))
{m<|u|<m+1}

—a(z,t, Tar1(un), VTM_H(u)Xs)) (VTM+1(un) — VTM_H(u)XS) dx dt

+/ (a(x,t,TMH(un),VTMH(un))
{m<|u|<m+1}

—a(x,t, Tar1(un), VTMH(u)XS))VTMH(u)XS dx dt

+ / a(z, t, Tars1(tn), V41 (w)xs) - Vg1 (uy) dedt.
{m<ju|<m+1}

Then, by (6.60), (6.61)) and the fact that a(z,t, Tas41(un), VI 41 (un)) converges
weak star to a(x,t, Tart1(u), VIa41(u)) and the strong convergence of

a(@,t, Tary1(un), VI p1(u)xs) to a(w,t, Taryr(u), VI 11 (u)xs), we get

lim sup/ a(z, t,un, Vuy) - Vu, dedt
{m<|uy,|<m+1}

n—-+4oo

(6.66) = / a(z,t,u, Vu) - Vudz dt,
{m<|u|<m+1}

and then by Lemma 5.1 of [2§] the condition (6.11)) is fulfill.
Finally, we show that w fulfills the condition (6.12)).

Let S be an increasing function in W*°(R) such that S’ has a compact support
and M > 0 such that supp(S’) C [—M, M].

Let v € Wy"L,(Q) N L=(Q) such that, % € WL, (Q). Using S’ (u, —
v)Tk(uy) as test function in (6.17) the by using integration by parts, we get

//HMS/(rf’u)Tk(r)drdxdt
QJo
e Obn(,7) o
/ /0 30/ 5 ——25"(r —U)Tk(r)dr>dadt
+/ / a(z,0,uy, Vuy) - VI (un)S (uy, — v) do dz dt
0
t
+// S" (uy, — v)a(z, 0, Up, Vuy) - V(u, — )T (uy) do dz dt
QJo

t
+//gn(x,o,un,Vun)S’(un—U)Tk(un)dodxdt
o Jo
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/ / fnS (up —v) Tk (up)do dz dt+/ / F - VTi(un)S (up —v)do dx dt

+/Q/0 F -V (up—v)S" (=) Tk (uy,) do da dt
(6.67)
+T/Q/O ! WS’(T—U(O))T]C(T)C“'C&U.

Now, we pass to the limit in each term of (6.67)) as n tends to infinity.
e Since S is bounded and continuous, one has

HHM/T—@ r)drdzdt = UM’r—@ r)drdz n
/Q/o gr 0 ro)i(r) drdudt /Q/0 oS (rv)Ti(r) dr da di-+e(n)

and, nwg’(r — )Ty (r) dr
“ 8b($ 7‘) " . . 1,z
tends to ; 5 S"(r—v)Tk(r) dr a.e. in Q and weakly in W;"* L,(Q) and

oo o Obn (1) o 0 ob(x, 1) o
L Weak*,and,/ TS( v)T, ()drtendsto/ 5 ——=5"(r—

0 0
v)Tx(r)dr +e(n) a.e. in @ and L*™ weak *, then

/T / S [ Pt e i) do

or
(6.68) / / / 81”; ") gy )T (r)dr') do di +<(n)

and,
/ / ’ MS/(T —v(0))T%(r) drdx
0 Jo or

(6.69) = /Q/Ouo %S’(r —v(0))Ty(r) dr dx +e(n) .

e Since supp(S’) C [—M, M] and since for n > k, one has
S (up, —v)a(z, 0, Un, Viun) VT (un) = S (un — v)a(z, o, Ti(un), Vi (un)) VT (un)

a.e. in Q. Thus, the almost everywhere convergence of Vu,, to Vu and the boun-
ded character of S’ permit us to conclude that S’ (u,~v)a(z, o, u,, Vu,) VT (uy)
tends to S'(u — v)a(z, o, Tj(v), VIk(u)) Vi (u) weak star in (Ly(Q))", for
the topology o(IILy,IIE,), as n tends to infinity, which yields, by using the
modular convergence of Ty (uy,) in Wol’xL#, (@)

/ /0 a(z,0, T (un), VTi(upn)) - VT (un)S (un — v) do dx dt

= / /Ot a(x, 0, T (uw), VTi(u)) - VI, (u)S (v — v) do dx dt +e(n),
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and,
t
/ / S,/(u” - v)a(x, 0, TM+HUHoo (’Lbn), VCZWM-‘,-HUHOC (un))
QJOo
. V(TM-i‘HUHoo (un) - ’U)Tk (un) do dx dt

= /Q/O S"(w—v)a(z, 0, Tars oo (W), V4o (0))
“V(Tast ol (4) = 0)Ti(u) do da dt +(n) .

e Since g, (z, 0, up, Vu,) converges strongly to g(x, o, u, Vu) in L'(Q), and the
bounded character to S, one has

Gn (2,0, U, V) S (U —v) — g(x, 0,u, Vu) strongly in L*(Q), as n — +o0.

and since Ty (u,) converges to Ty (u) weak star in L*(Q), then

t
// Gn (2, 0, U, Vup)S (uy — )Tk (uy,) do dz dt
QJo
t
(6.70) ://g(m,a,u,Vu)S’(u—U)Tk(u)dadxdt—i—a(n).
QJo

e Due to the strong convergence of (f,,), to f in L*(Q) and weak star conver-
gence of Tj(up) to Tk(u) in L>(Q) and since S’ is bounded and (uy)n
converges to u almost everywhere in @), we get

¢ t
(6.71) / / IS (un, — 0) Tk (uy) dadacdt:/ / 1S (u—v)Tk(u) do dz dt .
Q0 QJo
e Similarly as above, we get
t
/ / F - VT (un)S (un — v) do dz dt
QJo
¢
(6.72) = / / F VT, (u)S' (u —v)dodzxdt + e(n),
QJo
and,
t
/ / F-V(up, —v)S" (up, — v)Tk(uy) do dz dt
QJo
t
(6.73) = / / F-V(u—0)S"(u—v)Tk(u)dodxdt +e(n).
QJo

Consequently, combining (6.67))—(6.73) we conclude that (6.12)) is fulfill. Which
means that u is an entropy solution of in the sense of Definition This
completes the proof of the Theorem O
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Example 6.1. Let Q be a bounded Lipschitz domain of RY and T > 0 we denote
by Q = Q x [0,T].

Let ¢ and 1 two complementary Musielak functions which satisfy the assump-
tions of lemma moreover we assume that ¢(z,t) decreases with respect to one

of coordinates of .
We set

b(z, s) = h(z)(m(1)s — M(s)) if s <1,
T @) m() - M(1)s  if Js| > 1,

where M is an Orlicz function such that M(t) < ess Helg ¢(x,t), m is the right
derivative of M and h € W' E,(Q) N L>(Q) such that ingh(x) > ¢ > 0.
S

Then, one has

ob(z,s) _ {h(x)(m(l) —m(s)) if |s| <1,
s h(z)(m(1) — M(1))  if |s|>1,

which means that b(z,-) is an inceasing C' function with b(z,0) = 0. and for all
k>0andall [s| <k

ob(zx, s)

cym(1) < 95

< (m(1) + max(m(k), M(1)))h(x) € L=(2).

and

and we denote by

a(z,t,5,¢) = ha(z,t)(3 +sin®(p(z, |s])))vz " ((z, ICD)£

<l
g(w,t,5,¢) = ha(x,t) sin(s) exp(—0s*)p(z, [C]),

where hi,hy € L%(Q) o > 0.
Thus, for all f € L(Q) and all F € (E,(Q))" the following problem has at least
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one solution

Ty (u) € Wy Ly,(Q) Yk >0,
b(x,u) € L>([0,T], L}(Q)),
lim (3 + sin®(@(x, [u])v; " o(z, [Vul)|Vu| do dt = 0,

M0 J i< ul<m+1}
u

/Q / h(z)(m(1) — m(r)) S (r — v)Te(r)X <1y dr da dt

m(1) = M(1 )/ / S'(r — V)T (r)x{jr 1} dr daz dt

[ h@)m() =m0 Tl >x{|r§1}dx>dodt
P m(1) —M(l))/ h(z S”(r—v)Tk(r)X{r>1}dac>dadt

/ h(z,0)(3+sin® ((z, [ul)y; (p(z 7|VU|))‘V |
QJo
VT (u)S (u—v) do dzx dt
! 7 . 9 1 ﬂ
w8 oG o) 3 s o, ) o 19D
«(Vu — V)T (u) do dz dt
// ha(z,t) sin(u)exp(—ou®)p(z, |Vu|) S (v — v) Tk (u) do dz dt

</fS’uv)Tk(u)dxdtJr//tS'(uv)F~VTk(u)dxdt

// S"(u—v)F V(u—v);i(zj)dxdt—kT/Q/Q/ouoh(x)(m(l)—m(r))

XSI 0 X{|r|<1}d7”d$dt
+T(m(1) — M(1) /// x)S"(r — v(0)) Tk (r)x{|r|<1} dr da dt

ov

for every k > 0 and all v € W, * L, (Q) N L>(Q) such that a2 € WE Ly (Q) +
L*(Q) and all increasing function S € W2°°(R) with S’ has a compact support in

R.

It remains to show that « s%tisﬁes the initial condition.
T, U
To this end, remark that L

is bounded in W™ "Ly (Q) + LY(Q). As a

consequence of Aubin’s lemma (see, e.g, [29], Corollary 4) and (see also Lemma [1.1))
bn(x,uy) lies in C([0,T], L*(Q)). It follows that, on one hand, by, (z,u,(x,0)) =

b (2, uon () for all z € Q which converges to b(z,ug(x)) strongly in L*(Q).
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