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Vanishing conharmonic tensor of normal

locally conformal almost cosymplectic manifold

Farah H. Al-Hussaini, Aligadzhi R. Rustanov, Habeeb M. Abood

Abstract. The main purpose of the present paper is to study the geometric
properties of the conharmonic curvature tensor of normal locally conformal al-
most cosymplectic manifolds (normal LCAC-manifold). In particular, three con-
horonic invariants are distinguished with regard to the vanishing conharmonic
tensor. Subsequentaly, three classes of normal LCAC-manifolds are established.
Moreover, it is proved that the manifolds of these classes are η-Einstein manifolds
of type (α, β). Furthermore, we have determined α and β for each class.

Keywords: normal locally conformal almost cosymplectic manifold; conharmonic
curvature tensor; constant curvature; η-Einstein manifold

Classification: 53C55, 53B35

1. Introduction

It is worth mentioning, that many researchers have focused on the study of con-

formal mappings of manifolds that admits conformal transformations of special

types. The conformal mapping and conformal structure found their application

not only in the geometry, but also in the theory of potential, the theory of func-

tions and widely in cartography. The properties of the locally conformal almost

cosymplectic manifold that admits conformal transformations were studied by

many researchers including, Z. Olszak in [11], H.M. Abood and F.H. Al-Hussini

in [1]. Moreover, Z. Olszak and R. Rosca in [12] described the local structure of

the normal locally conformal almost cosymplectic manifolds. On the other hand,

D. Chinea and J. C. Marrero in [3], studied the conformal transformation of almost

cosymplectic manifolds. In particular, they obtained certain characteristics of the

locally conformal almost cosymplectic manifolds and locally conformal cosymplec-

tic manifolds. Lastly, V. F. Kirichenko and S.V. Khartinova in [9] established the

structure equations of the normal locally conformal almost cosymplectic man-

ifolds and calculated the components of the Riemannian curvature tensor and

Ricci tensor.
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2. Preliminaries

This section contains some concepts and facts related to the content of this

paper. In particular, the structure equations and the components of the Rie-

mannian curvature tensor of the normal locally conformal almost cosymplectic

manifold have been established.

Definition 2.1 ([2]). Suppose that M is smooth manifold of odd dimension, an

almost contact metric structure (AC-structure) on a manifold M is a quadruple

(η, ξ,Φ, g) of tensors, where η is 1-form called a contact form, ξ is a vector field

called a characteristic, Φ is a tensor of type (1, 1) called a structure endomorphism

of a module of vector fields χ(M), and g = 〈·, ·〉 is a Riemannian metric, moreover

the following conditions hold:

(2.1)
(1) η(ξ) = 1, (2) Φ(ξ) = 0, (3) η ◦ Φ = 0, (4) Φ2 = −id + η ⊗ ξ,

(5) 〈ΦX,ΦY 〉 = 〈X,Y 〉 − η(X)η(Y ), X, Y ∈ X(M).

In this case, the manifold M endowed with this structure is called an almost

contact metric manifold (AC-manifold).

It is easy to verify that the tensor Ω(X,Y ) = g(X,ΦY ) is skew-symmetric, i.e.

is a 2-form on M . It is called a fundamental form of the AC-structure.
Let (η, ξ,Φ, g) be an AC-structure on the manifold M (2n+1). In the C∞(M)-

module χ(M) of smooth vector fields on the AC-manifoldM there are two comple-

mentary projections m, l, where m = η ⊗ ξ and l = −Φ2. Thus χ(M) = L ⊕ ℵ,
where L = ImΦ = ker η, dimL = 2n and M = Imm = kerΦ, dimM = 1.

A contact distribution or the first fundamental distribution is called L. A sec-

ond fundamental distribution is called M. Obviously, the distributions of ℵ
and L are invariant with respect to Φ and are orthogonal. It is also obvious that

Φ̃2 = −id, 〈Φ̃X , Φ̃X〉 = 〈X,X〉, X,Y ∈ χ(M), where Φ̃ = Φ|L. Therefore, if

p ∈ M , then in the tangent space Tp(M) one can construct an orthonormal frame

(p, e0, e1, . . . , en,Φe1, . . . ,Φen), where e0 = ξp. Such a frame is called a real

adapted frame, see [10]. On the other hand, let L
c = L ⊗ C be the complex-

ification of the distribution L. In it, there are two complementary projectors

σ = 1
2 (id −

√
−1Φc) and σ = 1

2 (id +
√
−1Φc), are intrinsically defined on the

proper submodules D

√
−1

Φ and D
−
√
−1

Φ of the endomorphism Φ corresponding to

the eigenvalues
√
−1 and −

√
−1, respectively. That is, the module Lc decomposes

into a direct sum of proper submodules Lc = D

√
−1

Φ ⊕D
−
√
−1

Φ .

Thus, the complexification of the module χ(M) decomposes into a direct sum

of proper submodules of the endomorphism χc(M) = D

√
−1

Φ ⊕D
−
√
−1

Φ ⊕D
0
Φ, where

D
0
Φ = Mc. The projections on the terms of this direct sum are respectively

endomorphisms Π = − 1
2 (Φ

2 +
√
−1Φ), Π = 1

2 (−Φ2 +
√
−1Φ) and m = id + Φ2.
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Consequently, we can construct a frame (p, ε0, ε1, . . . , εn, ε1̂, . . . , εn̂) of the

complexification of the space TP (M), where ε0 = ξp, εa =
√
2σ(ea) and εâ =√

2 σ(ea), consisting of the eigenvectors of the operator Φ. Such a frame is called

an A-frame, see [8], [10]. It is easy to see that the matrices of the components of

the tensors Φp and gp in the A-frame have the following forms respectively:

(2.2) (Φi
j) =




0 0 0

0
√
−1In 0

0 0 −
√
−1In


 , (gij) =




1 0 0

0 0 −In

0 In 0


 ,

where In is the unit matrix of order n. It is well known, see [7], [10], that the

collection of such frames defines a G-structure on M with the structure group

1 × U(n), represented by matrices of the form




1 0 0

0 A 0

0 0 A



, where A ∈ U(n).

This G-structure is called associated.

Remark 2.1. An associated G-structure space consists of complex frames, i.e.

frames of complexification of corresponding tangent spaces. Therefore, even when

dealing with real tensors, when we speak of their components on the associated G-

structure space, we mean the components of complex extensions of these tensors.

In turn, the complex tensor is a complex extension of the real tensor if and only

if it is invariant under the complex conjugation operator. Following the generally

accepted tradition, we will call such a tensor real. In particular, the sum of the

pure complex tensor and the complex conjugate tensor is a real tensor.

Throughout this paper we will assume that the indices i, j, k, . . . range from 0

to 2n, while the indices a, b, c, d, f, g, . . . are values from 1 to n, and put â = a+n,
ˆ̂a = a, 0̂ = 0.

The structural endomorphism Φ and the metric structure g are tensors of type

(1, 1) and (2, 0), respectively, on the manifold M2n+1. Therefore, according to

the basic theorem of tensor analysis, and also because of the covariant constancy

of the metric tensor of the Riemannian connection, their components, as systems

of functions on the space of the principal bundle of frames B(M2n+1) satisfy the

relations:

(2.3) (1) dΦi
j − Φi

kω
k
j +Φk

jω
i
k = Φi

j,kω
k, (2) dgij − gikω

k
j − gkjω

k
i = 0,

where {ωi},{ωi
j} are the components of the displacement forms and the Riemann-

ian connection ▽, respectively, and Φi
j,k are the components of the covariant dif-

ferential Φ in this connection.
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Taking (2.2) into account, the relations (2.3) on the associated G-structure

space can be rewritten in the following form, see [8], [10],

(2.4)

1) Φa
b,k = 0, 5) ωa

b̂
=

√
−1

2
Φa

b̂,k
ωk, 9) ω0

â =
√
−1Φ0

â,kω
k,

2) Φâ

b̂,k
= 0, 6) ωâ

b = −
√
−1

2
Φâ

b,kω
k, 10) ω0

a = −
√
−1Φ0

a,kω
k,

3) Φ0
0,k = 0, 7) ωa

0 =
√
−1Φa

0,kω
k, 11) ωi

j + ω
ĵ

î
= 0.

4) ω0
0 = 0, 8) ωâ

0 = −
√
−1Φâ

0,kω
k,

In addition, we note that, because of the fact that the corresponding forms and

tensors are real, ω i = ωî, ω i
j = ωî

ĵ
, ▽Φ

i

j,k = ▽Φî

ĵ,k̂
where t → t̄ is the complex

conjugation operator. Also, from (2.4) it follows that the system of functions

{Φi
j,k} is skew-symmetric with respect to the indices i and j, that is Φi

j,k = −Φj
i,k.

Taking these relations into account, the first group of structural equations of

the Riemannian connection dωi = −ωi
j Λωj on the associated G-structure space

of an AC-manifold can be written in the following form, called the first group of

structural equations of an almost contact metric manifold, see [8], [10]:

(2.5)

1) dωa = −ωa
b ∧ ωb +Bab

c ωc ∧ ωb +Babcωb ∧ ωc +Ba
bω ∧ ωb +Babω ∧ ωb,

2) dωa = ωb
a ∧ ωb +Bc

abωc ∧ ωb +Babcω
b ∧ ωc +Bb

aω ∧ ωb +Babω ∧ ωb,

3) dω = Cbcω
bΛωc + CbcωbΛωc + Cb

cω
cΛωb + CbωΛω

b + CbωΛωb,

where ω = ω0 = ω0 = π∗(η), π is the natural projection of the the associated

G-structure space onto the manifold M where,

(2.6)

Babc =
1

2

√
−1Φa

[b̂,ĉ]
, Babc =

1

2

√
−1Φâ

[b,c],

Bab
c = −1

2

√
−1Φa

b̂,c
, Bc

ab =
1

2

√
−1Φâ

b,ĉ,

Bab = −
√
−1

(1
2
Φa

b̂,0
− Φa

0,b̂

)
, Bab =

√
−1

(1
2
Φâ

b,0 − Φâ
0,b

)
,

Ba
b =

√
−1Φa

0,b, Bb
a =

√
−1Φâ

0,b̂
,

Cab =
√
−1Φ0

[â,b̂]
, Cab = −

√
−1Φ0

[a,b],

Ca = −
√
−1Φ0

â,0, Ca =
√
−1Φ0

a,0,

Ca
b = −

√
−1(Φ0

b,â +Φ0
â,b) = Ba

b −Bb
a.

Taking these relations into account and the skew-symmetry of the system of func-

tions {Φi
j,k}, we note that



Vanishing conharmonic tensor of normal LCAC manifold 97

Babc = −Bacb, Babc = −Bacb, Babc = Babc, Bab
c = −Bba

c ,

Bc
ab = −Bc

ba, Bab
c = Bc

ab, Bab = Bab, Cab = −Cba,(2.7)

Cab = −Cba, Cab = Cab, Ca = Ca, ωa
b = −ωb

a.

The Nijenhuis tensor of an endomorphism Φ is a tensor NΦ of type (2.1),

defined by

NΦ(X,Y ) =
1

4
(Φ2[X,Y ]+ [ΦX,ΦY ]−Φ[ΦX,Y ]−Φ[X,ΦY ]), X, Y ∈ X(M).

Its vanishing is equivalent to the integrability of the structure in [4]. A direct

calculation, taking into account the identity [X,Y ] = ∇xY − ∇Y X , shows, see

[8], [10], that

NΦ(X,Y ) =
1

4
{∇ΦX(Φ)Y − Φ∇X(Φ)Y −∇ΦY (Φ)X +Φ∇Y (Φ)X}.

Taking (2.4) into account, we obtain that on the associated G-structure space,

the components of the tensor NΦ are determined by the identities:

(2.8)

1) N0
ab = −

√
−1

2
Φ0

[a,b],

2) N0
âb = −N0

bâ = −
√
−1

2
Φ0

(â,b),

3) N0
âb̂

=

√
−1

2
Φ0

[â,b̂]
,

4) Na

b̂0
= −N0

0b̂
=

√
−1

4
Φa

b̂,0
−

√
−1

2
Φa

0b̂
,

5) Na

b̂ĉ
=

√
−1Φa

[b̂,ĉ]
,

6) N â
b0 = −N â

0b =

√
−1

2
Φâ

0b −
√
−1

4
Φâ

b0,

7) N â
bc = −

√
−1Φâ

[b,c].

The remaining components of the Nijenhuis tensor are identically equal to zero.

Definition 2.2 ([8], [10]). An almost contact metric structure is called a normal

if NΦ + 2 dη ⊗ ξ = 0, where NΦ is the Nijenhuis tensor of the operator Φ.

The notion of normality was introduced by S. Sasaki and Y. Hatakeuyama

in 1961 in [13], it is one of the most fundamental concepts of contact geometry,

closely related to the notion of integrability.

The following proposition immediately follows from (2.8) and Definition 2.2.

Proposition 2.1 ([8], [10]). An almost contact metric structure is normal if and

only if on the space of the associated G-structure, we have

Φâ
b,c = Φa

b̂,ĉ
= Φâ

b,0 = Φa

b̂,0
= Φ0

a,b = Φ0
â,b̂

= Φ0
a,0 = Φ0

â,0 = 0.
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In virtue of which the first group of structure equations of the normal structure

of the associated G-structure space will be:

(1) dωa = −ωa
b ∧ ωb +Bab

c ωc ∧ ωb +Ba
bω ∧ ωb;

(2) dωa = ωb
a ∧ ωb +Bc

abωc ∧ ωb +Bb
aω ∧ ωb;

(3) dω = Cb
cω

c ∧ ωb.

Definition 2.3 ([4]). An almost contact metric structure S = (η, ξ,Φ, g) is called

an almost cosymplectic structure (AC∫ -structure), if the conditions below hold:

(1) dη = 0;

(2) dΩ = 0.

The following proposition holds.

Proposition 2.2 ([8]). Let Ω be the fundamental form of an AC-structure. Then
on the associated G-structure space we have

(1) π∗Ω = −
√
−1ωa ∧ ωa;

(2) π∗ dΩ =
√
−1{Bab

c ωa∧ωb∧ωc−Babcωa∧ωb∧ωc+Ba
bωa∧ωb∧ω+Babωa∧

ωb∧ω−Bc
abω

a∧ωb∧ωc+Babcω
a∧ωb∧ωc−Bb

aω
a∧ωb∧ω+Babω

a∧ωb∧ω}.

According to the conditions of the Definition 2.3 and taking the Proposition 2.2

into account, we find on the associated G-structure space that the first group of

structural equations of the AC∫ -structure takes the form:

(2.9)

1) dωa = −θab ∧ ωb +Babcωb ∧ ωc + F abωb ∧ ω,

2) dωa = ωb
a ∧ ωb +Babcω

b ∧ ωc + Fabω
b ∧ ω,

3) dω = 0.

where

(2.10)

Babc =
1

2

√
−1Φa

[b̂,ĉ]
, Babc =

1

2

√
−1Φâ

[b,c], F ab =
√
−1Φ0

â,b̂
,

Fab = −
√
−1Φ0

a,b, B[abc] = B[abc] = 0, Babc = Babc,

F [ab] = F[ab] = 0, F ab = Fab.

Definition 2.4 ([2]). A normal almost cosymplectic structure is called a cosym-

plectic structure.

The first group of the structural equations of the cosymplectic structure on the

associated G-structure space takes the form:

(2.11) 1) dωa = −θab ∧ ωb, 2) dωa = ωb
a ∧ ωb, 3) dω = 0.

A conformal transformation of an AC-structure S = (η, ξ,Φ, g) on a mani-

fold M is a transition from S to an AC-structure S̃ = (η̃, ξ̃, Φ̃, g̃), in this case
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η̃ = e−ση, ξ̃ = eσξ, Φ̃ = Φ, g̃ = e−2σg, where σ is an arbitrary smooth func-

tion on M , called the defining function of the transformation, see [8], [11]. If

σ = const, a conformal transformation is said to be trivial.

Definition 2.5 ([9], [11]). An AC-structure S = (η, ξ,Φ, g) on M is said to

be a locally conformally almost cosymplectic structure (LCAC-structure), if the

restriction of this structure on some neighborhood U of an arbitrary point p ∈ M

admits a conformal transformation into almost cosymplectic structure. We call

this transformation a locally conformal. A manifold M equipped with a LCAC-

structure is called, a LCAC-manifold.

We note that for σ = const, we obtain an AC∫ -manifold.

Recall [6] that for normal LCAC-manifolds, the nonzero components of the

Riemannian curvature tensor on the associated G-structure space have the forms:

(2.12)

1) Ra

bcd̂
= Aad

bc − δac δ
d
bσ

2
0 , 2) Ra

b̂cd
= −2δabcdσ

2
0 , 3) Ra

0b0 = −(σ00 − σ2
0)δ

a
b ,

where δabcd = δac δ
b
d − δbcδ

a
d . Plus the relations obtained from those above given

with allowance for the classical symmetric properties and reality of the Riemann-

Christoffel tensor.

The nonzero components of the Ricci tensor on the associated G-structure

space are given by the following relations, see [6]:

(2.13) 1) Soo = −2n(σ00 + σ2
0), 2) Sâb = Aac

bc − 2nδabσ
2
0 − δabσ00.

3. Some classes of normal LCAC-manifolds

Let M2n+1 be a LCAC-manifold. One of the subclasses of the conformal trans-

formations is conharmonic transformations, these transformations preserve the

harmonicity of functions.

A tensor, see [5], which is invariant under conharmonic transformations has

the form:

T (X,Y, Z,W ) = R(X,Y, Z,W )− 1

2n− 1
{g(X,W )S(Y, Z)− g(X,Z)S(Y,W )

+ g(Y, Z)S(X,W )− g(Y,W )S(X,Z)}, X, Y, Z,W ∈ X(M)

where R, S and g are respectively the Riemannian curvature tensor, Ricci tensor

and Riemannian metric.

The conharmonic curvature tensor of an almost contact metric structure on

the bundle space of all frames is calculated by the formula below, see [5]:

(3.1) T i
jkl = Ri

jkl −
1

2n− 1
(δikSjl − δilSjk + gjlS

i
k − gjkS

i
l ),
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where Ri
jkl, Sij and gij are respectively the components of the Riemannian cur-

vature tensor, Ricci tensor and Riemannian metric. It is easy to show from (3.1),

that the conharmonic curvature tensor possesses all the classical symmetric prop-

erties of the Riemann-Christoffel tensor.

On the associated G-structure space, the conharmonic curvature tensor of

a normal LCAC-manifold has the following nonzero components, see [6]:

(3.2)

1) T a
obo = Ra

obo −
1

2n− 1
(δabSoo + g00S

a
b )

=
1

2n− 1

[
2δab

{(
n+

1

2

)
σ2
0 + σ00

}
−Aac

bc

]
,

2) T a

bcd̂
= Ra

bcd̂
− 1

2n− 1
(δacSbd̂

+ g
bd̂
Sa
c )

=
1

2n− 1

[
2δac δ

d
b

{(
n+

1

2

)
σ2
0 + σ00

}
+Aad

bc (2n− 1)− δdbA
ah
ch − δacA

ah
bh

]
,

3) T a

b̂cd
= Ra

b̂cd
− 1

2n− 1
(δacSb̂d

− δadSb̂c
+ g

b̂d
Sa
c − g

b̂c
Sa
d )

=
1

2n− 1

[
2δabcd

{(
n+

1

2

)
σ2
0 + σ00

}
+ δbcA

ah
dh + δadA

ah
ch − δbdA

ah
ch − δacA

bh
dh

]

plus the components obtained with allowance for the realness and symmetric prop-

erties of this tensor as an algebraic curvature tensor. The remaining components

of aformentioned tensor are equal to zero.

An almost contact metric manifold is called a conharmonically flat if the con-

harmonic curvature tensor of such manifold is identically equal to zero.

In [6], it was proved that a conharmonically flat normal LCAC-manifold is a flat

cosymplectic manifold. It is known the cosymplectic manifold is locally equivalent

to the product of the Kähler manifold by the real line, see [8]. Moreover, using the

Hawley and Igusa classification of complete simply connected Kähler manifolds

of dimension greater than two of constant holomorphic sectional curvatures, the

previous assertion can be formulated as the following theorem.

Theorem 3.1. A conharmonic plane normal LCAC-manifold of constant cur-

vature is locally equivalent to the product of the complex Euclidean space Cn

equipped with the standard Hermitian metric 〈〈., .〉〉 = ds2 in the canonical atlas

given by the relation ds2 =
∑n

a=2 = dZa dZ
a
by the real line.

Suppose that M is a conharmonicly flat normal LCAC-manifold. According to

the Theorem 1 in [6] , we have Aad
bc = 0 and σ00 = −

(
n+ 1

2

)
σ2
0 , taking into account

(2.13), we get Sâb = − 2n−1
2 σ2

0δ
a
b where α = − 2n−1

2 σ2
0 and S00 = (2n2 − n)σ2

0 ,

where β = 4n2−1
2 σ2

0 . Hence, a manifold is a η-Einstein manifold of type (α, β).

Thus, the following assertion is valid.



Vanishing conharmonic tensor of normal LCAC manifold 101

Theorem 3.2. Let M be a conharmonicly normal flat LCAC-manifold, then it

is an η-Einstein manifold of type (α, β), where α = − 2n−1
2 σ2

0 , β = − 4n2−1
2 σ2

0 .

Let us clarify the geometric meaning of the vanishing of the individual compo-

nents of the conharmonic curvature tensor.

1) Let T a
0b0 = 0, then applying the procedure of restoring identity in [8], [10] to

the relations T a
0b0 = 0, T â

0b0 = 0, T 0
0b0 = 0, i.e. T i

0b0 = 0, we obtain T (ΦX, ξ)ξ = 0,

for all X ∈ X(M). By virtue of the identity (2.1) (4), the last equation can be

written in the form:

(3.3) T (X, ξ)ξ = 0, ∀X ∈ X(M).

Conversely, if (3.3) holds, then the relation T a
0b0 = 0 holds.

Thus, the vanishing of the component T a
0b0 = 0 is equivalent to the fulfillment

of the identity (3.3). This conclusion justifies the introduction of the following

definition.

Definition 3.1. A normal LCAC-manifold whose conharmonic curvature tensor

satisfies the identity (3.3) is called a normal LCAC-manifold of class T1.

Let M be a normal LCAC-manifold of class T1, then the identity (3.3) holds,

that is, T a
0b0 = 0. Taking into account (3.2) 1), (2.12) 3), and (2.13) 1), so we

have Sâb = (σ2
0 + σ00)δ

a
b = αδab = Aac

bc − 2nδabσ
2
0 − δab σ00, where α = (σ2

0 + σ00).

Furthermore, S00 = −2n(σ2
0 + σ00) = α + β, where β = −(2n + 1)(σ2

0 + σ00).

Thus, a manifold M is η-Einstein manifold of type (α, β).

Conversely, let M be η-Einstein normal LCAC-manifold. Then on the as-

sociated G-structure space, the following relations, see [6], hold: α = 1
n
Aab

ab −
2nσ2

0 − σ00, β = − 1
n
Aab

ab − (2n− 1)σ00 i.e. αδab = Aac
bc − 2nδabσ

2
0 − δabσ00, α+ β =

−2n(σ2
0 + σ00). In this case T a

0b0 = −δab (σ
2
0 + σ00) − 1

2n−1{−2n(σ2
0 + σ00)δ

a
b +

(σ2
0 + σ00)} = 0.

Thus, the following theorem is proved.

Theorem 3.3. If a normal LCAC-manifold of class T1 is a manifold of constant

curvature, then it is locally equivalent to the product of the complex Euclidean

space Cn equipped with the standard Hermitian metric 〈〈., .〉〉 = ds2 in the canon-

ical atlas given by the relation ds2 =
∑n

a=2 = dZa dZ
a
by the real line.

2) Suppose that T a
bcd = 0. Applying the identity renewal procedure, see [8],

[10], to the relations T a

bcd̂
= 0, T â

bcd̂
= 0, T 0

bcd̂
= 0, i.e. to the relations T i

bcd̂
= 0,

we get

(3.4)
T (Φ2X,Φ2Y )Φ2Z + T (Φ2X,ΦY )ΦZ − T (ΦX,Φ2Y )ΦZ

+ T (ΦX,ΦY )Φ2Z = 0, ∀X,Y, Z ∈ X(M).
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Suppose that the conharmonic curvature tensor of a normal LCAC-manifold sat-

isfies the identity (3.4). On the space of the principal bundle of frames B(M2n+1),

the identity (3.4) can be written in the form:

T i
jklΦ

j
hΦ

h
rΦ

k
mΦm

p Φl
sΦ

s
q+T i

jklΦ
j
rΦ

k
m×Φm

p Φl
q−T i

jklΦ
j
rΦ

k
PΦ

l
sΦ

s
q+T i

jklΦ
j
hΦ

h
rΦ

k
pΦ

ls
q

q = 0.

Taking into account (2.2), (3.2) on on the associated G-structure space, so that

the last relation can be written in the form:

4T a

bcd̂
+ 4T â

b̂ĉd
= 0, i.e. T a

bcd̂
= 0, T â

b̂ĉd
= 0.

Thus, the identity (3.4) is equivalent to the fulfillment of the relation T a

bcd̂
= 0

on the space of the associated G-structure, which gives grounds to introduce the

following definition.

Definition 3.2. A normal LCAC-manifold whose conharmonic curvature tensor

satisfies the identity (3.4) is called a normal LCAC-manifold of class T2.

Let M be a normal LCAC-manifold of class T2, then the identity (3.4) holds,

that is, T a

bcd̂
= 0. Taking into account (3.2) 2), (2.12) 1), and (2.13) 2), we have:

(3.5)
Aad

bc − δac δ
d
bσ

2
0 −

1

2n− 1
{δac (Adh

bh − 2nδdbσ
2
0 − δdbσ00)

+ δdb (A
ah
ch − 2nδacσ

2
0 − δacσ00)} = 0.

We reduce equality (3.5) with respect to the indices a and b, then we obtain:

Aad
ac − δdcσ

2
0 −

2

2n− 1
(Adh

ch − 2nδdcσ
2
0 − δdcσ00) = 0,

which is equivalent to

(3.6) Abc
ac = − 2

2n− 3
δabσ00 −

2n− 1

2n− 3
δabσ

2
0 .

As in Theorem 3.2, the following theorem is proved.

Theorem 3.4. A normal LCAC-manifold is a manifold of class T2 if and only

if it is an η-Einstein manifold of type (α, β), where α = − 2n−1
2n−3σ00 − (2n+1)2

2n−3 σ2
0 ,

β = − 4n2−8n+1
2n−3 σ00 +

2n+1
2n−3σ

2
0 .

We reduce equality (3.6) with respect to the indices a and b, then we ob-

tain Aab
ab = − 2n

2n−3σ00 − (2n+1)n
2n−3 σ2

0 . The scalar curvature is χ = − 8n(n−1)
2n−3 σ00 +

4n(2n2−5n+1)n
(2n−3) σ2

0 .
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Substituting (3.6) into (3.5), we obtain, that the components of the structure

tensor of the second kind on the associated G-structure space have the form:

(3.7) Aad
bc = − 4n2 − 1

(2n− 1)(2n− 3)
δac δ

d
bσ

2
0 −

4(n− 1)

(2n− 1)(2n− 3)
δac δ

d
bσ00.

3) Analogously, considering the equalities T a

b̂cd
= 0, T â

b̂cd
= 0, T 0

b̂cd
= 0, we

obtain

(3.8)
T (Φ2X,Φ2Y )Φ2Z + T (Φ2X,ΦY )ΦZ − T (ΦX,Φ2Y )ΦZ

+ T (ΦX,ΦY )Φ2Z = 0, ∀X,Y, Z ∈ X(M).

As above, we show that the identity (3.8) on the space of the associated G-

structure is equivalent to the relations T a

b̂cd
= 0.

Therefore, we introduce the following definition.

Definition 3.3. A normal LCAC-manifold whose conharmonic curvature tensor

satisfies the identity (3.8) is called a normal LCAC-manifold of class T3.

Remark 3.1. By virtue of the symmetric properties of the conharmonic curvature

tensor as an algebraic tensor, the normal LCAC-manifold of class T2 is a normal

LCACs-manifold of class T3. In fact, if T2 = 0, that is, T a

bcd̂
= 0, then T a

b̂cd
=

T a

cdb̂
− T a

db̂c
= −T a

cdb̂
+ T a

dcb̂
0, which means, T3 = 0.

Thus, consideration of class T3 is of independent interest.

Let M be a normal LCAC-manifold of class T3. Then the identity (3.8) is

satisfied, which is equivalent to the relation

Ra

b̂cd
=

1

2n− 1
(δacSb̂d

− δadSb̂c
+ g

b̂d
Sa
c − g

b̂c
Sa
d ).

The last equality in view of (2.12) 2) and (2.13) can be written as:

Sâ
b =

(3n− 1

n− 2
σ2
0 +

n

n− 2
σ00 −

1

n− 2
Acd

cd

)
δab .

Then, arguing as in the proof of Theorem 3.2, we can prove the following theorem.

Theorem 3.5. A normal LCAC-manifold is a manifold of class T3 if and only if

it is an η-Einstein manifold of type (α, β), where α = 3n−1
n−2 σ2

0 +
n

n−2σ00− 1
n−2A

cd
cd,

β = 1
n−2A

ab
ab −

n(2n−3)
n−2 σ00 − (2n−1)(n−1)

n−2 σ2
0 .
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