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Orthomodular lattices that are

horizontal sums of Boolean algebras

Ivan Chajda, Helmut Länger

Abstract. The paper deals with orthomodular lattices which are so-called hori-
zontal sums of Boolean algebras. It is elementary that every such orthomodular
lattice is simple and its blocks are just these Boolean algebras. Hence, the com-
mutativity relation plays a key role and enables us to classify these orthomodular
lattices. Moreover, this relation is closely related to the binary commutator which
is a term function. Using the class H of horizontal sums of Boolean algebras,
we establish an identity which is satisfied in the variety generated by H but not
in the variety of all orthomodular lattices. The concept of ternary discriminator
can be generalized for the class H in a modified version. Finally, we present
several results on varieties generated by finite subsets of finite members of H.

Keywords: orthomodular lattice; horizontal sum; commuting elements; Boolean
algebra

Classification: 06C15, 06C20, 06E75

Orthomodular lattices form an algebraic semantics of the logic of quantum

mechanics and hence it is important to study their properties. The aim of our

paper is to get some insight in the structure and properties of those orthomodular

lattices which are so-called horizontal sums of Boolean algebras. These orthomod-

ular lattices are simple and hence also subdirectly irreducible. Denote by H the

class of horizontal sums of Boolean algebras. Some orthomodular lattices which

do not belong to H are pastings of Boolean algebras, i.e. contrary to horizontal

sums, some pairs of Boolean subalgebras have some atoms and the corresponding

coatoms in common. It is shown that also such orthomodular lattices may belong

to the variety Var(H) generated by H. Because of this fact one would expect that

Var(H) is really large and the question arises if it coincides with the variety of all

orthomodular lattices. We apply the commutativity relation as well as the com-

mutator in order to characterize the class H. Moreover, using the commutator
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which is binary term, we obtain an identity which is satisfied in Var(H) but not

in every orthomodular lattice showing that the variety of orthomdular lattices is

not generated by H. We, finally, show that the variety generated by a finite set

of finite members of H is semisimple and directly representable.

Recall that an orthomodular lattice is an algebra L = (L,∨,∧, ′, 0, 1) of type

(2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1) is a bounded lattice and L satisfies the fol-

lowing identities:
x ∨ x′ ≈ 1,

x ∧ x′ ≈ 0,

(x ∨ y)′ ≈ x′ ∧ y′,

(x ∧ y)′ ≈ x′ ∨ y′,

(x′)′ ≈ x,

x ∨ y ≈ x ∨ ((x ∨ y) ∧ x′).

The last identity is called the orthomodular law. Let O denote the variety of

orthomodular lattices and B the variety of Boolean algebras.

Of course, Boolean algebras are exactly the distributive orthomodular lattices.

On the other hand, a kind of distributivity can be observed in every orthomodular

lattice. Namely, if we consider the so-called Sasaki operation, see [1], x ⊙ y :=

(x ∨ y′) ∧ y then every orthomodular lattice satisfies the identity

(x ∨ y)⊙ z ≈ (x⊙ z) ∨ (y ⊙ z)

as can be seen by applying the so-called Foulis–Holland theorem, see e.g. [6].

Moreover, we can show that the original definition of an orthomodular lattice

given above is redundant. Namely, we need not assume that the underlying lattice

is bounded or that the unary operation “ ′ ” is a complementation. Both of these

properties in fact follow from the orthomodular law, see the following

Lemma 1. Let L = (L,∨,∧, ′) be a nonempty lattice with an antitone involution

“ ′ ” satisfying the orthomodular law. Then L is an orthomodular lattice.

Proof: Let a, b ∈ L. Then the orthomodular law implies

a ≤ a ∨ b = b ∨ ((a ∨ b) ∧ b′) ≤ b ∨ b′.

This shows that b ∨ b′ is the greatest element of L. Since “ ′ ” is an antitone

involution, the dual form of the orthomodular law is valid in L, too and using this

law we obtain similarly that b ∧ b′ is the least element of L. Hence L is bounded

and b′ a complement of b. It is elementary to check the De Morgan laws. �
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For orthomodular lattices, the concept of commuting elements is introduced as

follows: Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice and a, b ∈ L. Then a

and b are said to commute with each other, in signs aC b, if a = (a∧ b)∨ (a∧ b′).

This concept enables us to consider the so-called blocks of an orthomodular

lattice L. A block is a maximal subset of mutually commuting elements. It turns

out that the blocks are exactly the maximal Boolean subalgebras, cf. e.g. [6]. We

have the following lemma:

Lemma 2 (cf. e.g. [6]). If L = (L,∨,∧, ′, 0, 1) is an orthomodular lattice and

a, b ∈ L then

(i) aC b if and only if there exists a Boolean subalgebra B = (B,∨,∧, ′, 0, 1)

of L with a, b ∈ B;

(ii) if a ≤ b then aC b;

(iii) the lattice L is a Boolean algebra if and only if xC y for all x, y ∈ L.

Hence for all x, y ∈ L we have 0Cx and 1Cx and, moreover, that xC y implies

yCx and xC y′.

The center C(L) of an orthomodular lattice L = (L,∨,∧, ′, 0, 1) is defined by

C(L) := {x ∈ L : xC y for all y ∈ L}.

We have the following

Lemma 3 (cf. e.g. [6]). If L = (L,∨,∧, ′, 0, 1) is an orthomodular lattice then:

◦ L is the set-theoretic union of the blocks of L.

◦ Every Boolean subalgebra of L is included in a block of L.

The central concept of the present paper is the following one:

Definition 4. Let (Li; i ∈ I) = ((Li,∨i,∧i,
′

i, 0, 1); i ∈ I) be a nonempty family

of orthomodular lattices such that Li ∩ Lj = {0, 1} for all i, j ∈ I with i 6= j and

put L :=
⋃

i∈I

Li. Define binary operations ∨,∧ and a unary operation “ ′ ” on L as

follows:

x ∨ y :=

{

x ∨i y if there exists some i ∈ I with x, y ∈ Li,

1 otherwise;

x ∧ y :=

{

x ∧i y if there exists some i ∈ I with x, y ∈ Li,

0 otherwise;

x′ := x′

i if x ∈ Li.

Then “∨”, “∧” and “ ′ ” are well-defined and L = (L,∨,∧, ′, 0, 1) is an orthomodular

lattice, called the horizontal sum of the Li, i ∈ I. Moreover, every Li is a subal-

gebra of L. Let H denote the class of all horizontal sums of Boolean algebras and

for every class K of algebras of the same type Var(K) the variety generated by K.
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It is easy to check that if an orthomodular lattice L = (L,∨,∧, ′, 0, 1) belongs

to H, a ∈ L\{1} and b ∈ L\{0} then ([0, a],∨,∧) and ([b, 1],∨,∧) are distributive.

The following theorem provides a characterization of members of H.

Theorem 5. Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice. Then L is

a horizontal sum of Boolean algebras if and only if (i) and (ii) hold for all x, y,

z ∈ L:

(i) if xC y, yC z and not xC z then y ∈ {0, 1};

(ii) if not xC y then x ∨ y = 1 and x ∧ y = 0.

Proof: Let a, b, c ∈ L.

First assume L to be the horizontal sum of the Boolean algebras Bi = (Bi,∨,

∧, ′, 0, 1), i ∈ I.

(i) Assume aC bC c and not aC c. Suppose there exists no i ∈ I with a, b ∈ Bi.

Then there exists no i ∈ I with a, b′ ∈ Bi and hence a∧ b = a∧ b′ = 0 from which

we conclude a 6= 0 = 0 ∨ 0 = (a ∧ b) ∨ (a ∧ b′), i.e. not aC b, a contradiction.

This shows that there exists some j ∈ I with a, b ∈ Bj . Analogously, there

exists some k ∈ I with b, c ∈ Bk. Since not aC c we have j 6= k which yields

b ∈ Bj ∩Bk = {0, 1}.

(ii) If not aC b then there exists no i ∈ I with a, b ∈ Bi and hence a ∨ b = 1

and a ∧ b = 0.

Conversely, assume (i) and (ii) to hold. Let B and D be two different blocks

of L, d ∈ B \ D and e ∈ B ∩ D. Then there exists some f ∈ D such that

not dC f . Now we have dC eC f and not dC f and hence e ∈ {0, 1}. This shows

B∩D = {0, 1}. If there exists some block E of L with a, b ∈ E then a∨Lb = a∨E b

and a∧L b = a∧E b. If there exists no block F of L with a, b ∈ F then aC b does

not hold and hence a ∨ b = 1 and a ∧ b = 0. �

We want to mention another formulation of condition (ii) of Theorem 5. For

this purpose we first prove

Lemma 6. Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice and a, b ∈ L.

Then aC b is equivalent to any single distributivity condition of the form (c∨d)∧

e = (c ∧ e) ∨ (d ∧ e) or (c ∧ d) ∨ e = (c ∨ e) ∧ (d ∨ e) where c, d, e are three of the

four elements a, a′, b, b′.

Proof: According to the definition of C, aC b is equivalent to (b ∨ b′) ∧ a =

(b∧a)∨(b′∧a). If (a∨b)∧a′ = (a∧a′)∨(b∧a′) then, according to orthomodularity,

a′ = (a′ ∧ b′) ∨ (a′ ∧ (a ∨ b)) = (a′ ∧ b) ∨ (a′ ∧ b′), i.e. a′ C b which implies aC b.

Hence also (a ∨ b) ∧ a′ = (a ∧ a′) ∨ (b ∧ a′) is equivalent to aC b. Using the fact

that aC b implies bC a and aC b′, we obtain that aC b is equivalent to any single

distributivity condition of the form (c ∨ d) ∧ e = (c ∧ e) ∨ (d ∧ e) where c, d, e
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are three of the four elements a, a′, b, b′. Applying De Morgan laws completes the

proof of the lemma. �

Remark 7. Condition (ii) of Theorem 5 can now be reformulated in the following

way:

(ii’) If either x∨y 6= 1 or x∧y 6= 0 then x′∨(x∧y) = x′∨y (or x′∧(x∨y) = x′∧y).

From Lemma 6 we conclude that an orthomodular lattice is a Boolean algebra if

and only if it satisfies the following identities:

x′ ∨ (x ∧ y) ≈ x′ ∨ y,(1)

x′ ∧ (x ∨ y) ≈ x′ ∧ y.(2)

In [4] the following more general result was proved: A nonempty lattice (L,∨,∧, ′)

with a unary operation “ ′ ” is a Boolean algebra if and only if it satisfies (1)

and (2). For similar characterizations of Boolean algebras cf. [3].

Now we are going to study properties of the class H. The following lemma

turns out to be very useful.

Lemma 8. Let the orthomodular lattice L = (L,∨,∧, ′, 0, 1) be the horizontal

sum of orthomodular lattices Li = (Li,∨,∧,
′, 0, 1), i ∈ I, j, k ∈ I with j 6= k,

a ∈ Lj \ {0, 1} and b ∈ Lk \ {0, 1}. Then there exists no i ∈ I with a, b ∈ Li.

Proof: If there would exist some i ∈ I with a, b ∈ Li then either i 6= j or

i 6= k. In the first case we would obtain a ∈ Li ∩ Lj = {0, 1} contradicting a ∈

Lj \ {0, 1} whereas the second case would yield b ∈ Li∩Lk = {0, 1} contradicting

b ∈ Lk \ {0, 1}. This completes the proof. �

Note that H is not closed under direct products (see Theorem 12) and hence

H is a proper subclass of Var(H).

It is well-known that lattices are congruence distributive and orthomodular

lattices are congruence permutable and congruence regular.

It is clear that H is closed with respect to forming subalgebras. That it is also

closed with respect to forming homomorphic images follows from the following

proposition.

Proposition 9. Let L = (L,∨,∧, ′, 0, 1) be the horizontal sum of the orthomod-

ular lattices Li = (Li,∨,∧,
′, 0, 1), i ∈ I, and assume that at least two Li have

more than two elements. Then L is simple.

Proof: Let Θ ∈ ConL with Θ 6= {(x, x) : x ∈ L}. Then there exists some

(a, b) ∈ Θ with a 6= b. If there exists no i ∈ I with a, b ∈ Li then a ∨ b = 1 and

a ∧ b = 0 and hence 0 = a ∧ bΘ a ∧ a = a = a ∨ aΘ a ∨ b = 1 which implies

x = x ∨ 0Θx ∨ 1 = 1 for all x ∈ L, i.e. Θ = L2. Now assume there exists some
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j ∈ I with a, b ∈ Lj. Since Lj is congruence regular there exists some c ∈ Lj \{1}

with (c, 1) ∈ Θ. If c = 0 then Θ = L2 as before. Now assume c 6= 0. Because

of (c, 1) ∈ Θ we have (c′, 0) ∈ Θ. According to our assumption there exists some

k ∈ I \ {j} with |Lk| > 2. Let d ∈ Lk \ {0, 1}. According to Lemma 8 there exists

no i ∈ I with c, d ∈ Li which shows c ∧ d = 0 and c′ ∨ d = 1. Now we have

0 = c ∧ dΘ1 ∧ d = d = 0 ∨ dΘ c′ ∨ d = 1

which implies Θ = L2 as before, i.e. in any case L is simple. �

Remark 10. Proposition 9 implies that every member of H \ B is simple and

hence also subdirectly irreducible.

The class H is not closed with respect to forming direct products as can be

seen from the following Proposition.

Proposition 11. A direct product L = (L,∨,∧, ′, 0, 1) of a nonempty family

(Li; i ∈ I) = ((Li,∨,∧,
′, 0, 1); i ∈ I) of members of H belongs to H if and only

if either there exists some j ∈ I with |Li| = 1 for all i ∈ I \ {j} or if Li ∈ B for

all i ∈ I.

Proof: If there exists some j ∈ I with |Li| = 1 for all i ∈ I\{j} then L ∼= Lj ∈ H

and hence L ∈ H. If Li ∈ B for all i ∈ I then L ∈ B ⊆ H. Now assume there

exist k, s ∈ I with k 6= s, |Lk| > 1 and Ls /∈ B. Then Ls has two elements not

commuting with each other. Let a = (ai; i ∈ I), b = (bi; i ∈ I) ∈ L such that

ak = bk = 0 and not as C bs. Then a ∨ b 6= 1 since ak ∨ bk = 0 ∨ 0 = 0 6= 1. Now

aC b would imply as C bs, a contradiction. Hence we do not have aC b, i.e. L /∈ H

according to Theorem 5. �

We can summarize the above results as follows:

Theorem 12. The class H is closed with respect to forming subalgebras and

homomorphic images, but not with respect to forming direct products.

Let us recall the concept of a commutator which is a binary term function

closely related to the commutativity relation C.

Definition 13. Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice. Then the

term function

c(x, y) := (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′)

is called the commutator.

Lemma 14 (cf. e.g. [6]). Let L = (L,∨,∧, ′, 0, 1) be an orthomodular lattice and

a, b ∈ L. Then aC b if and only if c(a, b) = 1.
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It is clear that if L = (L,∨,∧, ′, 0, 1) ∈ H, |L| > 1 and a, b ∈ L then aC b does

not hold if and only if c(a, b) = 0.

The commutator enables us to distinguish the variety Var(H) from O. Namely,

we present a simple identity which is valid in H and hence in Var(H), but not

in O. This shows that Var(H) is a proper subvariety of O. Let us recall that the

members of H \ B are subdirectly irreducible members of Var(H).

Theorem 15. The variety Var(H) satisfies the identity c(c(x, y), z) ≈ 1.

Proof: Let L = (L,∨,∧, ′, 0, 1) ∈ H and x, y, z ∈ L. If xC y then c(c(x, y), z) =

c(1, z) = 1. If not xC y then c(c(x, y), z) = c(0, z) = 1. Hence L and therefore H

and the variety Var(H) satisfies the identity c(c(x, y), z) ≈ 1. �

Corollary 16. The class H does not generate the variety O and hence

Var(H) 6= O.

Proof: The orthomodular lattice L with the Hasse diagram

0

a b c d e

f f ′

a′ b′ c′ d′ e′

1

is not a member of H since it does not satisfy the identity c(c(x, y), z) ≈ 1 because

of c(c(a, e), f) = c(c, f) = 0 6= 1. Hence, L ∈ O, but L /∈ Var(H). �

We can generalize the example from the previous proof in the following way:

Lemma 17. Assume that the orthomodular lattice L = (L,∨,∧, ′, 0, 1) is the

horizontal sum of the orthomodular lattices L1 = (L1,∨,∧,
′, 0, 1) and L2 =

(L2,∨,∧,
′, 0, 1), that L1 does not satisfy condition (ii) of Theorem 5 and that

|L2| > 2. Then L does not satisfy the identity c(c(x, y), z) ≈ 1.

Proof: Since L1 does not satisfy condition (ii) of Theorem 5 there exist a, b ∈ L1

not satisfying aC b such that either a ∨ b 6= 1 or a ∧ b 6= 0. If a ∨ b 6= 1 then

c(a, b) ≥ a′ ∧ b′ > 0 and if a ∧ b 6= 0 then c(a, b) ≥ a ∧ b > 0. Since aC b does
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not hold we have c(a, b) 6= 1. Together we obtain c(a, b) ∈ L1 \ {0, 1}. Because

of |L2| > 2 there exists some d ∈ L2 \ {0, 1}. According to Lemma 8 there exists

no i ∈ {1, 2} with c(a, b), d ∈ Li. This shows c(c(a, b), d) = 0 6= 1, i.e. L does not

satisfy the identity c(c(x, y), z) ≈ 1. �

Using the term c(x, y) we can establish a connection between H and the so-

called ternary discriminator. However, we must modify the concept of a ternary

discriminator in such a way that the equality relation is replaced by the commu-

tativity relation C.

Recall that a ternary function t satisfying

t(x, y, z) =

{

z if x = y,

x otherwise,

is called a ternary discriminator.

From the above considerations we obtain

Proposition 18. If in a member of H one defines

t(x, y, z) := ((c(x, y))′ ∧ x) ∨ (c(x, y) ∧ z)

then t satisfies

t(x, y, z) =

{

z if xC y,

x otherwise.

In particular, t satisfies the identity t(x, x, z) ≈ z.

It is well-known that a nontrivial Boolean algebra has a ternary discriminator as

a term function if and only if it has two elements, i.e. it is subdirectly irreducible.

Such a discriminator is given by

t(x, y, z) = ((x⊕ y) ∧ x) ∨ ((x ⊕ y ⊕ 1) ∧ z)

where ⊕ denotes the symmetric difference (i.e. x⊕y := (x∧y′)∨ (x′ ∧y)). Hence,

the variety of Boolean algebras is a so-called discriminator variety.

As mentioned above, all algebras belonging to H\B are subdirectly irreducible

members of the variety Var(H). It is well-known that the variety of orthomodular

lattices is not a discriminator variety, i.e. there does not exist a ternary discrim-

inator as a term function on its subdirectly irreducible members. Hence, it is

a natural question if a certain modification of the notion of a ternary discrimina-

tor on algebras L belonging to H can be introduced. Using the ternary function

t(x, y, z) from Proposition 18 we obtain such a function. Although this term func-

tion assumes the constant value z if x and y belong to the same block (which is

a Boolean algebra) of L, it assumes the value x if x and y are taken from differ-

ent blocks of L. Hence, this generalized discriminator discerns different blocks in

a similar way as the ternary discriminator discerns different elements.
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In the sequel we use the following corollary of the famous Jónsson’s lemma:

Proposition 19 (cf. [5]). If K is a finite set of finite algebras of the same type

and Var(K) is congruence distributive then every subdirectly irreducible member

of Var(K) belongs to HS(K).

Let Hfin denote the class of all finite members of H. Recall that a variety is

called semisimple if every of its members is isomorphic to a subdirect product of

simple algebras, it is called finitely generated if it is generated by finitely many

finite members and it is called directly representable if it is finitely generated

and has (up to isomorphism) only finitely many finite directly indecomposable

members.

Theorem 20. Let K be a finite subset of Hfin and L a nontrivial subdirectly

irreducible member of Var(K). Then (i)–(iii) hold:

(i) The member L is a two-element Boolean algebra or L ∈ H \ B.

(ii) The variety Var(K) is semisimple.

(iii) The variety Var(K) is directly representable.

Proof: (i) Let L = (L,∨,∧, ′, 0, 1). According to Proposition 19, L ∈ HS(K)

and hence L ∈ HS(H). Because of the remark before Proposition 9, HS(H) ⊆ H.

Hence L ∈ H. But then either L ∈ B and in this case |L| = 2, or L ∈ H \ B.

(ii) This follows from Proposition 9, from (i) and from the fact that a variety

is semisimple if and only if every of its subdirectly irreducible members is simple,

cf. [2].

(iii) This follows from (ii) and from the fact that a finitely generated congru-

ence distributive variety is directly representable if and only if it is congruence

permutable and semisimple, cf. [2]. �

Recall that a class of finite algebras of the same type closed under forming of

subalgebras, homomorphic images and finite direct products is a pseudovariety.

For every class K of finite algebras of the same type let PVar(K) denote the

pseudovariety generated by K.

Theorem 21. Let L be a nontrivial subdirectly irreducible member of the pseu-

dovariety PVar(Hfin). Then L is a two-element Boolean algebra or L ∈ Hfin \ B.

Proof: Since L ∈ PVar(Hfin) there exist L1, . . . ,Ln ∈ Hfin such that L ∈

PVar({L1, . . . ,Ln}). Now PVar({L1, . . . ,Ln}) ⊆ Var({L1, . . . ,Ln}) and we can

apply Theorem 20. �
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