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Abstract. We discuss the existence and multiplicity of positive solutions for a class of
second order quasilinear equations. To obtain our results we will use the Ekeland variational
principle and the Mountain Pass Theorem.
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1. INTRODUCTION

Our aim in this paper is to obtain at least two positive solutions for the problem

1) {_“N +u = M@l 2u + g(@) f(u), @ € (0,00),

u(0) = u(oc0) =0,

where f € C(R,R), 8 and \ are real parameters with 1 < 8 < 2 and A > 0.
Throughout this paper we assume the following hypotheses are satisfied:

(Ho) h and q: [0,00) — (0,00) belong to L(0,00) N L>(0, 0o);

(H;) there is a continuously differentiable and bounded function p: [0, 00) — (0, c0)
belonging to L'(0,00) N L>(0,00) such that the functions q/p, q/p?, q/p°,
q/p°*t, h/p®~1 and h/p” all belong to L'(0,c0);

(H2) M = max(|pllr2, [|p'l|z2) < o0,

sty =l ([ ]%)/ dx)w .
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forall r € {8,2,5+ 1} and all g € {¢, h} and

My = 12 ([t ([ 75 dx)m <

where the constant A satisfies

(Hs) lim f(u)/|ul = A € (0,%,) and lim f(u)/|ul® = B € (A, 0), where Az q
u—0t ’ u—00 ’
is the first eigenvalue of problem (2) which is defined in Lemma 1.3;

(H4) there exists 41 > 8+ 1 such that

F(s) < %sf(s) Vs| > 0, where F(s) = /Osf(t) dt.

Now we introduce the Hilbert space H{ (0, 00) which is suitable for the study of our
problem. Let

HJ(0,00) = {u measurable: u,u’ € L*(0,00), u(0) = u(co) = 0}

equipped with the norm

= ([ i [ ar)

and endowed with the inner product

(u,v) = /000 o' (x) - (z) do + /000 u(z) - v(x)de.

We consider the spaces Ly (0, 00) which are defined by
L3(0,00) = {u: (0,00) — R measurable such that /0 g(@)|u(x)|" dx < oo}
for all r € {3,2,5 4+ 1} and all g € {h, q} equipped, respectively, with the norms

ol = ( / °°g<x>|u<x>|'“dx)

Let the space Cj [0, 00) be defined by

1/r

Cip[0,00) = {u € C(]0,00),R): lim p(z)u(x) exists}.

T—00
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The corresponding norm is defined by

[ulloc.p = sup p()[u(z)].
z€[0,00)

Now we give some necessary lemmas and corollaries, which are used below.
Lemma 1.1 ([5]). H{(0,00) embeds continuously and compactly in C [0, 00), i.e.

lulloc.p < V2M|lul|  ¥u € Hg(0,00).

Lemma 1.2 ([2]). Ci,[0,00) is continuously embedded in Ly(0,00) for all r €
{8,2,6+1} and all g € {h,q}.

Corollary 1.1 ([2]). H{(0,00) embeds continuously and compactly in L} (0, 00)
with the embedding constant M, 4.
Let A4 be the first eigenvalue of the problem

{ —u"(z) + u(z) = Ag()|u(x)|"u(z), x>0,

® u(0) = u(00) =0

and note
e

g — ueH}\{0} Hang.

Lemma 1.3 ([2]). The first eigenvalue \, 4 is positive and is achieved for some
positive function 1, , € Hj(0,00) \ {0}, i.e.

[ull 1l

g = = = .
P B Mo [ullng ([P gl

Theorem 1.1 ([4], Weak Ekeland variational principle). Let (E,d) be a complete
metric space and let J: E — R be a functional that is lower semi-continuous and
bounded from below. Then for each ¢ > 0 there exists u. € ¥ with

J(ue) < i%f.]—l— g,
and whenever w € E with w # u., then

J(ue) < J(w) + ed(ue, w).
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Definition 1.1 ([6]). Let E be a Banach space and J: E — R a C!-functional
and ¢ € R. The functional J is said to satisfy the (local) Palais-Smale condition at
the level ¢, denoted by (P.S),, if any sequence (uy) in E such that

(3) J(un) = ¢ and J'(u,) — 0,
admits a convergent subsequence.

Lemma 1.4 (Mountain Pass Theorem). Let E be a real Banach space and
J € CY(E,R) with J(0) = 0. Suppose J(u) satisfies (P.S)_ condition and

(a) there are p, > 0 such that J(u) > o when ||u||g = o,
(b) thereis ae € E, |le|g > o such that J(e) < 0.

Define

(4) I'={yeC" (0,1, B): 7(0)=0, 7(1) = c}.
Then

(5) ¢ = inf max J(7(t)) > a

Y€l 0<t<1

is a critical value of J(u).

2. MAIN EXISTENCE RESULTS

Now we define the Euler-Lagrange functional associated to problem (1). Let Jy:
H}(0,00) — R be defined by

© A=yl [ @ [ @ F i

Proposition 2.1. Suppose that the conditions (Ho)—(Hg) hold. Then the func-
tional Jy is continuously differentiable. The Fréchet derivative of Jy has the form

T (i), v) = /0 @) (2) do + /O ~ u(@)o(e) da
— - .T/'UB_QCUU.TJU.TJ X — - X u)vlxr xr
A/O h(x)|ul” "= (z)u(x)v(z) d /Oq()f()()d

for all v € H(0,00).
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Proof. The proof of the proposition will be done consecutively.

Claim 2.1. J) is Gateaux-differentiable.

For all v € H}(0,00) and for any ¢ > 0 we have

Ia(u + tv) — Jx(u)

1 [ 1 [ A [
= —/ |(u+tv)’|2da:—|——/ |u+tv|2dx——/ h(x)|u + tv|? dz
2 Jo 2 Jo B Jo

—/ q(a:)F(u—l—tv)da:——/ |u'|2da:——/ lul? dz
0 2Jo 2Jo

+ é/ h(x)|ul’ da:—i—/ q(z)F(u)dz
B Jo 0
= — |v’|2dx+t/ u’v’dx—i——/ |v|2dx+t/ uvdz
2 Jo 0 2 Jo 0
- % h(z)(ju + tv]® — |u)?) dz —/ q(z)(F(u+tv) — F(u))dz
0 0

t2 o] [ee] t2 [ee] [ee]
=5 |v'|2da:+t/ u'v'dx—l—;/ |v|2dx+t/ uvdx
0 0 0 0

—t)\/ h(x)|u+t9v|6_2(u+t9v)vdx—t/ q(z) f (u + tov)v dz,
0 0

where 0 < 6 < 1, and then

o) — t [ o0 t [
Ia(u+tv) = Ja(u) _ _/ |v’|2da:+/ u'v'dx+—/ [of? dz
t 2 Jo 0 2.Jo

+/ uvdx—/\/ h(x)|u + t0v][P~2(u + thv)v dx
0 0
—/ q(z) f(u + thv)v da.

0

Let t — 0 and we have

(Jy(u),v) = / u'v' dw —|—/ uvdz — )\/ h(z)|u|’~?uv dz —/ q(z) f(u)vda
0 0 0 0
for all v € H}(0, 00).

Claim 2.2. J| is continuous.

Let (uy) C Hg(0,00) with u, — u when n — oo, so there exists R > 0 such that
lun|| < R for all n € N.
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From (Hs), given € small enough, there exists d2 > §; > 0 such that

(8) (A—g)ls| < f(s) < (A+e)ls] VO<s<é
and
9) (B—e)ls|” < f(s) < (B+e)ls|” Vs> da,

so from (8) and (9) and since f(u) is continuous on [01, d2], there exists D; > 0 such
that

(10)  —Di+(A—e)ls|+ (B —e)lsl” < f(s) < D1+ (A+e)ls| + (B +e)ls|’

for all s € (0,00). This yields

A B
(11) F(s) < Dy+ S5 + ;—6|s|ﬂ+1 Ws € (0,00)
and

A B-
(12) F(s) > =Dy + — £s2 3 Z1s]P*1 s e (0, 00),

where Dy = D;(02 — d1). Furthermore, from Lemma 1.1, (Hp)—(H;) and (10) we
obtain

q(@)|f (un(2))] < (A + €)q(@) un(@)] + (B + €)q(@) un ()" + Dig(x)
q

<(A+e) sup |(pun)(e) L2

z€[0,00) p(l‘)
su U x 6M X
+(B+€)x6[ogo)l(p n)(2)] TP + Dig(x)
() ()
= (A Dlunlloop s + (B + )llunll 55 + Dag(a)
(z) (z) 1
<(A+ a)x/iMR}% +(B+ 5)(\/§MR)6pqﬂ(x) + Dig(x) € LY(0, 0)
and
B—2 B—1 _ ,pB—1 B—1 h(z)
h(z)|un ()" un ()| < h(@)|un ()" = p”~ (2)|un (@) P 1(2)
su w) () B1 h(z) — w182 h(z)
< xe[ogo)Kp n)( )| pg_l(x) || n“oo,ppg_l(x)
B—1 h(z) 1(0. 00
< (V2MR) 1) © LY(0,00).
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Then from the Lebesgue dominated convergence theorem we obtain

(13) [ @ @)= [ a@ru)ar
0 0
and also
At [ @ @@= [ @ @) b
0 0

Thus we have
(15) (T (un) — I} (), 0) = /0 z:o;v’da:+ /0 unvdm;)\ /0 h(x)|z::|6_2unvdx
—/0 Oz(x)f(un)vdx—/o u:’dm—/o wodz
+OAO /O h(x)|u|6—2uvdi+ /O o) f (w)o da
:/O (ui—u’)vldx—i—/o (tn — w)v dz
Y /O h(&) (Jun P~ 2um — JulP~2u)o do
- [T @) - @y

and from (13), (14) and the continuity of f, passing to the limit in (J{ (un)—J5(u),v)
when n — oo, we obtain that J} (u,) — J3(u) as n — oco. O

Definition 2.1. We say that u € H}(0, 00) is a weak solution of problem (1) if
for any v € H{(0,00) we have

J} Y T Cwde - [ n =2y d
(Jy(u),v) /0 uw'v a:—i—/o wvdz /o (z)ul’2uv dx
—/0 q(z) f(u)vdx = 0.

Remark 2.1. Since the nonlinear term f is continuous, then a weak solution of
problem (1) is a classical solution.

In our next two sections we will prove the main result of this paper.

Theorem 2.1. Suppose that (Ho)—(Hy) hold. Then there exists £ > 0 such that
for 0 < A < ¢, problem (1) has at least two positive solutions.
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2.1. Existence of a first solution.

Lemma 2.1. Suppose that the hypotheses (Ho)—(Ha4) hold. Then there exists
& > 0 such that for 0 < A < &, the functional Jy satisfies the geometric condi-
tions (a) and (b) in Lemma 1.4, i.e.

(a) there are o, > 0 such that Jy(u) > o when |lu| = o,
(b) there is e € H}(0,00), ||| > o such that Jy(e) < 0.

Proof. (a)From (Hp)—-(Hs), (11) and using Corollary 1.1, we have

1 5 )\ (o) (o)
16) ) = glul* =5 [ h@ll @ e [ g P da
> gl =5 | @l @) de =Dy | a(e)de
A+4e [ B+e [
-5 [ a@ipar- S [ @l as
1 A A+e
> gl = S0l — S5 A,
B+e
= G MEEL AN = Dals
1 A+e A
> (5= 5 M) lul = SMZ, Jul”
B+e
~ T Metiallul®t! = Dellal
1 A B+e
2 2 8 B—1 B+1 B
> 0l (50— (A+)MZ,) = SME Nl = S M )

— D2llq]|z»
1 —
2 ||U||2(§(1 —(A+e)Mj ) — AKq||u|’~! - K2Hu|\ﬁ> — K,

where K1 = gflMg,h, Ky = ((B+¢)/(6+ 1))Mg:11h and K3 = Ds||q||1; here
and D5 are given in the proof of Proposition 2.1. Let

g(t) = NK1t°72 + KotP~1 fort > 0.

Clearly,
gt =AK1 (B —=2)tP 3 + Ka(B— 1)tP~2 fort > 0.

From ¢'(to) = 0 we have
to = AK1(2 - B)
Ka(B—1)
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Then
INLR P!

)= R

Thus, there exists

0<& < (L ;12}{2 (1—(A+ E)M;q))“ﬁ_l

such that 1
g(to) < 5(1 —(A+e)M3,) YO<A<&.

Consequently, taking ¢ = to and choosing A € (0,&;) such that
mo = 92<%(1 —(A+ €)M22,q) — K072 — Kggﬁfl) > K3,
from (16) we have
(17) Jxa(u) = a>0 when ||ul| = o,

where o« = mg — K3. Thus (a) is proved.
(b) For ¢t > 0 large enough, from (12) and Lemma 1.3 we have

J)\(tEIBJrl,q)

1, — e —
= 5P seralP = 5 [ M@l do = [ a@F(ET50)

1 — — A—¢ o0 _
_7f2||¢,5‘+1,q||2 - _tﬁ/ h($)|¢,@+1,q|ﬁ dx — —t2/ Q($)|¢5+1,q|2 dx
2 B Jo 2 0

s 2 -
-t [ a@ @, ar D [ @) da

L T e T P TN |
B —
O B+1

N

//\

+1
=t [ 1511 + Dallallcs

//\

_ _ A o
5(||w5+1,q||2 — (A=) [[p11,412.)t° - Enwﬁ-i-l,qng,htﬁ

B—¢ — +1
- m”wﬁﬂ,q”gﬂﬂtﬂﬂ + K.

Therefore J,\(tEﬁH,q) — —oo as t — oo. Choose t; > 0 large enough and e =
tlﬂﬁﬂyq. Hence, we conclude that

Jx(e) < 0 when |le]| > o.
Thus (b) is proved. O

101



From a version of the Mountain Pass Theorem without the Palais-Smale condition
(see [7]), there exists a (P.S), sequence (u,) C H}(0,00) for Jy which satisfies (3),
i.e.

Ia(up) — ¢ and  Ji(up) — 0,

where

= inf J t
¢ = inf max A(v(1))

with
' = {v€C([0,1], Hy(0,00)): 7(0) =0, 7(1) = e},
where e is given in Lemma 2.1.

Remark 2.2. Since the sequence (u;) also satisfies (3) (see [1], Lemma 1), we
assume, without of loss generality, that u,, > 0 for all n € N.

Lemma 2.2. Suppose that the hypotheses (Ho)—(Ha) hold. Then the mountain
level ¢ satisfies the following inequality:

P \2/(8-1)

A 11

B+1,g

L= - — =)+ Kj;
C<(B—E> (2 u>+ B

here K3 is given in the proof of Lemma 2.1.

Proof. From the proof of Lemma 2.1 we can consider v(t) = ttlﬂﬂJqu, where
t1 > 0 is sufficiently large such that e = t1@g+1,q. Thus, from the definition of c,

e S max Jy(tgy1,),

that is,

Lo — 2 A 7 B OO e
e <] 50110l = 51l [ AP (W01, da .

From (12)7
1, — A sig )
o< 1?2218({§t2|‘w5+1,q|‘2 . Bt’BH%H,H g,h _ Tt2|‘¢ﬂ+1,q| %,q
B—¢ -
+1 o
— mtﬁ |Wﬁ+1,q“ﬂ+1,q+K3}
1y B=coryp h
< 1?35({ §t2|\1/)6+1,q| - B+1 tﬁHHwﬁﬂﬂHgﬂaq} + Ka,
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and then

~2

c As+1q,0 B—e - B-1 ,B41 K3
_7<max{ =t — V541 4ll +1t+ 4+ =\
”wﬂJqu'%Jrl,q £20 2 A+l L HwﬂJrl,q'%Jrl,q

Let )
A B—¢, —
_ B+lg,2 B—1 ,B8+1
2(0) = L — o T 7
Clearly,

—2 — -1
Z/(t) = )‘BJqut - (B - E)HwﬁJrl,q”ngthB'

Since the function Z attains its maximum at

32 1/(B—1

< )‘B+17q > /=y

8 - ,
(B—e)[Vp114ll551.4

it follows that

P \2/(8-1)
A 1 1
B+1,q
B+l - K-
C<(B—5> (2 6+1)+ &
and therefore we have
P \2/(8-1)
A 1 1
B+1,q
LA - — = Ks.
€< ( B—¢ > (2 u) + s

O

Lemma 2.3. There exists £&o > 0 such that for 0 < A < &, the Palais-Smale
sequence (u,,) associated with the functional Jy satisfies

YL \2/(8-1)

A 5, AK3p
lim sup ||u 2<2(M) +M25/2 Ay 2288
n—)oopH "H B—¢ B,h ,Uf_2

Proof. First, observe that (u,) is bounded in H{(0,00). In fact, from (3)
Ia(up) = ¢ and  (J3(un),un) =0 asmn — oc.
Notice that from (7) we have
~ 8
| at@np e = = Aol = G ) )
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Using Corollary 1.1 and (Hy), it follows from (3) that

1 A o
(18) e+ > o) = gl = Flunlf = [ at@) P de
1 A 1 [
e / @) d
1
> (5= 3 ) luall = A(5 = 5 )l + (4 ). )

(%— ) LG (5——)H wl|? + ;<J;<un>,un>

> (5 = ) luall = A0S (5 = )l = 15 ) ]

Since J} (uyn) — 0, there exists Ny € N large enough such that

1 1 1 1
(19) et > (5= )l =AML (5 = 2 )l = on(Ulfunll ¥ > No.

This implies that (u,) C H(0,00) is bounded.
Now we can write (19) as

11 5 /1 1
o) (5 ) Il < AMZ (5 = 5 )l + on(Dlunl + + e
Using Young’s inequality in (20), we get
1 1
(5 = ) lnll?
1 1\ /72—
< (5-2) (20 + 2300 )+ on D] + -
1 1\2— _ 1 1
< (5= ) M+ 5002 (5 = 2 ual + o) +

and then we have

((3-2)- 520 (3= 2)) P < (5 - 1) 25203+ 0u(0)unl e

Choosing

then using Lemma 2.2, we conclude that

~B+1 _
i< G- (G- DG

1 2 —
K+ (5 1) G Wl + ).
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Thus

~B+1 B
il < (36 -1)) (G- (G2

1 1\2 - _
+Ks+ (5 - ;)_BM;@{@ ﬂ>)

15} 2
B+ (2/(B-1
<9 Mot )Y )+M2ﬁ/2—ﬁ + 4K3p
B-¢ B:h p—2

O

Since (u,) satisfying (3) is bounded in H}(0,00) (see Lemma 2.3), there exists
uy € H}(0,00) such that for a subsequence we have

(21) U, —uy in Hy(0,00),
(22) Up — up  in Ly(0,00)

for all r € {8,2,8+ 1} and all g € {h,q} and
(23) un(z) = ui(z) a.e. in (0,00).

In the next lemma we obtain some convergences results involving the sequence (u.,)

and its weak limit u;.

Lemma 2.4. The following limits are satisfied:

fo )| f(un) — fur)| |un — w1 dz = 0,(1),
fo )|t [P~ 2 — ur|P 2| [ty — ui| do = 0, (1).

Proof. (c) From (10) and using Corollary 1.1 and Lemmas 2.2 and 2.3, we
obtain

/0 9(@) [ un) — F (1)l — ] dz
< h nllun — d - n— d
</0 9@ (tn [t — 1] m+/0 9(@) 1 () [t — ] d
<2D n— d
<2 1/0 q(z)|un — up| dz

oo

+(A+s)/ q(x)|un||un—u1|dx+(A+e)/ o(@) [ || — ua| d
0 0

o0
+(B+2) [ a@lunun —wlde+ (B0 [ g@ullu, - | ds
0 0
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and using the Cauchy-Schwarz inequality, we have

/ " @) () = F()n — wr] e

Thus,

N

/0 A (n) — Fr)] [t — ua] da
< 2D lgll 1 ltn — 0120 + (A + &)t

(At e u gl a4 (B &)l 52l — w1l g

T+ (B+ &) un |2 tm — ]

< Chellun — ua]l2,qg + Co

Up — U1

Up — U1

B.q

Up — ul”B,qv
where

—1/2 —1/2,.5_
Cre =2(A+e)M % +2D1 gl 2, Coe = 2(B +)(MzyT' )P,

_54’1 2 -1
T—»o Ngi1q )\ )+ A28 A
B-¢ B.h p—2

Then according to (22) we have

/ (q(@)[f (un) = f(ur)|Jun — wa]) dz = on(1).
0

(d) From Corollary 1.1 and Lemmas 2.2 and 2.3, we have

o0
| @ lual? 2 = a2 1] da

0 o0 o0

< ) @l s [ bl
0 0
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< (/OOO h(zx)|wn)? dx)ﬁ_l/ﬁ (/OOO h(z)|un — up|? dx)w
+ (/OOO h(x)|uy|? dx>ﬂl/ﬂ </OOO h(z)|w, — up|? dx>1/ﬂ

< Nl lun = wallgn + lunll 53 lun = wallsn < 2Cslun = wllgn,

—1/2

where C3 = (Mg ,C ' ")?~1. Then according to (22) we have

o0
/ B(@) [t P2t — [ |P~2ua | [ — wa] d = on(1).
0
O

Proposition 2.2. Suppose that f is a function satisfying (Ho)—(Hy). Then there
exists a constant £ > 0 such that for 0 < X < &, problem (1) has a positive solution u;
satisfying Jy(u1) > 0.

Proof. Letwu; bethe weak limit of the sequence (u,,) that satisfies (3). Consider
& = min{¢, &}, where & and & are given in Lemmas 2.1 and 2.3, respectively. We
will prove that u,, — u1 in Hg (0, 00).

From (15) we have

(J\(un) — J5(u1), un — ug)
=UA w;—uow;—uw¢w+é (tn — 1)t — 13) dt

— - x)(|u 6_2un— U ’B_Qul Uy — U x

Al ha)Jun] 1|21 ) (1t — 1) d
—A 9(@) (f (tn) — £(ur)) (tn — u) da.

Thus,

= wa[* < (T3 (un) = T3 (1), un — 1)

+ /\/ B(@) [t P~ 2t — [ |P~2ua [ — wa| dz
0
[ gl un) = £, ] d,
0

Therefore, from Lemma 2.4 above and taking into account that J} is continuous (see
Proposition 2.1), we have

o0 o0
||un—u1||2:/ |u;l—u'1|2dx+/ [y, — up | dz = 0, (1).
0 0
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Consequently,

lim </ |u’n—u’1|2dx—|—/ |un—u1|2dx) =0.

That is, u, — u1 asn — oo in H}(0, 00), i.e. (u,) satisfies the Palais-Smale condition.
Now by applying the Mountain Pass Theorem, we obtain

Ji(u1) =0 and Jy(u1) =c>0.

O

2.2. Existence of a second solution. Now we apply the Ekeland variational
principle to prove the existence of a weak solution us which is different from the
solution uj.

Lemma 2.5. Suppose that (Hyo)—(Hy) hold. Then there exists a constant {3 > 0
such that for 0 < A < &3, the functional Jy satisfies (P.S), condition with d < 0.

Proof. Fix d <0 and suppose that (u,) C H}(0,00) satisfies
(24) Ja(un) = d and Jy(u,) =0 asn— oco.

We need to show that (u,) admits a subsequence converging strongly in H} (0, 00).
Proceeding as in (20) we get

11N, o s (1
(5 = ) el < 2025, (5

Thus, for a subsequence we have

1
=2l on(U)funl +d +

1 1 1 1
((— - ;) lim sup [|un,||*~* — )\Mgh(— - ;)) lim sup [|u.||® < d < 0.

2 n—00 6 n— 00

Hence,

Mﬂ -1 _ -1
(25) lim sup |Ju, ||* < (/\ ’B’hl(ﬂ 71M )
n—oo (3 —n7Y)

2/(2—
/(2—8) sag? #E-5)
< (AMj ) -

Choosing
B8+ (2/(8-1) (2-8)/2
A _ 4K
—MP B+1.q €N 2B/ (2=6) 3K
©= ﬁ’h(2<3_5> T Ve +N—2> ,
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we have that for \ < &3,

Y \2/(8-1)
_ 4Ks3p
@0 mapfnl <2( )

From (26) we have that (u,) is bounded in H}(0,00) and there exists u € H} (0, 0)
such that u,, — w in HJ (0, 00). Now, we can repeat the same arguments employed in
the proofs of Lemma 2.3 and Proposition 2.2 to conclude that u,, — u in Hg (0, 00).

O

Proposition 2.3. Suppose that f is a function satistying (Ho)—(H4). Then there
exists a constant & > 0 such that for 0 < A < &, problem (1) has a positive solution us
satisfying Jx(uz) < 0.

Proof. Consider the complete metric space

B,(0) == {u € Hy(0,00): [lul < o}

with a metric given by d(u,w) = ||u — w]|. The functional Jy is bounded from below
on B,(0) for A < ¢ (see Lemma 1.4). Note that

5 1 ox VA
Vit < min{ 1 , = < — ) }
Wﬁ,h” Wﬁ,h”ﬁﬁ BAWL

(t near 0) using (Hs) in (8), we get

_ 1. _ . o0 _
(27)  Ia(tYpp) = 5t2|\1/)ﬁ,h”2 - BtﬂH%,hHg,h _/0 q(x)F(t g ) do
A—c¢

15— A g — —
Y ] P
1,,— 20872 _ A—e 5 —
= 50l? (1= Ze T 1532) - 252l <O
A,B,h
by (17). Then, in view of (27), we see that
(28) inf J(u) <0< inf J(u).
ueB,(0) uedB,(0)

Consequently, by applying Ekeland’s variational principle in B,(0), there is a mini-
mizing sequence (uy)n>1 C B,(0) such that

(29) Ia(un) = d = inf{J\(u): u e B,(0)},
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ie.

1
J(uy) < inf Juw)+— Vn>1,
u€B,(0) n

and for every w € B,(0) with w # wu,,

(30) In(w) = T (n) + %Hun—wH > 0.

Let v € H}(0,00). We consider the sequence w,, := u, +tv C B,(0), t near 0 (small
enough), and for all n > 1. From (30) we obtain

1 1
T (N (un +tv) = Ia(un)) > ——|v]].
Thus, (J{(un),v) = —n"!{|v|| and similarly, (J{(un), (—v)) = —n"*||v||. Therefore
1
(T3 (un), v} < [l Vv € Hg(0,00).
Consequently,

(31) |75 (un)|| = 0 as n— oo.

Fix E := min{&;, &3}, where & and & are given by Lemmas 2.1 and 2.5, respec-
tively. Then from (29) and (31) it follows that (un)n,>1 is a (P.S), sequence for the
functional Jy for all 0 < A < Z

Using Lemma 2.5 and Propositions 2.2, we obtain a subsequence, still denoted by
(tn)n>1, which converges strongly to a function us € H}(0,00). In this case

J;\(UQ) =0.

Now we will check Jy(uz) < 0 to complete the proof. Note that using (Hy) and (7)
we obtain

4+ (1) = a(un) = ()i = (5= L)l = A(5 = 1) [ h@lnl?

° 1
= [ () = 5 faun) + 0n(2),
0 K
From Fatou’s lemma (see [3], Lemma 4.1) we conclude that

1 1
d = liminf (J,\(un) — ;J/’\(un)un) > J(ug) — ;J;\(UQ)UQ.

n—oo

Thus
J)\(UQ) =d<0.
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Remark 2.3. Ifwisanontrivial solution for problem (1), by Remark 2.2, u > 0.

Furthermore, as a consequence of (28) and J»(0) = 0, we have u > 0 in (0, 00).

Proof of Theorem 2.1. We take ¢ := min{¢, EA} and then the proof of Theo-
rem 2.1 follows directly from Propositions 2.2, 2.3 and Remark 2.3. O

3. EXAMPLE

In this section we give an example to illustrate our results.

Example 3.1. Consider the problem

(32) { —u" 4+ u= )\h(x)|u|5—2u +q(z)f(u), =€]0,00),
u(0) = u(oo) = 0,

where )
-2 .

oz U+ (A + Dul? if Ju| < 1,
2,

OEE

(A2 + Dlul? +

1
if fu > 1,
oMz, [ul

q(z) = 1D5'e 3%/ and h(z) = e~**/3. Choose p(z) = e~*/* and we see that

9y L osaps 4 v_ 1 g h _ (36-19)z/12

p(x) 4D26 ’ pg (CL‘) 4D26 ’ pﬁ_l (CL‘) =¢e ’
a8 1 B-ewma D a@a-am 4 y_ 1 (8-5)/a
P (z) = 4D2€ P (x)=e and PP () = 4D2e

are in L'[0, 00) for all 3 € (1,2). Note that g, > Mi;, and we also obtain that

V2 flu) _ 1 fw) _ 52
Mag= e, A= lim 88— —— and B = i — o, + 1.
247 /15D, wnor o] 2z, " W Tup = M2 T

It is easy to see that conditions (Ho)—(Hy) hold. Thus from Theorem 2.1, (32) has
at least two positive solutions for each A € (0, £).
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