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Abstract. The present study aimed to introduce n-fold interval valued residuated lat-
tice (IVRL for short) filters in triangle algebras. Initially, the notions of n-fold (positive)
implicative IVRL-extended filters and n-fold (positive) implicative triangle algebras were
defined. Afterwards, several characterizations of the algebras were presented, and the cor-
relations between the n-fold IVRL-extended filters, n-fold (positive) implicative algebras,
and the Gödel triangle algebra were discussed.
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1. Introduction

Various logical algebras have been proposed as semantic systems of non-classical

logic systems. Such examples are residuated lattices, BL-algebras, Gödel algebras,

and MTL-algebras. Among these logical algebras, residuated lattices are especially

basic and contain important algebraic structures since the other logical algebras are

all particular cases of residuated lattices. Therefore, residuated lattices are consid-

ered to be a fundamental concept of algebraic structures, which have been investi-

gated by Dilworth, and Ward et al. (see [2], [6]).

Triangle algebras are remarkable examples of residuated lattice structures. In

a study, Van Gasse et al. introduced the notion of triangle algebras as a variety

of residuated lattices equipped with two modals or the approximation operators ν

and µ, together with u as a third angular point, which differs from 0 (false) and 1

(true). In the mentioned research (Theorem 26), the findings indicated that these

algebras serve as an equational representation of interval-valued residuated lattices
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(IVRLs). Based on the definition and properties of triangle algebras, the authors

defined triangle logic (TL), demonstrating that this logic is sound and complete

considering the variety of triangle algebras (see [4]). The same researchers introduced

the notion of IVRL-filters in triangle algebras, defining a few types of IVRL-filters

(e.g. Boolean and prime filters) and discussing their notable properties (see [5]).

The n-fold filter theory of residuated lattices and BL-algebras has been previ-

ously investigated, yielding important finding. Triangle algebras and BL-algebras

are among the foremost logical algebras, which motivated us to study the notion of

n-fold filters in triange algebras.

The present study aimed to assess the properties of triangle algebras. Triangle

algebras differ from other algebraic structures. Triangle algebras play a key role in

fuzzy logics and the associated algebraic structures. Furthermore, the filter theory

is of paramount importance in studying this type of algebra. Since n-fold IVRL-

extended filters enable the classification of triangle algebras, they are of particular

importance. Due to the operations ν and µ, triangle algebras are remarkable alge-

braic structures. The differences between triangle algebras and other algebra types

have caused the definition of n-fold IVRL-extended filters in this algebra to differ

from the definition of n-fold filters in other algebraic structures. For instance, the

role of operation ν that causes the IVRL-filter conditions is essential to the definition

of n-fold IVRL-extended (positive) implicative filters. Continuing our study on alge-

braic structures, especially triangle algebras, we defined n-fold (positive) implicative

IVRL-extended filters and n-fold (positive) implicative triangle algebras. Afterward,

some of their properties were provided. Additionally, we considered the correlations

between the mentioned n-fold IVRL-extended filters. In Section 2 of this paper, we

present some of the definitions, lemmas and theorems required for the sequel. In

Section 3, we define n-fold IVRL-extended positive implicative filters in triangle al-

gebras as well as some of their properties. Moreover, the concept of n-fold positive

implicative triangle algebras is introduced, and some of the related results are proved

as well. In this regard, it is demonstrated that F is an n-fold IVRL-extended positive

implicative filter if and only if νx ∨ ¬(νxn) ∈ F . In Section 4, the notion of n-fold

IVRL-extended implicative filters and n-fold implicative triangle algebras are intro-

duced. It will be proven that if A is associated with Gödel triangle algebra, {1} is an

n-fold IVRL-extended implicative IVRL-filter of A. Furthermore, it will be denoted

that they are equivalent under specific cirumstances. Therefore, the aforementioned

finding will be exploited to determine the classification of this structure.
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2. Preliminaries

Definition 2.1 ([1]). A residuated lattice is an algebra L = (L,∨,∧, ∗,→, 0, 1)

with four binary operations and two constants 0, 1 such that:

⊲ (L,∨,∧, 0, 1) is a bounded lattice with 0 as the smallest and 1 as the greatest

element,

⊲ ∗ is commutative and associative with 1 as neutral element, and

⊲ x ∗ y 6 z if and only if x 6 y → z for all x, y and z in L (residuation principle).

The ordering 6 and negation ¬ in a residuated lattice L = (L,∨,∧, ∗,→, 0, 1) are

defined as follows: for all x and y in L : x 6 y if and only if x∧y = x (or equivalently,

if and only if x∨ y = y; or, also equivalently, if and only if x → y = 1), ¬x = x → 0,

x ↔ y = (x → y) ∧ (y → x) and xn = x ∗ . . . ∗ x
︸ ︷︷ ︸

n times

.

Lemma 2.2 ([5], [2]). Let (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the

following properties are valid for all x, y and z in L:

(1) x ∗ y 6 x ∧ y, x 6 y → x,

(2) x ∨ y 6 (y → x) → x,

(3) x → (y → z) = y → (x → z),

(4) x 6 y implies x ∗ z 6 y ∗ z, z → x 6 z → y, y → z 6 x → z,

(5) x → (y → z) = (x ∗ y) → z = y → (x → z),

(6) x ∗ ¬x = 0,

(7) (y1 → x1) ∗ (x2 → y2) 6 (x1 → x2) → (y1 → y2),

(8) (x1 → y1) ∗ (x2 → y2) 6 (x1 ∗ x2) → (y1 ∗ y2),

(9) (x → y) ∗ (y → z) 6 x → z,

(10) x 6 y → (x ∗ y), x ∗ (x → y) 6 y.

Definition 2.3 ([4]). Given a lattice A = (A,∨,∧), its triangularization T(A)

is the structure T(A) = (Int(A),∨,∧) defined by

⊲ Int(A) = {[x1, x2] : (x1, x2) ∈ A2 and x1 6 x2},

⊲ [x1, x2] ∧ [y1, y2] = [x1 ∧ y1, x2 ∧ y2],

⊲ [x1, x2] ∨ [y1, y2] = [x1 ∨ y1, x2 ∨ y2].

The set DA = {[x, x] : x ∈ A} is called the diagonal of T(A).

Definition 2.4 ([4]). An interval-valued residuated lattice (IVRL) is a resid-

uated lattice (Int(A),∨,∧,⊙,→⊙, [0, 0], [1, 1]) on the triangularization T(A) of a

bounded lattice A, in which the diagonal DA is closed under ⊙ and →⊙, i.e.

[x, x]⊙ [y, y] ∈ DA and [x, x] →⊙ [y, y] ∈ DA for all x, y in A.
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In triangle algebra A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1), operators ν (‘necessity’) and µ

(‘possibility’) are modal operators, and u (‘uncertainty’, u 6= 0, u 6= 1) is a new

constant. It turns out that triangle algebras are the equational representations of

interval-valued residuated lattices (IVRLs).

Definition 2.5 ([4]). A triangle algebra is a structure A = (A,∨,∧, ∗,→,

ν, µ, 0, u, 1) in which (A,∨,∧, ∗,→, 0, 1) is a residuated lattice, ν and µ are unary

operators on A, u is a constant, and which satisfies the following conditions:

(T.1) νx 6 x, (T.1′) x 6 µx,

(T.2) νx 6 ννx, (T.2′) µµx 6 µx,

(T.3) ν(x ∧ y) = νx ∧ νy, (T.3′) µ(x ∧ y) 6 µx ∧ µy,

(T.4) ν(x ∨ y) = νx ∨ νy, (T.4′) µ(x ∨ y) 6 µx ∨ µy,

(T.5) νu = 0, (T.5′) µu = 1,

(T.6) νµx = µx, (T.6′) µνx = νx,

(T.7) ν(x → y) 6 νx → νy,

(T.8) (νx ↔ νy) ∗ (µx ↔ µy) 6 (x ↔ y),

(T.9) νx → νy 6 ν(νx → νy).

Theorem 2.6 ([4]). There is a one-to-one correspondence between the class of

IVRLs and the class of triangle algebras. Every extended IVRL is a triangle algebra

and conversely, every triangle algebra is isomorphic to an extended IVRL.

Definition 2.7 ([7]). A triangle algebra A is called a Gödel-triangle algebra

(G-triangle algebra) if x2 = x for all x ∈ A.

Definition 2.8 ([5]). Let A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) be a triangle algebra.

An element x in A is called exact if νx = x. The set of exact elements of A is denoted

by E(A).

It was proved in [4] that E(A) is closed under all defined operations on A. We

denote the subalgebra (E(A),∨,∧, ∗,→, 0, 1) which is a residuated lattice by E(A).

Proposition 2.9 ([3]). In a triangle algebra (A,∨,∧,→, ∗, ν, µ, 0, u, 1), the fol-

lowing identity and inequality hold for every x, y and z in A:

(i) ν(x ∗ y) = νx ∗ νy.

(ii) µ(x ∗ y) 6 µx ∗ µy.

By the above proposition we have ν(xn) = (νx)n = νxn.

Definition 2.10 ([5]). An IVRL-filter (IF) of triangle algebra A = (A,∨,∧, ∗,

→, ν, µ, 0, u, 1) is a nonempty subset F of A satisfying:

(F.1) if x ∈ F , y ∈ A and x 6 y, then y ∈ F ,
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(F.2) if x, y ∈ F , then x ∗ y ∈ F ,

(F.3) if x ∈ F , then νx ∈ F .

An alternative definition for an IVRL-filter F of a triangle algebra A = (A,∨,∧, ∗,

→, ν, µ, 0, u, 1) is the following:

⊲ 1 ∈ F ,

⊲ for all x and y in A: if x ∈ F and x → y ∈ F , then y ∈ F ,

⊲ if x ∈ F , then νx ∈ F .

Notice that, because of (F.1), (F.3) and (T.1), we have

(F.3′) x ∈ F if and only if νx ∈ F .

There is an obvious connection between the notion “IVRL-filter of triangle alge-

bra” and “filter of a residuated lattice”, which is given in the next proposition.

Proposition 2.11 ([5]). Let A be a triangle algebra, E(A) = (E(A),∨,∧, ∗,→,

0, 1) be its subalgebra of exact elements and F ⊆ A. Then F is a filter of the triangle

algebra A if and only if (F.3′) holds and F ∩E(A) is a filter of the residuated lattice

E(A).

Proposition 2.11 suggests two different ways to define specific kinds of IVRL-filters

of triangle algebras. The first is to impose a property on a filter of the subalgebra

of exact elements and extend this filter to the whole triangle algebra, using (F.3′).

We call these IVRL-extended filters. For example, an IVRL-extended implicative

filter of triangle algebra A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a subset F of A such that

F ∩ E(A) is an implicative filter of E(A) and x ∈ F if and only if νx ∈ F ∩ E(A).

The second way is to impose a property on the whole IVRL-filter. For example,

an implicative IVRL-filter of a triangle algebra A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is an

IVRL-filter of A such that F is an implicative filter of (A,∨,∧, ∗,→, 0, 1), see [5].

Definition 2.12. A triangle algebra A is called a divisible triangle algebra if

x ∧ y = x ∗ (x → y) for all x, y ∈ A.

Lemma 2.13. ¬((x ∨ ¬(xn))n) → ¬(xn) = 1 for all x in triangle algebra

(A,∨,∧, ∗,→, ν, µ, 0, u, 1).

P r o o f. By Lemma 2.2, we have

¬((x ∨ ¬(xn))n) → ¬(xn) > xn → (x ∨ ¬(xn))n

> [x → (x ∨ ¬(xn))]n = 1.

So ¬((x ∨ ¬(xn))n) → ¬(xn) = 1. �
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3. n-fold positive implicative filters in triangle algebras

From now on, (A,∨,∧, ∗,→, ν, µ, 0, u, 1) or simply A is a triangle algebra and n is

a natural number.

Definition 3.1. An IVRL-filter F of A is called n-fold IVRL-extended positive

implicative filter of A if it satisfies: 1 ∈ F and νx → ((νyn → νz) → νy), νx ∈ F ,

implies νy ∈ F for all x, y, z ∈ A.

The IVRL-filter condition is essential in the above definition as the following ex-

ample shows:

E x am p l e 3.2. Let A = {0, u, 1} be a chain. We define operations ν, µ, ∗, →

as follows:

x νx
0 0
u 0
1 1

x µx
0 0
u 1
1 1

∗ 0 u 1
0 0 0 0
u 0 u u
1 0 u 1

→ 0 u 1
0 1 1 1
u 0 1 1
1 0 u 1

Then A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a triangle algebra. Clearly, F = {u, 1} meets

the condition of n-fold IVRL-extended positive implicative filter of A. Since νu =

0 /∈ F , F is not an IVRL-filter of A.

Theorem 3.3. For all x, y ∈ A, the following conditions are equivalent:

(i) F is an n-fold IVRL-extended positive implicative filter,

(ii) (νxn → 0) → νx ∈ F implies νx ∈ F ,

(iii) (νxn → νy) → νx ∈ F implies νx ∈ F .

P r o o f. (i)⇒ (iii): Let F be an n-fold IVRL-extended positive implicative filter

of A and (νxn → νy) → νx ∈ F . Since 1 → ((νxn → νy) → νx) = ((νxn → νy) →

νx), one has 1 → ((νxn → νy) → νx) ∈ F . Since 1 ∈ F , we infer νx ∈ F .

(iii) ⇒ (ii): It is clear.

(ii) ⇒ (i): Let νx → ((νyn → νz) → νy) ∈ F and νx ∈ F . Since F is an

IVRL-filter, (νyn → νz) → νy ∈ F . Lemma 2.2 gives νyn → 0 6 νyn → νz. So,

(νyn → νz) → νy 6 (νyn → 0) → νy. Hence (νyn → 0) → νy ∈ F and thus νy ∈ F .

Therefore F is an n-fold IVRL-extended positive implicative filter of A. �

Proposition 3.4. If F is an n-fold IVRL-extended positive implicative filter,

then F is an (n+ 1)-fold IVRL-extended positive implicative filter.
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P r o o f. Let F be an n-fold IVRL-extended positive implicative filter and x ∈ A

be such that (νxn+1 → 0) → νx ∈ F . Since νxn+1 6 νxn, we have νxn → 0 6

νxn+1 → 0 and so (νxn+1 → 0) → νx 6 (νxn → 0) → νx. Since F is an IVRL-filter,

(νxn → 0) → νx ∈ F . Since F is an n-fold IVRL-extended positive implicative filter,

νx ∈ F . Thus, F is an (n+ 1)-fold IVRL-extended positive implicative filter. �

In the following example we show that the converse of the above proposition is

not true.

E x am p l e 3.5. Let A = {[0, 0], [0, a], [0, b], [a, a], [a, b], [b, b], [0, 1], [a, 1], [b, 1],

[1, 1]}. Define ⊙ and ⇒ as:

⊙ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

⇒ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Now, we define ν, µ, ∗ and → one as:

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2], [x1, x2] ∗ [y1, y2] = [x1 ⊙ y1, x2 ⊙ y2],

[x1, x2] → [y1, y2] = [(x1 ⇒ y1) ∧ (x2 ⇒ y2), x2 ⇒ y2].

[0, 0]

[0, b]

[0, a]

[0, 1]
[a, b]

[b, b]

[a, a]

[b, 1]

[a, 1]

[1, 1]

Then (A,∨,∧, ∗,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra with [0, 0] as the

smallest element and [1, 1] as the greatest element. It is clear that {[1, 1]} is a 3-fold

IVRL-extended positive implicative filter of A, but (ν[b, 1]2 → [0, 0]) → ν[b, 1] =

[1, 1] 6= [b, b]. Thus, {[1, 1]} is not a 2-fold IVRL-extended positive implicative filter

of A.
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Definition 3.6. A is called n-fold positive implicative triangle algebra if

(νxn → 0) → νx = νx for all x ∈ A.

E x am p l e 3.7. Let A = {0, u, 1} be a chain. We define operations ν, µ, ∗,→ as:

x νx
0 0
u 0
1 1

x µx
0 0
u 1
1 1

∗ 0 u 1
0 0 0 0
u 0 0 u
1 0 u 1

→ 0 u 1
0 1 1 1
u u 1 1
1 0 u 1

A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a triangle algebra. It is clear that A is an n-fold

positive implicative triangle algebra for all n ∈ N.

E x am p l e 3.8. In Example 3.5, A is not a 2-fold positive implicative triangle

algebra.

Proposition 3.9. Let F be an IVRL-filter of A. Then the following conditions

are equivalent:

(i) A is an n-fold positive implicative triangle algebra,

(ii) {1} is an n-fold IVRL-extended positive implicative filter of A.

P r o o f. (i) ⇒ (ii): By the definition of the n-fold positive implicative triangle

algebra and Theorem 3.3, {1} is an n-fold IVRL-extended positive implicative filter.

(ii) ⇒ (i): Consider x ∈ A and z = ((νxn → 0) → νx) → νx. By Lemma 2.2 we

have
(zn → 0) → z = (zn → 0) → (((νxn → 0) → νx) → νx)

= ((νxn → 0) → νx) → ((zn → 0) → νx)

> (zn → 0) → (νxn → 0) > νxn → zn.

Since νx 6 ((νxn → 0) → νx) → νx = z, one has νxn 6 zn. So, νxn → zn = 1.

Hence (zn → 0) → z = 1 ∈ {1}, since {1} is an n-fold IVRL-extended positive

implicative filter, z = ((νxn → 0) → νx) → νx = 1, so (νxn → 0) → νx 6 νx.

By Lemma 2.2, we have (νxn → 0) → νx > νx. Hence (νxn → 0) → νx = νx

for all x ∈ A. That is, A is an n-fold IVRL-extended positive implicative triangle

algebra. �

Theorem 3.10. Let F be an IVRL-filter of A. Then A/F is an n-fold IVRL-

extended positive implicative triangle algebra if and only if F is an n-fold IVRL-

extended positive implicative filter.

P r o o f. Let F be an n-fold IVRL-extended positive implicative filter and x ∈ A

be such that ([νx]n → [0]) → [νx] = [1]. Then [(νxn → 0) → νx] = ([νx]n → [0]) →

[νx] = [1]. Thus (νxn → 0) → νx ∈ F . Since F is an n-fold IVRL-extended positive
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implicative filter by Theorem 3.3, νx ∈ F . Hence [νx] = [1]. So {[1]} is an n-fold

IVRL-extended positive implicative filter of A/F . Proposition 3.9 gives that A/F is

an n-fold positive implicative triangle algebra.

Conversely, let A/F be an n-fold positive implicative triangle algebra and let

x ∈ A be such that (νxn → 0) → νx ∈ F . Then [νx] = ([νx]n → [0]) → [νx] =

[(νxn → 0) → νx] = [1]. Hence [νx] = [1], that is, νx ∈ F . It follows from

Theorem 3.3 that F is an n-fold IVRL-extended positive implicative filter. �

Proposition 3.11. Let F1, F2 be IVRL-filters of A such that F1 ⊆ F2. If F1 is

an n-fold IVRL-extended positive implicative filter of A, then so is F2.

P r o o f. Let x ∈ A be such that (νxn → 0) → νx ∈ F2. Since F1 is an n-fold

IVRL-extended positive implicative filter, Theorem 3.10 gives that A/F1 is an n-fold

positive implicative triangle algebra. Thus [(νxn → 0) → νx] = ([νx]n → [0]) →

[νx] = [νx]. Hence ((νxn → 0) → νx) → νx ∈ F1 ⊆ F2. Since F2 is an IVRL-filter

and (νxn → 0) → νx ∈ F2, we infer that νx ∈ F2. Hence, by Theorem 3.3, F2 is an

n-fold IVRL-extended positive implicative filter. �

By Proposition 3.9 and Proposition 3.11, we have:

Corollary 3.12. {1} is an n-fold IVRL-extended positive implicative filter of A

if and only if every IVRL-filter of A is an n-fold IVRL-extended positive implicative

filter of A.

Proposition 3.13. Let νx ∨ ¬(νxn) ∈ F for all x in A. Then F is an n-fold

IVRL-extended positive implicative filter of A.

P r o o f. Let νx ∨ ¬(νxn) ∈ F for all x in A. Then by Lemma 2.2 (2),

νx ∨ ¬(νxn) 6 [¬(νxn) → νx] → νx.

So we have [¬(νxn) → νx] → νx ∈ F . If ¬(νxn) → νx ∈ F , then νx ∈ F . Thus F

is an n-fold IVRL-extended positive implicative filter of A. �

Lemma 3.14. Let F be an IVRL-filter of A. Then the following assertions are

equivalent:

(i) νx ∨ ¬(νxn) ∈ F for all x in A,

(ii) νx ∨ (νxn → νy) ∈ F .

P r o o f. (i) ⇒ (ii): Let νx ∨ ¬(νxn) ∈ F . Lemma 2.2 gives νx ∨ ¬(νxn) 6

νx ∨ (νxn → y). Hence νx ∨ (νxn → νy) ∈ F .

(ii) ⇒ (i): It follows immediately by taking y = 0. �
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Theorem 3.15. Let F be an IVRL-filter of A. Then the following conditions are

equivalent:

(i) F is an n-fold IVRL extended positive implicative filter,

(ii) (¬(νxn) → νx) → νx ∈ F ,

(iii) (¬(νxn) → νy) → [(νy → νx) → νx] ∈ F ,

(iv) (¬((νx ∨ νy)n) → νy) → (νy → νx) ∈ F .

P r o o f. (i)⇔ (ii): Let F be an n-fold IVRL extended positive implicative filter.

It follows from νx 6 (¬(νxn) → νx) → νx and Lemma 2.2 (4) with y = 0 that

¬(((¬(νxn) → νx) → νx)n) 6 ¬(νxn). Using Lemma 2.2 (4) with y = (¬(νxn) →

νx) → νx and Lemma 2.2 (5), we get 1 = (¬(νxn) → νx) → (¬(νxn) → νx) =

¬(νxn) → ((¬(νxn) → νx) → νx) 6 ¬(((¬(νxn) → νx) → νx)n) → ((¬(νxn) →

νx) → νx). Hence ¬(((¬(νxn) → νx) → νx)n) → ((¬(νxn) → νx) → νx) ∈ F .

Theorem 3.3 (ii) gives (¬(νxn) → νx) → νx ∈ F .

The converse is obvious.

(ii) ⇔ (iii): According to Lemma 2.2 we have (¬(νxn) → νy) ∗ (νy → νx) 6

¬(νxn) → νx and (¬(νxn) → νx) → νx 6 [(¬(νxn) → νy) ∗ (νy → νx)] → νx =

(¬(νxn) → νy) → [(νy → νx) → νx], so (¬(νxn) → νy) → [(νy → νx) → νx] ∈ F .

Conversely, by taking νy = ¬(νxn), the proof is complete.

(iii) ⇔ (iv): We substitute νx by νx ∨ νy in (iii), so we get [¬((νx ∨ νy)n) →

νy] → (νx ∨ νy) ∈ F .

Conversely, by Lemma 2.2, [¬((νx∨νy)n) → νy] → (νx∨νy) 6 (¬(νxn) → νy) →

[(νy → νx) → νx]. Hence (¬(νxn) → νy) → [(νy → νx) → νx] ∈ F . �

Theorem 3.16. Let F be an IVRL-filter of A. Then the following conditions are

equivalent:

(i) F is an n-fold IVRL-extended positive implicative filter,

(ii) [(νxn → νy) → νx] → νx ∈ F ,

(iii) [(νxn → νy) → νz] → [(νz → νx) → νx] ∈ F ,

(iv) ([(νx ∨ νz)n → νy] → νz) → (νx ∨ νz) ∈ F .

P r o o f. The proof is similar to the proof of Theorem 3.15. �

In the following theorem we prove that the converse of Proposition 3.13 holds.

Theorem 3.17. Let F be an IVRL-filter of A. If F is an n-fold IVRL-extended

positive implicative filter, then νx ∨ ¬(νxn) ∈ F .

P r o o f. Let F be an n-fold IVRL-extended positive implicative filter. According

to Theorem 3.15 we have [¬((νx ∨ νy)n) → νy] → (νx ∨ νy) ∈ F . Now, let νy =

¬(νxn). Then [¬((νx ∨ ¬(νxn))n) → ¬(νxn)] → (νx ∨ ¬(νxn)) = νx ∨ ¬(νxn) ∈ F .

�
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4. n-fold implicative filters in triangle algebras

In this section, we introduce the notion of n-fold IVRL-extended implicative filters

in triangle algebras and consider them in details. We give some examples of them.

The relationship between these IVRL-filters and the n-fold positive implicative filters

will be determined. Also, the n-fold implicative triangle algebras will be defined and

some of their properties will be given.

Definition 4.1. An IVRL-filter F of A is called n-fold IVRL-extended implica-

tive filter of A if it satisfies: 1 ∈ F and (νxn → (νy → νz)), νxn → νy ∈ F , implies

νxn → νz ∈ F for all x, y, z ∈ A.

Theorem 4.2. For all x, y, z ∈ A, the following conditions are equivalent:

(i) F is an n-fold IVRL-extended implicative filter of A,

(ii) νxn → νx2n ∈ F ,

(iii) νxn+1 → νy ∈ F implies νxn → νy ∈ F ,

(iv) νxn → (νy → νz) ∈ F implies (νxn → νy) → (νxn → νz) ∈ F .

P r o o f. (i) ⇒ (iii): Let F be an n-fold IVRL-extended implicative filter and

νxn+1 → νy ∈ F . Then νxn ∗ νx → νy ∈ F , by Lemma 2.2, νxn → (νx → νy) ∈ F .

Since νxn 6 νx, we obtain νxn → νx = 1 ∈ F . By assumption, νxn → νy ∈ F .

(iii) ⇒ (ii): We have νxn+1 → (νxn−1 → νx2n) = νx2n → νx2n = 1 ∈ F .

According to (iii) one has νxn → (νxn−1 → νx2n) ∈ F . But νxn+1 → (νxn−2 →

νx2n) = νx2n−1 → νx2n = νxn → (νxn−1 → νx2n) ∈ F . That is, νxn+1 →

(νxn−2 → νx2n) ∈ F . Therefore νxn → (νxn−2 → νx2n) ∈ F . By repeating the

process n times we have νxn → (νx0 → νx2n) = νxn → (1 → νx2n) = νxn →

νx2n ∈ F .

(ii) ⇒ (iv): Let νxn → (νy → νz) ∈ F . According to Lemma 2.2,

νxn → (νy → νz) 6 νxn → ((νxn → νy) → (νxn → νz))

= νxn → (νxn → ((νxn → νy) → νz))

= νx2n → ((νxn → νy) → νz).

Hence νx2n → ((νxn → νy) → νz) ∈ F . According to (ii) we have νxn → νx2n ∈ F .

Lemma 2.2 gives νx2n → ((νxn → νy) → νz) 6 (νxn → νx2n) → (νxn → ((νxn →

νy) → νz)). Then we get (νxn → νy) → (νxn → νz) = (νxn → ((νxn → νy) →

νz)) ∈ F .

(iv)⇒ (i): Let (iv) and νxn → νy ∈ F . Since F is an IVRL-filter, νxn → νz ∈ F .

So F is an n-fold IVRL-extended implicative filter of A. �
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Proposition 4.3. If F is an n-fold IVRL-extended implicative filter of A, then F

is an (n+ 1)-fold IVRL-extended implicative filter of A.

P r o o f. Let x, y ∈ A be such that νxn+2 → νy ∈ F . Lemma 2.2 forces

νxn+1 → (νx → νy) = νxn+2 → νy. Since F is an n-fold IVRL-extended implicative

filter, Theorem 4.2 gives νxn → (νx → νy) ∈ F . Hence νxn+1 → νy ∈ F , that is, F

is an (n+ 1)-fold implicative filter. �

In the following example we show that the converse of the above proposition is

not true.

E x am p l e 4.4. In Example 3.5, clearly F = {[1, 1]} is a 3-fold IVRL-extended

implicative filter of A. Since ν[b, 1]3 → ν[0, 1] = [1, 1] ∈ F , but ν[b, 1]2 → ν[0, 1] =

[b, b] /∈ F , F is not a 2-fold IVRL-extended implicative filter.

Proposition 4.5. Let F1 and F2 be IVRL-filters of A such that F1 ⊆ F2. If F1

is an n-fold IVRL-extended implicative filter of A, then so is F2.

P r o o f. Let F1 be an n-fold IVRL-extended implicative filter of A. Then by

Theorem 4.2, νxn → νx2n ∈ F1 ⊆ F2 for all x ∈ A. Thus νxn → νx2n ∈ F 2 for all

x ∈ A. So F 2 is an n-fold IVRL-extended implicative filter. �

Corollary 4.6. {1} is an n-fold IVRL-extended implicative filter of A if and only

if every IVRL-filter F of A is an n-fold IVRL-extended implicative filter of A.

Lemma 4.7. Let A be a triangle algebra. Then

(νxn+1 → νy)n → (νxn → νy) > (νxn → νy)n → νy.

P r o o f. (1) According to Lemma 2.2 we have the following:

(νxn+1 → νy)n → (νxn → νy)

= (νxn+1 → νy)n−1 ∗ (νxn+1 → νy) → (νxn → νy)

= (νxn+1 → νy)n−1 → ((νxn+1 → νy) → (νxn → νy))

= (νxn+1 → νy)n−1 → ((νxn+1 → νy) → (νxn−1 → (νx → νy)))

= (νxn+1 → νy)n−1 → (νxn−1 → ((νxn+1 → νy) → (νx → νy)))

= (νxn+1 → νy)n−1 → (νxn−1 → ((νx → (νxn → νy)) → (νx → νy))).

(2) So, (1) forces (νxn+1 → νy)n → (xn → νy) = [(νxn+1 → νy)n−1] → [νxn−1 →

[(νx → (νxn → νy)) → (νx → νy)]].
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(3) We have (νxn → νy) → νy 6 [(νx → (νxn → νy)) → (νx → νy)].

(4) According to (3) we have [(νxn+1 → νy)n−1] → [νxn−1 → [(νxn → νy) →

νy]] 6 [(νxn+1 → νy)n−1] → [νxn−1 → [[(νx → (νxn → νy)) → (νx → νy)]]].

(5) We have ((νxn+1 → νy)n−1) → (νxn−1 → ((νxn → νy) → νy)) 6

(νxn+1 → y)n → (νxn → νy) by (4) and (2).

(6) We have [(νxn+1 → νy)n−1] → [νxn−1 → [(νxn → νy) → νy]] = [(νxn+1 →

νy)n−1] → [(νxn → νy) → [νxn−1 → νy]] = [(νxn → νy)] → [(νxn+1 → νy)n−1 →

[νxn−1 → νy]].

(7) We get (νxn → νy) → [(νxn+1 → νy)n−1 → (νxn−1 → νy)] 6 (νxn+1 →

νy)n → (νxn → νy) by (6) and (5).

(8) We have (νxn → νy) ∗ (νxn+1 → νy)n−1 ∗ νxn−1 = (νxn → νy) ∗ (νxn+1 →

νy)n−2 ∗ (νxn+1 → νy) ∗ νxn−2 ∗ νx = (νxn → νy) ∗ (νxn+1 → νy)n−2 ∗ νxn−2 ∗ νx ∗

(νxn+1 → νy).

(9) We also have νx ∗ (νxn+1 → νy) = νx ∗ [νx → (νxn → νy)] 6 νxn → νy.

(10) Therefore (νxn → νy) ∗ (νxn+1 → νy)n−2 ∗ νxn−2 ∗ νx ∗ (νxn+1 → νy) 6

(νxn → νy) ∗ (νxn+1 → νy)n2 ∗ νxn−2 ∗ (νxn → νy).

(11) Thus (νxn → νy) ∗ (νxn+1 → νy)n−1 ∗ νxn−1 6 (νxn → νy)2 ∗ (νxn+1 →

νy)n−2 ∗ νxn−2.

(12) We get [(νxn → νy)2 ∗ (νxn+1 → νy)n−2 ∗ νxn−2] → νy 6 [(νxn → νy) ∗

(νxn+1 → νy)n−1 ∗ νxn−1] → y by (11).

(13) ((νxn → νy)2 ∗ (νxn+1 → νy)n−2) → (νxn−2 → νy) 6 ((νxn → νy) ∗

(νxn+1 → νy)n−1) → (νxn−1 → νy) by (12).

(14) So (νxn → νy)2 → ((νxn+1 → νy)n−2 → (νxn−2 → νy)) 6 (νxn → νy) →

((νxn+1 → νy)n−1 → (νxn−1 → νy)).

(15) According to (14) and (7) we have (νxn → νy)2 → ((νxn+1 → νy)n−2 →

(νxn−2 → νy)) 6 (νxn+1 → νy)n → (νxn → νy).

So by repeating the process n times,

(νxn+1 → νy)n → (νxn → νy)

> (νxn → νy)2 → ((νxn+1 → νy)n−2 → (νxn−2 → νy))

> . . .

> (νxn → νy)n → ((νxn+1 → νy)0 → (νx0 → νy))

= (νxn → νy)n → (1 → (1 → νy)) = (νxn → νy)n → νy.

�

Theorem 4.8. Every n-fold IVRL-extended positive implicative filter is an n-fold

IVRL-extended implicative filter.

P r o o f. Let F be an n-fold IVRL-extended positive implicative filter of A and
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x, y ∈ A be such that νxn+1 → νy ∈ F . Lemma 4.7 gives ((νxn → νy)n →

νy) → ((νxn+1 → νy)n → (νxn → νy)) = 1. So (νxn+1 → νy)n → (((νxn →

νy)n → νy) → (νxn → νy)) = 1. Since F is an IVRL-filter and νxn+1 → νy ∈ F ,

(νxn+1 → νy)n ∈ F and so ((νxn → νy)n → νy) → (νxn → νy) ∈ F . Since F is an

n-fold IVRL-extended positive implicative filter, Theorem 3.3 gets νxn → νy ∈ F .

Thus, F is an n-fold IVRL-extended implicative filter by Theorem 4.2. �

In the following example we show that not every n-fold IVRL-extended implicative

filter is an n-fold IVRL-extended positive implicative filter.

E x am p l e 4.9. Let A = {[0, 0], [0, v], [0, a], [0, b], [0, 1], [v, v], [v, a], [v, b], [v, 1],

[a, a], [a, 1], [b, b], [b, 1], [1, 1]}. Define ⊙ and ⇒ as:

⊙ 0 v a b 1
0 0 0 0 0 0
v 0 v v v v
a 0 v a v a
b 0 v v b b
1 0 v a b 1

⇒ 0 v a b 1
0 1 1 1 1 1
v 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 v a b 1

[0, 0]

[0, v]

[0, b] [0, a][v, v]

[b, b] [a, a][v, 1]

[b, 1] [a, 1]

[0, 1]

[1, 1]

[v, a][v, b]

Define ν, µ, ∗ and → one as:

ν[x1, x2] = [x1, x1], µ[x1, x2] = [x2, x2],

[x1, x2] ∗ [y1, y2] = [x1 ⊙ y1, x2 ⊙ y2],

[x1, x2] → [y1, y2] = [(x1 ⇒ y1) ∧ (x2 ⇒ y2), x2 ⇒ y2].
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Then (A,∨,∧, ∗,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra with [0, 0] as the

smallest and [1, 1] as the greatest element. It is clear that F = {[b, b], [b, 1], [1, 1]} is a

2-fold IVRL-extended implicative filter but it is not a 2-fold IVRL-extended positive

implicative filter because (ν[v, a]2 → [0, 0]) → ν[v, a] = [1, 1] ∈ F and [v, v] /∈ F .

Definition 4.10. A is called an n-fold implicative triangle algebra if νxn+1 =

νxn for all x ∈ A.

E x am p l e 4.11. In Example 4.9, A is an n-fold implicative triangle algebra for

every natural number n.

Clearly, every Gödel triangle algebra is an n-fold implicative triangle algebra for

every natural number n.

Proposition 4.12. A is an n-fold implicative triangle algebra if and only if {1}

is an n-fold IVRL-extended implicative IVRL-filter of A.

P r o o f. Let A be an n-fold implicative triangle algebra. Then νxn+2 =

ν(xn+1 ∗ x) = νxn ∗ νx = νxn+1 = νxn for all x ∈ A. Similarly, νx2n = νxn, so

νxn → νx2n = 1 ∈ {1} for all x ∈ A. By Theorem 4.2, {1} is an n-fold implicative

filter of A.

Conversely, {1} is an n-fold IVRL-extended implicative filter of A by Theorem 4.2.

Since νxn → (νxn → νxn+1) = νx2n → νxn+1 = 1 ∈ {1} and νxn → νxn = 1 ∈ {1},

one has νxn → νxn+1 ∈ {1}, so νxn = νxn+1. Hence A is an n-fold implicative

triangle algebra. �

Corollary 4.13. If A is a Gödel triangle algebra, then {1} is an n-fold IVRL-

extended implicative filter of A for every natural number n.

In the following example we show that the converse of the above corollary is not

true.

E x am p l e 4.14. In Example 3.7, F = {1} is an n-fold IVRL-extended implica-

tive filter of A for every natural number n but A is not a Gödel triangle algebra.

According to Theorem 4.2 (iv) and Lemma 2.2 (5) we have:

Lemma 4.15. F is an n-fold IVRL-extended implicative filter of divisible triangle

algebra A if and only if the following condition holds:

νxn ∗ νy → νz ∈ F, then νxn ∧ νy → νz ∈ F ∀x, y, z ∈ A.
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Proposition 4.16. Let F = {1} be an 1-fold IVRL-extended implicative filter of

triangle algebra A and µ(x2) = µx. Then A is a Gödel triangle algebra.

P r o o f. If {1} is 1-fold implicative filter, then A is 1-fold triangle implicative

algebra by Proposition 4.12, i.e. νx = νx2. Also we have µ(x2) = µx, hence x2 = x.

�

E x am p l e 4.17. In Example 3.5, F = {[1, 1]} is a 3-fold IVRL-extended im-

plicative filter of triangle algebra A. But µ([a, a]2) 6= µ([a, a]), ν([a, a]2) 6= ν([a, a])

and so A is not a Gödel triangle algebra.

Theorem 4.18. Let F be an IVRL-filter of A. Then F is an n-fold IVRL-

extended implicative filter if and only if A/F is an n-fold implicative triangle algebra.

P r o o f. Let F be an n-fold IVRL-extended implicative filter. Then νxn →

νx2n ∈ F for all x ∈ A by Theorem 4.2. Thus [νx]n → [νx]2n = [νxn → νx2n] = [1].

So [νx]n 6 [νx]2n. Hence [νx]n = [νx]2n and A/F is an n-fold implicative triangle

algebra.

Conversely, let A/F be an n-fold implicative triangle algebra. Then [νx]n = [νx]2n

for all x ∈ A. Thus [νxn → νx2n] = [νx]n → [νx]2n = [1]. Therefore, νxn →

νx2n ∈ F . According to Theorem 4.2, F is an n-fold IVRL-extended implicative

filter of A. �

Corollary 4.19. F is a 1-fold IVRL-extended implicative filter of A and µ(x2) =

µx if and only if A/F is a Gödel triangle algebra.

Conclusion

The concept of triangle algebra was introduced by Van Gasse et al., who defined

IVRL-filters in triangle algebras as well as some of their properties. Following that,

Zahiri et al. introduced a few specific sets, such as the radical of an IVRL-filter in

triangle algebras, which were investigated in detail. In addition, they defined some

types of IVRL-filters and discussed some of their properties.

In the present study, we introduced the n-fold filter theory in triangle algebras.

The concept of n-fold IVRL-extended (positive) implicative filters has been de-

fined and studied in detail. Our finding confirmed that n-fold IVRL-extended filters

possess extension properties, and every n-fold IVRL-extended filter is an (n+1)-fold

IVRL-extended filter in triangle algebras. Furthermore, we defined the notion of n-

fold (positive) implicative triangle algebras. The two mentioned algebras are special
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types of triangle algebras. Finally, the connection between this algebraic structure

and n-fold IVRL-extended (positive) implicative filters was assessed.

In our future work we are going to continue our study on other types of n-fold filters

in triangle algebra. We whould like to use these results to find some classification

for this structure.

A c k n ow l e d g em e n t s. The authors are very indebted to the referees for valu-

able suggestions that improved the readability of the paper.
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