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Abstract. We show that n-dimensional (n > 2) complete and noncompact metric measure
spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg
type inequality holds are isometric to the model metric measure n-space (i.e. the Euclidean
metric n-space). We also show that the Euclidean metric spaces are the only complete and
noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some
prescribed Sobolev type inequality.
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1. Introduction

Functional inequalities, such as the Sobolev inequality, the Caffarelli-Kohn-
Nirenberg inequality, the Gagliardo-Nirenberg inequality, and so on, in the Euclidean
space or on general Riemannian manifolds have been studied intensively (see, e.g., [2],
[3], [6], [7], [10], [13], [14], [17], [18], [31] and the references therein). In this subject,
an interesting and difficult topic is trying to find the best constant for the functional
inequality of a given type. Many works focus on this topic and some interesting
results have been obtained (see, e.g., [1], [28], [30], [32]). Denote by C∞

0 (Rn) the
space of smooth functions with compact support on the n-dimensional Euclidean
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space Rn. In [6], Caffarelli, Kohn and Nirenberg have proven the validity of a func-
tional inequality for any function in the space C∞

0 (Rn). However, they did not
give the possible best constant therein. Following the convention, we call functional
inequalities having the same type as the one obtained in [6] the Caffarelli-Kohn-
Nirenberg type inequalities. By considering some special cases, Xia in [32] has given
the exact value of the smallest admissible constant for the Caffarelli-Kohn-Nirenberg
type equality given in [6]. In fact, he proved the following.

Theorem 1.1 ([32]). Let n > 2, r > p > 1, and α, β be fixed real numbers

satisfying
1

p
+

α

n
,

p− 1

p(r − 1)
+

β

n
,
1

r
+

γ

n
> 0,

where

γ =
1

r
(α− 1) +

p− 1

pr
β.

Then for all f ∈ C∞
0 (Rn) we have

(1.1)
∫

Rn

|x|rγ |f |r dx

6
r

n+ rγ

(∫

Rn

|x|αp|∇f |p dx
)1/p(∫

Rn

|x|β |f |p(r−1)/(p−1) dx

)(p−1)/p

,

where |x| is the Euclidean length of x ∈ R
n. Moreover, when

(1.2) n+ β <
(
1− α+

β

p

) (r − 1)p

r − p
,

the inequality is the best possible in the sense that

(1.3) inf
f∈C∞

0 (Rn)\{0}

(∫
Rn |x|αp|∇f |p dx

)1/p(∫
Rn |x|β |f |p(r−1)/(p−1)

)(p−1)/p

∫
Rn |x|rγ |f |r dx =

r

n+ rγ

and a family of minimizers of (1.3) is given by

fmin(x) = (λ+ |x|1−α+β/p)(1−p)/(r−p), λ > 0.

For a given complete Riemannian manifold M let C∞
0 (M) be the space of smooth

functions onM with compact support, and dvg be the volume element (i.e. Rieman-
nian measure) related to the Riemannian metric g. By applying the Caffarelli-Kohn-
Nirenberg type inequality (1.1) which has the best constant, the Bishop-Gromov’s
volume comparison theorem for manifolds with Ricci curvature bounded from below
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(see, e.g., [8], pages 71–73), and constructing functions based on the minimizer fmin

above, Xia in [32] has proven the following rigidity theorem.

Theorem 1.2 ([32]). Let n, r, p, α, β, γ be as in Theorem 1.1, and assume

that (1.2) holds. Let M be an n-dimensional complete open Riemannian manifold

with nonnegative Ricci curvature. Fix a point x0 ∈ M and denote by µ the distance

function on M from x0. If for any f ∈ C∞
0 (M) we have

∫

M

|µ|rγ |f |r dvg

6
r

n+ rγ

(∫

M

|µ|αp|∇f |p dvg
)1/p(∫

M

|µ|β |f |p(r−1)/(p−1) dvg

)(p−1)/p

,

then M is isometric to Rn.

It is interesting to know under what kind of conditions a complete open n-manifold
(n > 2) is isometric to Rn or has finite topological type, which in essence has relation
with the splittingness of the prescribed manifold. This is a classical topic in the global
geometry, which has been investigated intensively (see e.g. [9], [20], [25]).
One purpose of this paper is to generalize Theorem 1.2. For that we need to

use the following notions of smooth metric measure spaces and the weighted Ricci
curvature.
A smooth metric measure space (also known as the weighted measure space) is

actually a Riemannian manifold equipped with some measure which is conformal to
the usual Riemannian measure. More precisely, for a given complete n-dimensional
Riemannian manifold (M, g) with the metric g, the triple (M, g, e−ϕ dvg) is called
a smooth metric measure space, where ϕ is a smooth real-valued function onM and,
as before, dvg is the Riemannian volume element related to g (sometimes, we also
call dvg the volume density). Correspondingly, for a geodesic ball B(x0, r) on M ,
with center x0 ∈ M and radius r, one can also define its weighted (or ϕ-)volume
volϕ[B(x0, r)] as

volϕ[B(x0, r)] :=

∫

B(x0,r)

e−ϕ dvg.

Now, for convenience, we also make an agreement that in this paper volϕ(·) represents
the weighted (or ϕ-)volume of the given geometric object on a metric measure space.
For a given smooth metric measure space (M, g, e−ϕ dvg), the following N -Bakry-

Émery tensor

RicNϕ := Ric + Hessϕ− dϕ⊗ dϕ

N
,

with Ric and Hess being the Ricci and the Hessian operators on M , respectively,
can be considered. Especially, when N = ∞, the N -Bakry-Émery tensor RicNϕ
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degenerates into the so-called ∞-Bakry-Émery Ricci tensor Ricϕ which is given by

Ricϕ = Ric + Hessϕ.

The ∞-Bakry-Émery Ricci tensor is also called the weighted Ricci tensor. Bakry
and Émery in [4], [5] introduced firstly and extensively investigated the generalized
Ricci tensor above and its relationship with diffusion processes.
Similarly to the p-norm of smooth functions with compact support on the

manifold (M, g) defined in Theorem 1.2, for the smooth metric measure space
(M, g, e−ϕ dvg) and any u ∈ C∞

0 (M), we can define the weighted p-norm ‖u‖p;MMS

of u as

‖u‖p;MMS :=

(∫

M

|u|p · e−ϕ dvg

)1/p

.

Clearly, when ϕ ≡ 0, the weighted p-norm is just the p-norm.
One might have an illusion that smooth metric measure spaces are not necessary

to be studied since they are simply obtained from corresponding Riemannian man-
ifolds by adding a conformal measure to the Riemannian measure. However, the
opposite is true; they do have many differences. For instance, when Ricϕ is bounded
from below, the Myer’s theorem, Bishop-Gromov’s volume comparison, Cheeger-
Gromoll’s splitting theorem and Abresch-Gromoll’s excess estimate cannot hold as
in the Riemannian case. Here, for the purpose of comprehension, we would like to
repeat an example given in [29], Example 2.1. That is, for the metric measure space
(Rn, gRn , e−ϕ dvgRn ), where gRn and dvgRn are the usual Euclidean metric and the Eu-
clidean volume density related to gRn , respectively, if ϕ(x) = 1

2λ|x|2 for x ∈ Rn, then
we have Hess = λgRn and Ricϕ = λgRn . Therefore, from this example we know that
unlike in the case of Ricci curvature bounded from below uniformly by some positive
constant, a metric measure space is not necessarily compact provided Ricϕ > λ and
λ > 0. So, it is meaningful to study the geometry of smooth metric measure spaces.
For the basic and necessary knowledge about the metric measure spaces, we refer
the readers to the excellent work of Wei and Wylie (see [29]). The subject on the
metric measure space and the related weighted Ricci tensor occurs naturally in many
different subjects and has many important applications (see e.g. [19], [24], [29]).
By applying the volume comparison result [29], Theorem 1.2 for smooth metric

measure spaces with weighted Ricci curvature bounded from below (see also Theo-
rem 2.7) and considering the notion of the weighted p-norm briefly introduced above,
we can obtain the following.

Theorem 1.3. Let n, r, p, α, β, γ be as in Theorem 1.1, and assume that (1.2)

holds. Assume that (M, g, e−ϕ dvg) is an n-dimensional (n > 2) complete and non-

compact smooth metric measure space with nonnegative weighted Ricci curvature.
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For a point x0 ∈ M at which ϕ(x0) is away from −∞, assume that the radial
derivative ∂tϕ satisfies ∂tϕ > 0 along all minimal geodesic segments from x0, with

t := d(x0, ·) being the distance to x0 (on M). If furthermore for any f ∈ C∞
0 (M)

the Caffarelli-Kohn-Nirenberg type inequality

(1.4)
∫

M

|t|rγ |f |re−ϕ dvg

6
r

n+ rγ

(∫

M

|t|αp|∇f |pe−ϕ dvg

)1/p(∫

M

|t|β |f |p(r−1)/(p−1)e−ϕ dvg

)(p−1)/p

holds, then (M, g) is isometric to (Rn, gRn), and moreover, in this case we have that

ϕ ≡ ϕ(x0) is a constant function with respect to the variable t, and e−ϕ dvg =

e−ϕ(x0) dvgRn .

Remark 1.4. Since ϕ is a smooth real-valued function on the complete non-
compact manifold M , we have that if ϕ(x) does not tend to −∞ as x tends to the
infinity, then x0 can be chosen arbitrarily; if ϕ(x) → −∞ as x → ∞, then x0 can be
chosen to be any point except those points near the infinity. If ϕ ≡ 0 onM , then the
metric measure space (M, g, e−ϕ dvg) can be seen as the Riemannian manifold (M, g)

directly. Clearly, in this case, Theorem 1.3 is totally the same as Theorem 1.2 above.
So, we can equivalently say that Theorem 1.3 in [32] is only a special case of Theo-
rem 1.3. See Subsection 2.1 for the precise explanation about the radial derivative ∂t
and the radial direction w.r.t. the point x0.

Now, we would like to review some existent results and a recent new conclusion
of myself (see [23]) briefly to reveal the affection of functional inequalities to the
geometric structure of a given complete noncompact manifold, which is actually the
purpose of writing this paper.
Given q ∈ [1, n), let q̃ = nq/(n− q). Let K(n, q) be the best constant for the

Euclidean Sobolev inequality, which means that

(1.5) K(n, q)−1 = inf
f∈C∞

0 (Rn)\{0}

(∫
Rn |∇f |q

)1/q
(∫

Rn |f |q̃
)1/q̃ .

For this best constant, we know that (see [2], [3], [14], [28])

K(n, 1) = n−1D−1/n
n ,

and for q > 1

K(n, q) =
1

n

[n(q − 1)

n− q

](q−1)/q[ Γ(n+ 1)

nDnΓ(n/q)Γ(n+ 1− n/q)

]1/n
,
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where Dn is the volume of the unit ball in Rn and Γ is the Euler function. Besides,
for q > 1 the infimum in (1.5) can be achieved by the function (λ+ |x|q/(q−1))1−n/q,
λ > 0 with |x| being the Euclidean length of the vector x in Rn. In [30], Xia showed
that an n-dimensional (n > 2) complete open manifold M with nonnegative Ricci
curvature, in which the following Sobolev inequality

(1.6)
(∫

M

|u|q̃ dvg
)1/q̃

6 K(n, q)

(∫

M

|∇u|q dvg
)1/q

∀u ∈ C∞
0 (M),

holds, is isometric to Rn. This fact generalizes Ledoux’s corresponding result in [17].
Assume now that 1 < p < n, p < q 6 p(n− 1)/(n− p) and denote by δ, r and θ

the following

(1.7) δ = np− (n− p)q, r = p
q − 1

p− 1
, θ =

(q − p)n

(q − 1)(np− (n− p)q)
.

Mao in [23] showed that for an n-dimensional (n > 2) complete and noncompact
smooth metric measure space (M, g, e−ϕ dvg) with nonnegative weighted Ricci curva-
ture, if for a point x0 ∈ M at which ϕ(x0) is away from −∞, the radial derivative ∂tϕ
satisfies ∂tϕ > 0 along all minimal geodesic segments from x0, with t := d(x0, ·) being
the distance to x0 (on M), and a Gagliardo-Nirenberg type inequality

(1.8)
(∫

M

|u|r · e−ϕ dvg

)1/r

6 Φ

(∫

M

|∇u|p · e−ϕ dvg

)θ/p(∫

M

|u|q · e−ϕ dvg

)(1−θ)/q

∀u ∈ C∞
0 (M),

i.e.
‖u‖r;MMS 6 Φ · ‖∇u‖θp;MMS · ‖u‖1−θ

q;MMS ∀u ∈ C∞
0 (M),

with Φ given by

Φ =
(q − p

p
√

π

)θ( pq

n(q − p)

)θ/p( θ

pq

)1/r

×
(

Γ(q(p− 1)/(q − p))Γ(12n+ 1)

Γ(((p− 1)/p)(δ/(q − p)))Γ(n(p− 1)/p+ 1)

)θ/n

,

is satisfied onM , then (M, g) is isometric to (Rn, gRn). Moreover, in this case we have
that ϕ ≡ ϕ(x0) is a constant function with respect to the variable t, and e−ϕ dvg =

e−ϕ(x0) dvgRn . Clearly, when q in (1.7) is chosen to be q = (n− 1)p/(n− p), one has
θ = 1, r = np/(n− p). If furthermore we require that ϕ ≡ 0, then the Gagliardo-
Nirenberg inequality (1.8) degenerates into the Sobolev inequality (1.6), and Mao’s
conclusion in [23] is the same as Xia’s result in [30] for the case of q > 1. So, when
q > 1, Mao’s conclusion in [23] generalizes a lot the corresponding results in [17], [30].
The above argument naturally leads us to consider the following problem.
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Problem. Suppose that (M, g, e−ϕ dvg) is an n-dimensional (n > 2) complete
and noncompact smooth metric measure space with nonnegative weighted Ricci cur-
vature. For a point x0 ∈ M at which ϕ(x0) is away from −∞, assume that the radial
derivative ∂tϕ satisfies ∂tϕ > 0 along all minimal geodesic segments from x0, with
t := d(x0, ·) being the distance to x0 (on M). Moreover, the Sobolev type inequality

(1.9)
(∫

M

|u|n/(n−1) · e−ϕ dvg

)(n−1)/n

6 n−1D−1/n
n

∫

M

|∇u| · e−ϕ dvg ∀u ∈ C∞
0 (M),

holds. Could we get the assertion that “(M, g) is isometric to (Rn, gRn), and more-
over, in this case, ϕ ≡ ϕ(x0) is a constant function with respect to the variable t,
and e−ϕ dvg = e−ϕ(x0) dvgRn ”?

Remark 1.5. Clearly, when ϕ ≡ 0, the assertion of the above Problem is the
same with Xia’s result (only when q = 1) in [30] mentioned above. Besides, by
choosing q = (n− 1)p/(n− p) in (1.7) and applying Mao’s result in [23] mentioned
above directly, for q > 1 we get that for an n-dimensional (n > 2) complete and
noncompact smooth metric measure space (M, g, e−ϕ dvg), if for a point x0 ∈ M

at which ϕ(x0) is away from −∞, the radial derivative ∂tϕ satisfies ∂tϕ > 0 along
all minimal geodesic segments from x0, with t := d(x0, ·) being the distance to x0

(on M), and the Sobolev type inequality

(∫

M

|u|q̃ · e−ϕ dvg

)1/q̃

6 K(n, q)

(∫

M

|∇u|q · e−ϕ dvg

)1/q

∀u ∈ C∞
0 (M),

holds, where q̃ = nq/(n− q) and K(n, q) is defined by (1.5), then (M, g) is isometric
to (Rn, gRn). Based on these facts, we think the assertion of Problem above might
be true.

As we know, when ϕ ≡ 0, the Sobolev type inequality (1.9) is equivalent to the
isoperimetric inequality (see [26])

[vol(Ω)]n(−1)/n 6 n−1D−1/n
n · vol(∂Ω),

where ∂Ω is the boundary of an open bounded domain Ω ⊂ M , and vol(Ω) and
vol(∂Ω) denote the volumes of Ω and ∂Ω, respectively. Isoperimetric inequalities
generally link with the geometric structure of manifolds, so, from this aspect, it is
also interesting to consider the above Problem. In this paper, for convenience, we
make an agreement that vol(·) represents the volume of the given geometric object.
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The paper is organized as follows. Some useful facts, including two volume com-
parison theorems for complete manifolds with radial curvature bounded and a volume
comparison result for smooth metric measure spaces with weighted Ricci curvature
bounded from below, will be reviewed in Section 2. The proof of Theorem 1.3 will
be shown in Section 3. A partial answer to Problem above will be given in Section 4.

2. Useful facts

We would like to review [29], Theorem 1.2 and [11], Theorem 3.3, Corollary 3.4
and Theorem 4.2, which consist of the key point of the proof of Theorem 1.3 shown
in the next section. However, some necessary preliminaries should be introduced
first. In fact, one can find a similar version (see [23], Section 2) of this section, but
we still give it here so that the readers can understand [29], Theorem 1.2 and [11],
Theorem 3.3, Corollary 3.4 and Theorem 4.2 completely and clearly.

2.1. Preliminaries. Denote by Sn−1 the unit sphere in Rn. Given an n-
dimensional (n > 2) complete Riemannian manifold (M, g) with the metric g, for
a point x ∈ M let Sn−1

x be the unit sphere with center x in the tangent space TxM ,
and let Cut(x) be the cut-locus of x, which is a closed set of zero n-Hausdorff
measure. Clearly,

Dx = {tξ : 0 6 t < dξ, ξ ∈ Sn−1
x }

is a star-shaped open set of TxM through which the exponential map expx : Dx →
M \Cut(x) gives a diffeomorphism from Dx to the open set M \Cut(x), where dξ is
defined by

dξ = dξ(x) := sup{t > 0: γξ(s) := expx(sξ)

is the unique minimal geodesic joining x and γξ(t)}.

As in [8], we can introduce two important maps used to construct the geodesic
spherical coordinate chart at a prescribed point on a Riemannian manifold. For
a fixed vector ξ ∈ TxM , |ξ| = 1, let ξ⊥ be the orthogonal complement of {Rξ}
in TxM , and let τt : TxM → Texpx(tξ)

M be the parallel translation along γξ(t). The
path of linear transformations A(t, ξ) : ξ⊥ → ξ⊥ is defined by

A(t, ξ)η = (τt)
−1Yη(t),

where Yη(t) = d(expx)(tξ)(tη) is the Jacobi field along γξ(t) satisfying Yη(0) = 0, and
(∇tYη)(0) = η. Moreover, for η ∈ ξ⊥, set

R(t)η = (τt)
−1R(γ′

ξ(t), τtη)γ
′
ξ(t),
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where the curvature tensor R(X,Y )Z is defined by R(X,Y )Z = −[∇X ,∇Y ]Z +

∇[X,Y ]Z. Then R(t) is a self-adjoint operator on ξ⊥, whose trace is the radial Ricci
tensor Ricγξ(t)(γ

′
ξ(t), γ

′
ξ(t)). Clearly, the map A(t, ξ) satisfies the Jacobi equation

A′′ + RA = 0 with initial conditions A(0, ξ) = 0, A′(0, ξ) = I. By Gauss’s lemma,
the Riemannian metric of M \Cut(x) in the geodesic spherical coordinate chart can
be expressed by

(2.1) ds2(expx(tξ)) = dt2 + |A(t, ξ) dξ|2 ∀ tξ ∈ Dx.

We consider the metric components gij(t, ξ), i, j > 1, in a coordinate system {t, ξa}
formed by fixing an orthonormal basis {ηa, a > 2} of ξ⊥ = TξS

n−1
x , and then extend-

ing it to a local frame {ξa, a > 2} of Sn−1
x . Define a function J > 0 on Dx \ {x} by

(2.2) Jn−1 =
√
|g| :=

√
det[gij ].

Since τt : Sn−1
x → Sn−1

γξ(t)
is an isometry, we have

〈d(expx)tξ(tηa), d(expx)tξ(tηb)〉g = 〈A(t, ξ)(ηa),A(t, ξ)(ηb)〉g,

and then √
|g| = detA(t, ξ).

So, by applying (2.1) and (2.2), the volume vol[B(x, r)] of a geodesic ball B(x, r),
with radius r and center x, on M is given by

(2.3) vol[B(x, r)] =

∫

Sn−1
x

∫ min{r,dξ}

0

√
|g| dt dσ

=

∫

Sn−1
x

(∫ min{r,dξ}

0

det(A(t, ξ)) dt

)
dσ,

where dσ denotes the (n− 1)-dimensional volume element on Sn−1 ≡ Sn−1
x ⊆ TxM .

As in Section 1, let r(z) = d(x, z) be the intrinsic distance to the point x ∈ M .
Since for any ξ ∈ Sn−1

x and t0 > 0 we have ∇r(γξ(t0)) = γ′
ξ(t0) when the point

γξ(t0) = expx(t0ξ) is away from the cut locus of x (see [12]), then, by the definition
of a nonzero tangent vector “radial” to a prescribed point on a manifold given in the
first page of [15], we know that for z ∈ M \ (Cut(x) ∪ x) the unit vector field

vz := ∇r(z)

is the radial unit tangent vector at z. Set

(2.4) l(x) := max
z∈M

r(z) = max
z∈M

d(x, z).
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Then we have l(x) = max
ξ

dξ (see [11], Section 2). We also need the following fact

about r(z) (see [25], Proposition 39, page 266):

∂r∆r +
(∆r)2

n− 1
6 ∂r∆r + |Hess r|2 = −Ric(∂r, ∂r) with ∆r = ∂r ln

√
|g|,

when ∂r = ∇r is a differentiable vector (see [25], Proposition 7, page 47 for the
differentiation of ∂r), and ∆ is the Laplace operator on M and Hess r is the Hessian
of r(z). Then, using also (2.2), we have

J ′′ +
1

(n− 1)
Ric(γ′

ξ(t), γ′
ξ(t))J 6 0,(2.5)

J(t, ξ) = t+O(t2), J ′(t, ξ) = 1 +O(t).(2.6)

As shown in [11] and also pointed out in [22], facts (2.5) and (2.6) make a fundamental
role in the derivation of the generalized Bishop’s volume comparison theorem I below
(see Theorem 2.5 for the precise statement). One can also find that (2.6) is also
necessary in the proof of Theorem 1.3 in Section 3.
Denote by inj(x) the injectivity radius of a point x ∈ M . Now, we would like

to introduce a notion of spherically symmetric manifold which actually acts as the
model space in this paper.

Definition 2.1. A domain Ω = expx([0, l)×Sn−1
x ) ⊂ M \Cut(x) with l < inj(x)

is said to be spherically symmetric with respect to a point x ∈ Ω if the matrix
A(t, ξ) satisfies A(t, ξ) = h(t)I for a function h ∈ C2([0, l)) with h(0) = 0, h′(0) = 1

and h|(0, l) > 0.

Naturally, Ω in Definition 2.1 is a spherically symmetric manifold and x is called its
base point. Together with (2.1), on the set Ω given in Definition 2.1, the Riemannian
metric of M can be expressed by

(2.7) ds2(expx(tξ)) = dt2 + h2(t)|dξ|2, ξ ∈ Sn−1
x , 0 6 t < l,

with |dξ|2 being the round metric on Sn−1. Spherically symmetric manifolds were
named as generalized space forms by Katz and Kondo (see [15]), and a standard
model for such manifolds is given by the warped product [0, l) ×h Sn−1 equipped
with metric (2.7), where h is called the warping function and satisfies the conditions
of Definition 2.3.
For a spherically symmetric manifoldM∗ := [0, l)×hS

n−1 (with the base point p∗)
and r < l, by (2.3) we have

(2.8) vol[B̃(p∗, r)] = wn

∫ r

0

hn−1(t) dt,
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and moreover, by the co-area formula (see, for instance, [8], pages 85–86), we
also know that the volume of the boundary ∂B̃(p∗, r) is given by vol[∂B̃(p∗, r)] =

wnh
n−1(r), where wn denotes the (n− 1)-volume of the unit sphere in Rn.
For more information about the spherically symmetric manifoldM∗=[0, l)×hS

n−1

(e.g., the regularity of the metric of M∗, the asymptotically spectral properties, the
first Dirichlet eigenvalues of the Laplace and p-Laplace operators onM∗, etc.), please
see [11], Section 2 and [22], Section 2 in detail.

2.2. Volume comparison theorems for manifolds with radial curvature

bounded. As before, for the given complete manifold M , let d(x, ·) be the Rieman-
nian distance to x (on M). In order to state volume comparison theorems below, we
need the following concepts.

Definition 2.2. Given a continuous function k : [0, l) → R, we say that M has
a radial Ricci curvature lower bound (n− 1)k at the point x if

Ric(vz , vz) > (n− 1)k(d(x, z)) ∀ z ∈ M \ Cut(x) ∪ {x},

where Ric is the Ricci curvature of M .

Definition 2.3. Given a continuous function k : [0, l) → R, we say that M has
a radial sectional curvature upper bound k along any unit-speed minimizing geodesic
starting from a point x ∈ M if

K(vz, V ) 6 k(d(x, z)) ∀ z ∈ M \ (Cut(x) ∪ {x}),

where V ⊥ vz , V ∈ Sn−1
z ⊆ TzM , and K(vz, V ) is the sectional curvature of the

plane spanned by vz and V .

Remark 2.4. As in Subsection 2.1, in Definitions 2.2 and 2.3, Cut(x) is the
cut-locus of x on M , and vz ∈ Sn−1

p ⊆ TzM is the unit tangent vector of the
minimizing geodesic γx,z emanating from x and joining x and z. Clearly, vz is in
the radial direction. In fact, the notion of having radial curvature bound has been
used by the author in [11], [21], [22] to investigate some problems like eigenvalue
comparisons for the Laplace and p-Laplace operators (between the given complete
manifold and its model manifold), the heat kernel comparison, etc. This notion can
also be found in other literature (see, for instance, [16], [27]). Let t := d(x, ·), the
inequality in Definition 2.2 (or Definition 2.3) becomes Ric(vz , vz) > (n − 1)k(t)

(or K(vz , V ) 6 k(t)) for any z ∈ M \ Cut(x) ∪ {x}. We also say that the radial
Ricci (or sectional) curvature of M is bounded from below (or above) by (n− 1)k(t)

(or k(t)) w.r.t. x ∈ M if the above inequality is satisfied.
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Define a function θ̃(t, ξ) on M \ Cut(x) as

θ̃(t, ξ) =
[J(t, ξ)

h(t)

]n−1

.

Then we have the following volume comparison result, which corresponds to [11],
Theorem 3.3 and Corollary 3.4 (equivalently, [22], Theorem 2.6 or [21], Theorem 2.2.3
and Corollary 2.2.4).

Theorem 2.5 (A generalized Bishop’s volume comparison theorem I). Given ξ ∈
Sn−1
x ⊆ TxM and a model space M∗ = [0, l)×h Sn−1 with the base point p∗, under

the curvature assumption on the radial Ricci tensor, Ric(vz , vz) > −(n−1)h′′(t)/h(t)

on M for z = γξ(t) = expx(tξ) with t < min{dξ, l}, the function θ̃ is nonincreasing

in t. In particular, for all t < min{dξ, l} we have J(t, ξ) 6 h(t). Furthermore,

this inequality is strict for all t ∈ (t0, t1] with 0 6 t0 < t1 < min{dξ, l} if the
above curvature assumption holds with a strict inequality for t in the same interval.

Besides, for r0 < min{l(x), l} with l(x) defined by (2.4) we have

vol[B(x, r0)] 6 vol[B̃(p∗, r0)],

with equality if and only if B(x, r0) is isometric to B̃(p∗, r0).

Similarly, we have the following volume comparison conclusion, which corresponds
to [11], Theorem 4.2 (equivalently, [22], Theorem 2.7 or [21], Theorem 2.3.2).

Theorem 2.6 (A generalized Bishop’s volume comparison theorem II). Assume
M has a radial sectional curvature upper bound k(t) = −h′′(t)/h(t) w.r.t. x ∈ M

for t < β 6 min{injc(x), l}, where injc(x) = infξ cξ with γξ(cξ)being a first conjugate

point along the geodesic γξ(t) = expx(tξ). Then on (0, β)

(√
|g|

hn−1

)′

> 0,
√
|g|(t) > hn−1(t),

and equality occurs in the first inequality at t0 ∈ (0, β) if and only if

R = −h′′(t)

h(t)
, A = h(t)I,

on all of [0, t0].

2.3. A volume comparison theorem for smooth metric measure spaces

with weighted Ricci curvature bounded from below. As mentioned at the
beginning of this section, the following volume comparison theorem proven by Wei
and Wylie (see [29], Theorem 1.2) is the key point to prove Theorem 1.3.
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Theorem 2.7 ([29]). Let (M, g, e−ϕ dvg) be an n-dimensional (n > 2) complete

smooth metric measure space with Ricϕ > (n−1)H . Fix x0 ∈ M . If ∂tϕ > −a along

all minimal geodesic segments from x0, then for R > r > 0 (assume R 6 1
2π

√
H

if H > 0),
volϕ[B(x0, R)]

volϕ[B(x0, r)]
6 eaR

volnH(R)

volnH(r)
,

where volnH(·) is the volume of the geodesic ball with the prescribed radius in the
space n-form with constant sectional curvature H , and, as before, volϕ(·) denoting
the weighted (or ϕ-)volume of the given geodesic ball on M . Moreover, equality in

the above inequality holds if and only if the radial sectional curvatures are equal

to H and ∂tϕ ≡ −a. In particular, if ∂tϕ > 0 and Ric > 0, then M has ϕ-volume

growth of degree at most n.

Therefore, given a complete and noncompact smooth metric measure n-space
(M, g, e−ϕ dvg), if ∂tϕ > 0 (along all minimal geodesic segments from x0) and
Ricϕ > 0, then by Theorem 2.7 we have

volϕ[B(x0, R)]

volϕ[B(x0, r)]
6 e0·R · V0(R)

V0(r)
=

V0(R)

V0(r)
,

with, as before, V0(·) denoting the volume of the ball with the prescribed radius
in Rn, which is equivalent with

(2.9)
volϕ[B(x0, R)]

V0(R)
6

volϕ[B(x0, r)]

V0(r)

for R > r > 0. Letting r → 0 on the right-hand side of the above inequality, and
together with (2.2), (2.3) and (2.6), we can get

volϕ[B(x0, R)]

V0(R)
6 lim

r→0

∫
Sn−1

(∫min{R,dξ}

0
Jn−1(t, ξ) · e−ϕ dt

)
dσ

∫
Sn−1

∫ R

0 tn−1 dt dσ

=
J ′(0, ξ) · e−ϕ(x0)

1
= e−ϕ(x0)

by applying L’Hôpital’s rule n-times. Hence, if ∂tϕ > 0 and Ricϕ > 0, we have

(2.10) volϕ[B(x0, R)] 6 e−ϕ(x0) · V0(R)

for R > 0.
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3. Proof of the main conclusion

Now, by using the facts in Section 2 and a similar method to that of [32], Theo-
rem 1.3, we can prove Theorem 1.3 as follows.

P r o o f of Theorem 1.3. Since t = t(·) := d(x0, ·) is a Lipschitz continuous
function from M to R, then for any λ > 0 we can construct a function F (λ) as

F (λ) :=

∫

M

tα−1+(1−1/p)β

(λ+ t1−α+β/p)r(p−1)/(r−p)
· e−ϕ dvg.

By applying the Fubini theorem (see [26]) to the above inequality, we have

(3.1) F (λ) =

∫ ∞

0

volϕ

[
x :

tα−1+(1−1/p)β

(λ+ t1−α+β/p)r(p−1)/(r−p)
(x) > s

]
ds.

Set

y = 1− α+
(1
p
− 1

)
β, z =

r(p− 1)

r − p
,

then by (1.2) we can obtain

(3.2) n− y − 1− z(y + β) < −1.

By making the variable change

s =
tα−1+(1−1/p)β

(λ+ t1−α+β/p)r(p−1)/(r−p)

in (3.1) and applying (2.10) because of ∂tϕ > 0 (along all minimal geodesic segments
from x0) and Ricϕ > 0, we can obtain

(3.3) F (λ) =

∫ ∞

0

volϕ[B(x0, t)] ·
yλ+ (y + z(y + β))ty+β

ty+1 · (λ+ ty+β)z+1
dt

6 e−ϕ(x0) ·
∫ ∞

0

wn(yλ+ (y + z(y + β))ty+β)tn−y−1

n(λ+ ty+β)z+1
dt,

where, as before, wn is the (n − 1)-volume of the unit sphere Sn−1. By (3.2), (3.3)
and the fact that n− y− 1 = n+ rγ− 1 > −1, we have 0 6 F (λ) < ∞ for any λ > 0.
Moreover, F is differentiable and

F ′(λ) = −r(p− 1)

r − p

∫

M

tα−1+(1−1/p)β

(λ+ t1−α+β/p)p(r−1)/(r−p)
· e−ϕ dvg.
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Hence, from the above argument, we know that F (λ) is a well-defined C1 func-
tion on (0,∞). Since for every λ > 0, (λ + t1−α+β/p)−(p−1)/(r−p) is a contin-
uous function and tends to zero as t → ∞, there exists at least a sequence
of functions {fn(t)} in C∞

0 (M) such that fn(t) → (λ + t1−α+β/p)−p−1/(r−p) as
n → ∞. By assumption (1.4) and an approximation procedure for the function
(λ+ t1−α+β/p)−(p−1)/(r−p), we can get

F (λ) =

∫

M

tα−1+(1−1/p)β

(λ+ t1−α+β/p)r(p−1)/(r−p)
· e−ϕ dvg

6
r(p − 1)(1− α+ β/p)

(n+ rγ)(r − p)

∫

M

tβ

(λ+ t1−α+β/p)p(r−1)/(r−p)
· e−ϕ dvg

=
r(p − 1)(1− α+ β/p)

(n+ rγ)(r − p)

[
F (λ) +

r − p

r(p− 1)
λF ′(λ)

]
,

which is equivalent with

(3.4) −1− α+ β/p

n+ rγ
· λF ′(λ) 6

[r(p− 1)(1− α+ β/p)

(n+ rγ)(r − p)
− 1

]
F (λ).

In fact, (3.4) can be rewritten as

(3.5) −λF ′(λ) 6 ηF (λ)

with

η =
r(p− 1)

r − p
− n+ rγ

1− α+ β/p
=

p(r − 1)(1− α+ β/p)− (r − p)(n+ β)

(1 − α+ β/p)(r − p)
> 0,

where the last inequality holds by applying relation (1.2).
Consider a function A : (0,∞) → R defined as

(3.6) A(λ) := e−ϕ(x0)

∫

Rn

|x|α−1+(1−1/p)β(λ+ |x|1−α+β/p)(1−p)r/(r−p) dvRn ,

where, as before, |x| is the Euclidean length of x ∈ Rn, and dvRn the Euclidean
volume density related to gRn . It is not difficult to check that A(λ) is a well-defined
function of class C1, since, first, by direct computation we have

A(λ) = λ(n+rγ)/(1−α+β/p)−r(p−1)/(r−p) · A(1) = λ−η · A(1)

and

A(1) = e−ϕ(x0)

∫

Rn

|x|α−1+(1−1/p)β(1 + |x|1−α+β/p)(1−p)r/(r−p) dvRn

= e−ϕ(x0)

∫ ∞

0

wn · sn−1+α−1+(1−1/p)β(1 + s1−α+β/p)(1−p)r/(r−p) ds < ∞,
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where the last integration is finite because by (3.2) the relation

n− 1 + α− 1 +
(
1− 1

p

)
β +

(
1− α+

β

p

) (1− p)r

r − p
= n− y − 1− z(y + β) < −1

holds; second, A(λ) is differentiable and

A′(λ) = −r(p− 1)

r − p
· e−ϕ(x0)

∫

Rn

|x|α−1+(1−1/p)β(λ+ |x|1−α+β/p)(1−p)r/(r−p) dvRn .

Clearly, for the function A(λ) we also have

(3.7) −λA′(λ) = ηA(λ).

By applying (2.2), (2.3), (2.6), and L’Hôpital’s rule, we have

lim
s→0

volϕ[B(x0, s)]

V0(s)
= lim

s→0

∫
Sn−1
x0

(∫ min{s,dξ}

0 Jn−1(t, ξ) · e−ϕ dt
)
dσ

wn

∫ s

0 tn−1 dt
= e−ϕ(x0).

So, for a fixed small ε > 0 there exists a number l > 0 such that volϕ[B(x0, s)] >

(1− ε)e−ϕ(x0) · V0(s) for all s 6 l. So, from the first equality of (3.3) we can obtain

(3.8) F (λ) >

∫ l

0

volϕ[B(x0, t)] ·
yλ+ (y + z(y + β))ty+β

ty+1 · (λ+ ty+β)z+1
dt

> (1− ε)e−ϕ(x0) ·
∫ l

0

V0(t) ·
yλ+ (y + z(y + β))ty+β

ty+1 · (λ+ ty+β)z+1
dt

= (1− ε)e−ϕ(x0) · λ−η

∫ l/λ1/(y+β)

0

V0(t) ·
y + (y + z(y + β))sy+β

sy+1(1 + sy+β)z+1
ds.

On the other hand, similarly to the derivation of the first equality of (3.3), we have

(3.9) A(λ) = e−ϕ(x0) ·
∫ ∞

0

V0(t) ·
yλ+ (y + z(y + β))ty+β

ty+1 · (λ + ty+β)z+1
dt

= e−ϕ(x0) · λ−η

∫ ∞

0

V0(t) ·
y(y + z(y + β))sy+β

sy+1(1 + sy+β)z+1
ds

by (3.6). Combining (3.8) with (3.9) yields

lim inf
λ→0

F (λ)

A(λ)
> 1− ε,
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from which we can get

(3.10) lim inf
λ→0

F (λ)

A(λ)
> 1

by letting ε → 0.
Now, we would like to give a claim that if there exists some λ0 > 0 such that

F (λ0) < A(λ0), then we have F (λ) < A(λ) for all λ ∈ (0, λ0]. We will prove this
by contradiction. Assume that there exists some λ̃ ∈ (0, λ0) such that F (λ̃) > A(λ̃).
Then we can define λ1 as

λ1 := sup{λ̃ < λ0 : F (λ̃) > A(λ̃)}.

So, for any λ ∈ [λ1, λ0] we have 0 < F (λ) 6 A(λ) and moreover, together with (3.5)
and (3.7) we have

λ[F ′(λ)−A′(λ)] > η[F (λ)−A(λ)] > 0 ∀λ ∈ [λ1, λ0].

This implies that F (λ) −A(λ) is a nondecreasing function on [λ1, λ0]. So, we have

0 > (F −A)(λ1) 6 (F −A)(λ0) < 0,

which is a contradiction. Hence, our claim is true.
Clearly, by (3.10) and the above claim, it follows that

F (λ) > A(λ) ∀λ > 0.

Therefore, together with the first equality of (3.3) and the first equality of (3.9), we
have

(3.11)
∫ ∞

0

[volϕ[B(x0, t)]− e−ϕ(x0) · V0(t)] ·
yλ+ (y + z(y + β))ty+β

ty+1 · (λ+ ty+β)z+1
dt > 0.

However, since ∂tϕ > 0 along all minimal geodesic segments from x0 and Ricϕ > 0,
we have volϕ[B(x0, t)] 6 e−ϕ(x0) ·V0(t) for any t > 0 (see (2.10)). Therefore, together
with (3.11) we can easily get that volϕ[B(x0, t)] = e−ϕ(x0) · V0(t) for almost every
t > 0, and thus for every t > 0 by continuity. So, by Theorem 2.7, we know
that the radial sectional curvatures are 0 and ∂tϕ ≡ 0, which implies that ϕ is
a constant function with respect to t (i.e. ϕ ≡ ϕ(x0)). Besides, since the radial
sectional curvatures are equal to 0, by applying Theorems 2.5 and 2.6 simultaneously,
we can obtain

vol[B(x0, r)] = V0(r) ∀ r > 0,

and B(x0, r) is isometric to a ball of radius r in Rn for any r > 0, which is equivalent
to saying that (M, g) is isometric to (Rn, gRn). This completes the proof of Theo-
rem 1.3. �
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4. Appendix

Define a quantity ϕsup as

(4.1) ϕsup := sup
x∈M

ϕ(x).

With the help of this quantity, we can give a partial answer to Problem in Section 1
as follows.

Theorem 4.1. Let ϕsup be defined as (4.1) and ϕsup be finite (i.e. sup
x∈M

ϕ(x) < ∞).

Suppose that (M, g, e−ϕ dvg) is an n-dimensional (n > 2) complete and noncompact

smooth metric measure space with nonnegative weighted Ricci curvature. For a point

x0 ∈ M at which ϕ(x0) is away from −∞, assume that the radial derivative ∂tϕ
satisfies ∂tϕ > 0 along all minimal geodesic segments from x0 with t := d(x0, ·)
being the distance to x0 (on M). If furthermore the Sobolev type inequality

(4.2)
(∫

M

|u|n/(n−1) · e−ϕ dvg

)(n−1)/n

6 n−1D−1/n
n

∫

M

|∇u| · e−ϕ dvg ∀u ∈ C∞
0 (M),

holds, and

(4.3) (n+ 1) · ϕ(x0)− nϕsup > 0,

then (M, g) is isometric to (Rn, gRn), and moreover, in this case, ϕ ≡ ϕ(x0) is

a constant function with respect to the variable t, and e−ϕ dvg = e−ϕ(x0) dvgRn .

P r o o f. For a constant ε > 0 small enough and any r > 0 define a function uε as

uε(x) :=






1, x ∈ B(x0, r − ε),

d(x, ∂B(x0, r))

ε
, x ∈ B(x0, r) \B(x0, r − ε),

0, x ∈ M \B(x0, r),

where, following the convention of the usage of notations in Section 2, ∂B(x0, r) is the
boundary of the geodesic ball B(x0, r), and naturally, d(x, ∂B(x0, r)) stands for the
Riemannian distance from x to the boundary ∂B(x0, r). Clearly, uε(x) ∈ C∞

0 (M).
Applying the Sobolev type inequality (4.2) for uε(x) and letting ε → 0, and together
with the assumption that ∂tϕ > 0 along all minimal geodesic segments from x0, which
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implies that ϕ(x0) 6 ϕ(x) for any x ∈ M and then, of course, e−ϕ(x0) > e−ϕ(x) for
x ∈ M , we can obtain

(4.4) (volϕ[B(x0, r)])
(n−1)/n 6 n−1D−1/n

n · e−ϕ(x0) ·Area[∂B(x0, r)],

where Area[∂B(x0, r)] is the area of ∂B(x0, r). Substituting the facts that e−ϕsup 6

e−ϕ(x) for all x ∈ M and

d

dr
vol[B(x0, r)] = Area[∂B(x0, r)]

into (4.4) yields

(e−ϕsup · vol[B(x0, r)])
(n−1)/n

6 n−1D−1/n
n · e−ϕ(x0) · d

dr
vol[B(x0, r)]

for any r > 0. By solving the above differential inequality directly, we have

vol[B(x0, r)] > e[nϕ(x0)−(n−1)ϕsup] · V0(r) ∀ r > 0,

from which it is easy to get

e−ϕsup · volϕ[B(x0, r)] > e[nϕ(x0)−(n−1)ϕsup] · V0(r) ∀ r > 0.

Therefore, we have

volϕ[B(x0, r)] > e[(n+1)ϕ(x0)−nϕsup] · e−ϕ(x0) · V0(r) ∀ r > 0.

Furthermore, combing the above inequality with (4.3), we have

(4.5) volϕ[B(x0, r)] > e−ϕ(x0) · V0(r)

for any r > 0. However, since ∂tϕ > 0 along all minimal geodesic segments from x0

and Ricϕ > 0, we have

(4.6) volϕ[B(x0, r)] 6 e−ϕ(x0) · V0(r)

for any r > 0 (see (2.10)). Hence, by (4.5) and (4.6), it follows that volϕ[B(x0, r)] =

e−ϕ(x0) ·V0(r) for any r > 0. Applying Theorem 2.7 directly, we know that the radial
sectional curvatures are 0, and ∂tϕ ≡ 0, which implies that ϕ is a constant function
with respect to t (i.e. ϕ ≡ ϕ(x0)). Besides, since the radial sectional curvatures are
equal to 0, by applying Theorems 2.5 and 2.6 simultaneously, we can obtain

vol[B(x0, r)] = V0(r) ∀ r > 0,

and B(x0, r) is isometric to a ball of radius r in Rn for any r > 0, which is equivalent
to saying that (M, g) is isometric to (Rn, gRn). This completes the proof of Theo-
rem 4.1. �
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Remark 4.2. Clearly, ϕ = constant satisfies all the assumptions on ϕ in Theo-
rem 4.1. Especially, when ϕ ≡ 0, then Theorem 4.1 is totally the same as Xia’s result
(only when q = 1) in [30] mentioned in Section 1. So, we can equivalently say that
Xia’s result (only when q = 1) in [30], as a special case, is covered by Theorem 4.1
here.
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