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Abstract. For a graph G = (V,E), a double Roman dominating function is a function
f : V → {0, 1, 2, 3} having the property that if f(v) = 0, then the vertex v must have at
least two neighbors assigned 2 under f or one neighbor with f(w) = 3, and if f(v) = 1,
then the vertex v must have at least one neighbor with f(w) > 2. The weight of a double
Roman dominating function f is the sum f(V ) =

∑
v∈V f(v). The minimum weight of

a double Roman dominating function on G is called the double Roman domination number
of G and is denoted by γdR(G). In this paper, we establish a new upper bound on the
double Roman domination number of graphs. We prove that every connected graph G with
minimum degree at least two and G 6= C5 satisfies the inequality γdR(G) 6 ⌊ 13

11
n⌋. One

open question posed by R.A. Beeler et al. has been settled.
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1. Introduction

Graph theory terminology not presented here can be found in [2]. Let G = (V,E)

be a graph with |V | = n. The degree, neighborhood and closed neighborhood of

a vertex v in the graph G are denoted by dG(v), NG(v) and NG[v] = NG(v)∪{v}, re-

spectively. If the graph G is clear from context, we simply write d(v), N(v) and N [v],

respectively. The minimum degree and the maximum degree of the graph G are de-

noted by δ(G) and ∆(G), respectively. The graph induced by S ⊆ V is denoted

by G[S]. A cycle on n vertices is denoted by Cn.

A set S ⊆ V in a graph G is called a dominating set if N [S] = V . The domination

number γ(G) equals the minimum cardinality of a dominating set inG. A dominating

set of G with cardinality γ(G) is called a γ-set of G.
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Let f : V → {0, 1, 2} be a function having the property that for every vertex v ∈ V

with f(v) = 0, there exists a neighbor u ∈ N(v) with f(u) = 2. Such a function is

called a Roman dominating function. The weight of a Roman dominating function

is given by the sum f(V ) =
∑

v∈V

f(v). The minimum weight of a Roman dominating

function on G is called the Roman domination number of G and is denoted γR(G).

Roman domination was defined and discussed by Stewart in [8]. It was developed

by ReVelle and Rosing in [7] and Cockayne et al. in [3].

The original study of Roman domination was motivated by the defense strategies

used to defend the Roman Empire during the reign of Emperor Constantine the

Great. In order to provide a level of defense that is both stronger and more flexible

at a cheaper cost, Beeler et al. in [2] initiated the study of double Roman domination.

A function f : V → {0, 1, 2, 3} is a double Roman dominating function on

a graph G if the following conditions are met. Let Vi denote the set of vertices

assigned i by the function f .

(i) If f(v) = 0, then the vertex v must have at least two neighbors in V2 or one

neighbor in V3.

(ii) If f(v) = 1, then the vertex v must have at least one neighbor in V2 ∪ V3.

The double Roman domination number γdR(G) equals the minimum weight of

a double Roman dominating function onG, and a double Roman dominating function

of G with weight γdR(G) is called a γdR-function of G.

Beeler et al. in [2] showed the relationship between domination and double Roman

domination as follows.

Proposition 1.1 ([2]). For any graph G, 2γ(G) 6 γdR(G) 6 3γ(G).

A theorem of McQuaig and Shepherd in [4] proves that with the exception of

seven graphs, every connected graph G having minimum degree at least two satisfies,

γ(G) 6 2

5
n. Beeler et al. in [2] posed the following open question.

Question 1.2 ([2]). With the exception of seven graphs, every connected graph G

having minimum degree at least two satisfies γdR(G) 6 6

5
n. Can this bound be

improved?

Similarly, a theorem of Reed in [6] proves that every connected graph G having

minimum degree at least three satisfies the inequality γ(G) 6 3

8
n. Beeler et al. in [2]

posed the following open question.

Question 1.3 ([2]). Every connected graph G having minimum degree at least

three satisfies the inequality γdR(G) 6 9

8
n. Can this bound be improved?
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Ahangar Abdollahzadeh et al. in [1] gave the affirmative answer to Question 1.3.

They proved that every connected graph G having minimum degree at least three

satisfies the inequality γdR(G) 6 n.

In this paper, we establish a new upper bound on the double Roman domination

number of graphs. We prove that every connected graph G with minimum degree

at least two and G 6= C5 satisfies the inequality γdR(G) 6 ⌊ 13

11
n⌋. Question 1.2 has

been settled.

2. Main results

A cover of vertex disjoint paths of G, or simply a vdp-cover, is a set of vertex

disjoint paths P1, . . . , Pk such that V (G) = V (P1) ∪ . . . ∪ V (Pk). A path P is

called a 0-, 1- or 2-path if |V (P )| is congruent to 0, 1 or 2 mod 3, respectively. For

a vdp-cover S of G, let Si (i = 0, 1, 2) be the set of i-paths in S. If P = P ′xP ′′,

where P ′ is an i-path and P ′′ is a j-path (and x is on neither of those paths), then

we say x is an (i, j)-vertex of P . Let P ∈ S and x be an endpoint of P . We say

that x is an outendpoint if it has a neighbor which is not on P . If P is a 2-path,

we say that x is a (2, 2)-endpoint if it is not an outendpoint and is adjacent to some

(2, 2)-vertex of P .

From now on, let G be a graph on n vertices with δ(G) > 2. We may assume

that G is connected (for otherwise we apply the result to each component of the

graph). As in [6], choose a vdp-cover S of G such that

(1) 2|S1|+ |S2| is minimized.

(2) Subject to (1), |S2| is minimized.

(3) Subject to (2),
∑

Pi∈S0

|V (Pi)| is minimized.

(4) Subject to (3),
∑

Pi∈S1

|V (Pi)| is minimized.

By the virtue of (1)–(4), the following assertion holds (for the proof, see [6], Ob-

servations 1–3).

Assertion 2.1. Let x be an outendpoint of Pi ∈ S1 ∪ S2, y a neighbor of x on

some path Pj distinct from Pi. Let Pj = P ′

jyP
′′

j . Then the following hold.

(1) Pj is not a 1-path.

(2) If Pj is a 0-path, then both P ′

j and P ′′

j are 1-paths.

(3) If Pj is a 2-path, then both P ′

j and P ′′

j are 2-paths.

Having chosen the minimal vdp-cover S = {P1, P2, . . . , Pk}, as in [6], rearrange

the paths of S to obtain a new vdp-cover S′ = {P ′

1, P
′

2, . . . , P
′

k} such that P
′

i is

a Hamiltonian path on V (Pi), and so as to maximize the number of outendpoints,
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and subject to this maximize the number of (2, 2)-endpoints. Let S
′

i be the set of

i-paths in S
′

for 0 6 i 6 2. Since |V (P ′

i )| = |V (Pi)| for 1 6 i 6 k, it follows

that |S′

i| = |Si| for 0 6 i 6 2. Hence, S′ is still minimal with respect to the above

four conditions and Assertion 2.1 is still valid for the rearranged paths in S′. For

convenience sake, we still denote by S the new vdp-cover of G.

For each 1-path P in S which has an outendpoint, choose some vertex y /∈ V (P )

which is adjacent to an endpoint of P and call y the acceptor for P . For each

2-path P in S which has two outendpoints, for each of these endpoints choose a vertex

of G−V (P ) which is adjacent to it and designate it as the acceptor corresponding to

that endpoint. Call a path in S accepting if it contains an acceptor. In addition, for

any (2, 2)-endpoint x of any path P , choose a (2, 2)-vertex y of P which is adjacent

to x and designate it as an inacceptor for x.

For any accepting 2-path P , a partition P = P1P2P3 such that both P1 and P3

are 1-paths which contain neither acceptors nor inacceptors, and are maximal with

this property. We say that P1 and P3 are tips of P and P2 is its central path. By the

maximality of P1, P3 and Assertion 2.1, if x ∈ P2 is adjacent in P2 to an endpoint

of P2, then it is an acceptor or inacceptor.

Let E denote the set of such tips P1 of an accepting 2-path P , which is in E

if and only if the corresponding endpoint of P is neither an outendpoint nor

a (2, 2)-endpoint and we can not dominate P1 using ⌊
1

3
|V (P1)|⌋.

LetW be the set of (2, 2)-endpoints of accepting 2-paths for which we have chosen

an inacceptor.

To any element T of E there corresponds an accepting 2-path PT such that T is

a tip of PT . Define E
′ by saying that for each T ∈ E, T is in E′ if the endpoint

of PT not in T is not an element of W . The following lemma was proved by Reed

(for the proof, see [6], page 285, Fact 11.6).

Lemma 2.2 ([5]). Let T = a1 . . . ak ∈ E′. Let P be the accepted 2-path contain-

ing T and let C = c0 . . . cl be the central path of P . Assume that c0 is adjacent to ak

on the path P . Then a1 is adjacent only to the vertices of V (T ) ∪ {c0}.

Proposition 2.3 ([2]). In a double Roman dominating function of weight γdR(G),

no vertex needs to be assigned value 1.

By Proposition 2.3, when determining the value γdR(G) for any graph G, we can

assume that V1 = ∅ for all double Roman dominating functions under consideration.

Lemma 2.4. γdR(C4) = 4, γdR(C5) = 6.

Theorem 2.5. Let G be a connected graph with order n and minimum degree at

least two. If G 6= C5, then γdR(G) 6 ⌊ 13

11
n⌋.
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P r o o f. Let S be the minimal vdp-cover of G. Then S = S0 ∪ S1 ∪ S2. For any

path P ∈ S, let GP denote the subgraph induced by V (P ).

Claim 2.6. For each 0-path P ∈ S0, γdR(GP ) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. Let D = {x ∈ V (P )|x is a (1, 1)-vertex of P}. Then D is a dominating

set of P . Let fP
0 be a function assigning 3 to every vertex in D and 0 to all other

vertices in V (P ) \D. It is obvious that fP
0 is a double Roman dominating function

of GP . Hence, γdR(GP ) 6 3|D| = 3|V (P )|/3 = |V (P )| 6 ⌊ 13

11
|V (P )|⌋. �

Claim 2.7. For each 1-path P ∈ S1 with |V (P )| > 7, γdR(GP ) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. Assume that P = a1a2 . . . a3k+1. Then k > 2. Let D = {a3i : i =

1, 2, . . . , k}. Let fP
11 be a function assigning 3 to every vertex in D, 2 to a1 and 0

to all other vertices in V (P ) \ (D ∪ {a1}). It is obvious that fP
11 is a double Roman

dominating function of GP . Hence, γdR(GP ) 6 3|D| + 2 = 3k + 2 = |V (P )| + 1 6

⌊ 13

11
|V (P )|⌋. �

Claim 2.8. Let P = a1a2a3a4 be a path in S1. If a1 is an outendpoint, then

γdR(G[V (P ) \ {a1}]) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. Let fP
12 be a function assigning 3 to vertex a3 and 0 to all other vertices

in V (P ) \ {a1, a3}. It is obvious that f
P
12 is a double Roman dominating function of

G[V (P ) \ {a1}]. Hence, γdR(G[V (P ) \ {a1}]) 6 3 < ⌊ 13

11
|V (P )|⌋. �

Claim 2.9. Let P = a1a2a3a4 be a 1-path with no outendpoint. Then γdR(GP ) 6

⌊ 13

11
|V (P )|⌋.

P r o o f. If a1a3 ∈ E(G), then let fP
13 be a function assigning 3 to vertex a3

and 0 to all other vertices in V (P ) \ {a3}. It is obvious that fP
13 is a double Roman

dominating function of GP . Hence, γdR(GP ) 6 3 < ⌊ 13

11
|V (P )|⌋. We may assume

that a1a3 /∈ E(G). Since δ(G) > 2, a1a4 ∈ E(G). Hence C4 is a spanning subgraph

of GP . By Lemma 2.4, γdR(GP ) 6 γdR(C4) = 4 6 ⌊ 13

11
|V (P )|⌋. �

Claim 2.10. For each 2-path P ∈ S2 with |V (P )| > 11, γdR(GP ) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. Assume that P = a1a2 . . . a3k+2. Then k > 3. Let D = {x ∈ V (P )|x is

an (2, 2)-vertex of P}. Let fP
21 be a function assigning 3 to every vertex in D, 2 to

every vertex in {a1, a3k+2}, and 0 to all other vertices in V (P )\ (D∪{a1, a3k+2}). It

is obvious that fP
21 is a double Roman dominating function of GP . Hence, γdR(GP ) 6

3|D|+ 4 = 3k + 4 = |V (P )|+ 2 6 ⌊ 13

11
|V (P )|⌋. �
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Claim 2.11. Let P = a1a2 . . . a3k+2 be a path in S2 with 0 6 k 6 2. If a1 is an

outendpoint or a (2, 2)-endpoint, then γdR(G[V (P ) \ {a1}]) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. Let D = {x ∈ V (P )|x is a (2, 2)-vertex of P}. Let fP
22 be a function

assigning 3 to every vertex in D, 2 to vertex a3k+2 and 0 to all other vertices in

V (P ) \ (D ∪ {a1, a3k+2}). It is obvious that fP
22 is a double Roman dominating

function of G[V (P ) \ {a1}]. Hence, γdR(G[V (P ) \ {a1}]) 6 3|D| + 2 = 3k + 2 =

|V (P )| 6 ⌊ 13

11
|V (P )|⌋. �

Claim 2.12. Let P = a1a2 . . . a3k+2 be an accepting 2-path which has neither an

outendpoint nor a (2, 2)-endpoint. Then k > 3.

P r o o f. Since a1 has degree at least two in G and a1 is neither an outendpoint

nor a (2, 2)-endpoint, it has at least two neighbors in V (P ). By Lemma 2.2, a3 is

not an acceptor. Similarly, a3k is not an acceptor. Hence, k > 3. �

By Claim 2.12, if a path P ∈ S2 with |V (P )| ∈ {5, 8} has neither an outendpoint

nor a (2, 2)-endpoint, then the path P is a nonaccepting 2-path.

Claim 2.13. Let P = a1a2a3a4a5 be a nonaccepting 2-path which has neither an

outendpoint nor a (2, 2)-endpoint. Then γdR(GP ) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. If a1a3 ∈ E(G), then let fP
23 be a function assigning 3 to vertex a3, 2 to

vertex a5 and 0 to all other vertices in V (P )\{a3, a5}. It is obvious that fP
23 is a double

Roman dominating function of GP . Hence, γdR(GP ) 6 5 6 ⌊ 13

11
|V (P )|⌋. We may

assume that a1a3 /∈ E(G). If a1a4 ∈ E(G), then let fP
23 be a function assigning 3 to

vertex a4, 2 to vertex a2 and 0 to all other vertices in V (P ) \ {a2, a4}. It is obvious

that fP
23 is a double Roman dominating function of GP . Hence, γdR(GP ) 6 5 6

⌊ 13

11
|V (P )|⌋. We may assume that a1a3 /∈ E(G) and a1a4 /∈ E(G). Since δ(G) > 2,

a1a5 ∈ E(G). Then, the subgraph induced by V (P ) has a hamiltonian cycle. As we

choose S so as to maximize the number of the outendpoints, |V (G)| = |V (P )| = 5.

Since G 6= C5, {a2a4, a2a5, a3a5} ∩ E(G) 6= ∅. In a way similar to the above, it

follows that γdR(GP ) 6 5 6 ⌊ 13

11
|V (P )|⌋. �

Claim 2.14. Let P = a1a2 . . . a8 be a nonaccepting 2-path which has neither an

outendpoint nor a (2, 2)-endpoint. Then γdR(GP ) 6 ⌊ 13

11
|V (P )|⌋.

P r o o f. It is obvious that γ(GP ) 6 3. Let D be a γ-set of GP . Let f
P
24 be

a function assigning 3 to all vertices in D and 0 to all other vertices in V (P ) \D. It

is obvious that fP
24 is a double Roman dominating function of GP . Hence, γdR(GP ) 6

3|D| = 9 6 ⌊ 13

11
|V (P )|⌋. �
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Now, we define a double Roman dominating function f of G as follows: Let P be

a path in S.

(1) If P ∈ S0, then let f = fP
0 .

(2) Suppose that P ∈ S1. If |V (P )| > 7, then let f = fP
11. If |V (P )| = 4 and P

has an outendpoint, then let f = fP
12. If |V (P )| = 4 and P has no outendpoint, then

let f = fP
13.

(3) Suppose that P ∈ S2. If |V (P )| > 11, then let f = fP
21. If |V (P )| = 2, 5, 8

and P has an outendpoint or a (2, 2)-endpoint, then let f = fP
22. If P is a nonaccept-

ing 2-path with |V (P )| = 5 and P has neither an outendpoint nor a (2, 2)-endpoint,

then let f = fP
23. If P is a nonaccepting 2-path with |V (P )| = 8 and P has neither

an outendpoint nor a (2, 2)-endpoint, then let f = fP
24.

(4) For any outendpoint or (2, 2)-endpoint v, define f(v) = 0.

For any (1, 1)-vertex v, it follows that f(v) = 3 by Claim 2.6. For any

(2, 2)-vertex v, if v belongs to an accepting path, it follows that f(v) = 3 by

Claims 2.10, 2.11 and 2.12. Hence, f assigns 3 to every acceptor. By Claims 2.10

and 2.11, f assigns 3 to every inacceptor. So any outendpoint or (2, 2)-endpoint

is adjacent to a vertex w with f(w) = 3. Since δ(G) > 2, if P ∈ S1 with

|V (P )| = 1, say V (P ) = {v}, then v is an outendpoint. By Claims 2.6–2.14,

f is a double Roman dominating function of G. Hence, γdR(G) 6
∑

P∈S

γdR(GP ) 6
∑

P∈S

⌊ 13

11
|V (P )|⌋ 6 ⌊ 13

11
n⌋. �

Remark 2.15. Let C5 = v1v2v3v4v5v1. Let H be the graph obtained from C5

by adding an edge v2v5. It is obvious that if G ∈ {C3, C4, H}, then γdR(G) = ⌊ 13

11
n⌋.

Hence, the upper bound in Theorem 2.5 is tight.
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