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Abstract. A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle
in G. In other words, each cycle of G must be colored with at least three colors. Given
a list assignment L = {L(v) : v ∈ V }, if there exists an acyclic coloring π of G such that
π(v) ∈ L(v) for all v ∈ V , then we say that G is acyclically L-colorable. If G is acyclically
L-colorable for any list assignment L with |L(v)| > k for all v ∈ V , then G is acyclically
k-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph
without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for
some restricted classes of planar graphs. In this paper, we prove that every planar graph
with neither 4-cycles nor intersecting i-cycles for each i ∈ {3, 5} is acyclically 4-choosable.
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1. Introduction

Only simple graphs are considered in this article. A plane graph is a particular

drawing of a planar graph in the Euclidean plane in such a way that any pair of edges

intersect only at their endpoints. Formally, for a plane graph G we use V (G), E(G)

and F (G) to denote its vertex set, edge set and face set, respectively. Two cycles

(or faces) are said to be intersecting if they share at least one boundary vertex.

A proper vertex k-coloring of a graph G is a mapping π : V (G) → {1, 2, . . . , k}

such that π(u) 6= π(v) for adjacent vertices u and v. A proper vertex k-coloring of

a graph G is called an acyclic k-coloring if G does not contain any bicolored cycle.

The acyclic chromatic number χa(G) of G is the smallest integer k such that G has

an acyclic k-coloring.
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The concept of acyclic coloring of graphs was introduced by Grünbaum, see [11],

and was first studied by Mitchem, see [13], Albertson and Berman, see [1] and Kos-

tochka, see [12]. In [11], Grünbaum conjectured that if G is a planar graph, then

χa(G) 6 5. This challenging conjecture was positively confirmed by Borodin, see [2].

Given a list assignment L = {L(v) : v ∈ V (G)} of a graph G, we say that G

is acyclically L-colorable if there is an acyclic coloring π of the vertices such that

π(v) ∈ L(v) for each vertex v. This coloring π is said to be an acyclic L-coloring

of G. If for any list assignment L with |L(v)| > k for all v ∈ V (G), G is always

acyclically L-colorable, then G is called acyclically k-choosable. The acyclic list

chromatic number of G, denoted by χl
a(G), is the smallest integer k such that G is

acyclically k-choosable.

In 2002, Borodin et al. in [3] first investigated the acyclic L-coloring of planar

graphs. They proved that every planar graph is acyclically 7-choosable. Wang

and Chen in [18] showed that if a planar graph does not contain 4-cycles, then it

is acyclically 6-choosable. This result has been further slightly improved in [19]

which states that if a planar graph G does not contain 4-cycles adjacent to 6-cycles,

then G is acyclically 6-choosable.

The following conjecture was proposed in [3].

Conjecture 1. Every planar graph is acyclically 5-choosable.

Conjecture 1 has been verified only for some special planar graphs: those without

4-cycles and i-cycles for some fixed i ∈ {5, 6}, see [16]; with neither 4-cycles nor trian-

gles at distance less than 3, see [10]; with neither 4-cycles nor intersecting triangles,

see [7]; and with neither 4-cycles nor chordal 6-cycles, see [20]. Recently, Borodin

and Ivanova in [4] proved that every planar graph without 4-cycles is acyclically

5-choosable. This nice result covers all previous consequences.

Now we turn our attention to the acyclic 4-choosability of planar graphs. Mon-

tassier, Raspaud and Wang [15] raised the following conjecture.

Conjecture 2. Every planar graph without 4-cycles is acyclically 4-choosable.

Note that if this conjecture were true, then it would strengthen a known result

that every planar graph without 4-cycles is 4-choosable. However, it seems to be

too difficult. Montassier, Raspaud and Wang in [15] proved that every planar graph

without 4-, 5-, and 6-cycles, or without 4-, 5-, and 7-cycles, or without 4-, 5-cycles

and intersecting 3-cycles is acyclically 4-choosable. Chen and Raspaud in [6] proved

that every planar graph without 4-, 5-, and 8-cycles is acyclically 4-choosable. More

recently, Chen and Raspaud in [8] improved all above-mentioned results by showing

that every planar graph without 4- and 5-cycles is acyclically 4-choosable. Some

other results regarding Conjecture 2 can be found in the references [5], [9], [14].
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The purpose of this paper is to provide a new sufficient condition for planar graphs

being acyclically 4-choosable. More precisely, we prove the following:

Theorem 1. Every planar graph with neither 4-cycles nor intersecting i-cycles

for each i ∈ {3, 5} is acyclically 4-choosable.

2. Notation

Before showing our main result, we need to introduce a few of concepts and no-

tation. Let G = (V,E, F ) be a plane graph. A k-vertex (k+-vertex, k−-vertex ) is

a vertex of degree k (at least k, at most k). Similar notation can be defined for faces.

For v ∈ V (G), let N(v) denote the set of neighbors of v. Sometimes we use nk(v) to

denote the number of k-vertices adjacent to v.

A vertex or edge is called triangular if it is incident with a 3-face. A triangu-

lar 3-vertex adjacent to a non-triangular vertex is said to be a pendant triangular

3-vertex. We usually denote by p3(v) the number of pendant triangular 3-vertices of

vertex v. We call a 4-vertex v a 4mp-vertex if p3(v) = m, and write 4p-vertex instead

of 41p-vertex when m = 1. If n2(v) = 1, then v is called a 4∗-vertex. Moreover,

a vertex v is said to be weak if either d(v) = 3 or v is a 4∗-vertex with n3(v) > 1.

For f ∈ F (G), we write f = [u1u2 . . . un] if u1, u2, . . . , un are the boundary vertices

of f in clockwise order. For simpleness, we use mi(v) to denote the number of i-faces

incident with a vertex v. A 3-face f = [v1v2v3] is called an (a1, a2, a3)-face if it

satisfies that d(vi) = ai for i = 1, 2, 3. In addition, we write a∗i (a
mp
i ) instead of ai

if vi is a 4
∗-vertex (4mp-vertex).

For all figures in this paper, a vertex is represented by a solid point when all of its

incident edges are drawn; otherwise it is represented by a hollow point.

3. Proof of Theorem 1

Suppose that G is a counterexample to Theorem 1 with minimizing |V (G)|. Ob-

viously, G is connected.

3.1. Structural properties of the minimum counterexample. The following

Lemmas 1 to 4, whose proofs were given in [6], [14], [15], [17] are quite useful in the

remaining argument.

Lemma 1 ([14], [15]). Each vertex v in G satisfies the following:

(A1) d(v) 6= 1;
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(A2) v cannot be triangular if d(v) = 2;

(A3) n2(v) = n3(v) = 0 if d(v) = 2;

(A4) v is adjacent to at most one weak vertex if d(v) = 3;

(A5) n2(v) 6 1 if d(v) = 4;

(A6) v is not adjacent to any triangular 3-vertex if d(v) = 4 and n2(v) = 1;

(A7) n2(v) 6 3 if d(v) = 5;

(A8) n2(v) 6 2 if d(v) = 5 and m3(v) = 1;

(A9) p3(v) = 0 if d(v) = 5, n2(v) = 2 and v is incident with a (5, 3, 4+)-face;

(A10) n2(v) 6 4 if d(v) = 6.

Lemma 2 ([15]). No face f is a (3, 3, 4)-face or a (3, 4, 42p)-face in G.

Lemma 3 ([6]). Each 3-vertex v satisfies that p3(v) = 0.

Lemma 4 ([17]). There is no 5-vertex incident with a (3, 3, 5)-face and adjacent

to two 2-vertices.

In what follows, let L be a list assignment of G with |L(v)| = 4 for all v ∈ V (G).

Suppose that π is a partial acyclic L-coloring of G. Let a and b be any two colors

under π. A bicolored (a, b)-path is a path P = v1v2 . . . vm in G such that π(vi) = a

if i is odd and π(vj) = b otherwise. A vertex v is said to be properly colored under π

(or simply properly colored) if we may choose a color in L(v) for v that is distinct

from the colors of all its neighbors.

Lemma 5. There is no (3, 4p, 4p)-face in G.

P r o o f. Suppose that f = [uvw] is a 3-face with d(u) = 3 and d(v) = d(w) = 4.

Denote by u1 another neighbor of u different from v and w. Let N(v) = {v1, v2, u, w}

and N(w) = {w1, w2, u, v}. By the absence of 4-cycles, vi 6= wj for each i, j ∈ {1, 2}.

Suppose to the contrary that both v and w are 4p-vertices. Namely, p3(v) = 1 and

p3(w) = 1. Without loss of generality (w.l.o.g.), assume that v1 and w1 are pendant

triangular 3-vertices. Let v′1, v
′′

1 and w′

1, w
′′

1 denote the other two neighbors of v1
and w1, respectively. Notice that v1v

′

1v
′′

1 v1 and w1w
′

1w
′′

1w1 are both 3-cycles.

Clearly, G − u admits an acyclic L-coloring π by the minimality of G. If u1, v

and w have pairwise distinct colors, then u can be properly colored, which leads to an

acyclic L-coloring of G. So, in what follows, by symmetry, assume that π(u1) = π(v)

due to π(v) 6= π(w). Assume that L(u) = {1, 2, 3, 4}. If we are still not able to

find a possible color for u, then w.l.o.g., suppose that π(u1) = π(v) = 1, π(w) = 2,

π(v1) = 3 and π(v2) = 4. Moreover, one of v′1 and v
′′

1 is colored with 1, say π(v
′

1) = 1.

Note that L(v) = {1, 2, 3, 4}, for otherwise we may recolor v by a color belonging to
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L(v) \ {1, 2, 3, 4} and then go back to the previous case. At this moment, it suffices

to recolor v with 3, properly recolor v1 and then color u with 4. Thus, we always get

an acyclic L-coloring of G, a contradiction. �

Lemma 6. There is no (m, 4∗, 42p)-face in G.

P r o o f. Suppose to the contrary that f = [v1v2v3] is an (m, 4∗, 42p)-face such

that d(v1) = m, v2 is a 4
∗-vertex and v3 is a 42p-vertex. For i = 2, 3, let xi, yi be

other two neighbors of vi. By definition, both x3, y3 are pendant triangular 3-vertices

and w.l.o.g., let x2 be a 2-vertex. Let N(x2) = {v2, x′

2}, N(x3) = {v3, x′

3, x
′′

3}, and

N(y3) = {v3, y′3, y
′′

3}.

Clearly, G − x2 admits an acyclic L-coloring π by the minimality of G. If

π(v2) 6= π(x′

2), then we are easily done by properly coloring x2. So next assume

that π(v2) = π(x′

2). Let L(x2) = {1, 2, 3, 4}. If x2 cannot be given a color, we

get an acyclic coloring, then w.l.o.g., suppose that π(v2) = π(x′

2) = 1, π(y2) = 2,

π(v3) = 3 and π(v1) = 4. Moreover, there is a bicolored (1, 3)-path joining x′

2 and v3
in G−{x2}. By symmetry, let π(x3) = 1 and π(x′

3) = 3. If L(v2) 6= {1, 2, 3, 4}, then

we may recolor v2 by a color in L(v2) \ {1, 2, 3, 4} and then further color x2 with 2.

The resultant coloring of G is obviously an acyclic L-coloring, a contradiction. So,

in the following, assume that L(v2) = {1, 2, 3, 4}.

First consider the case when π(y3) /∈ {1, 4}. If there is a color a in L(v3) \

{1, 3, 4, π(y3)}, then recolor v3 with a, recolor v2 with 3, and then color x2 with 2.

Now, assume that L(v3) = {1, 3, 4, π(y3)}. In order to extend π to G, we do like

this: recolor v3 with 1, properly recolor x3, and then color v2, x2 with 3 and 2,

respectively.

Now consider the case when π(y3) = 4. If there is a color b ∈ L(v3) \ {3, 4,

π(y′3), π(y
′′

3 )}, then we recolor v3 with b, v2 with 3, and then color x2 with 2.

If the obtained coloring is not acyclic, then it must be the case when b = 1.

At this moment, we only need to further properly recolor x3. Now, assume that

L(v3) = {3, 4, π(y′3), π(y
′′

3 )}. We are sure that there is at least one color belonging

to {π(y′3), π(y
′′

3 )} that is different from π(x′′

3 ), say π(y
′

3). Then recolor v3 with π(y
′

3)

and recolor y3 with α in L(y3) \ {4, π(y′3), π(y
′′

3 )}. If π(y
′

3) /∈ {1, 2}, then it suffices

to color x2 with 3. If π(y
′

3) = 1, we may first properly recolor x3, then recolor v2
with 3, and afterwards color x2 with 2. Otherwise, π(y

′

3) = 2. If α 6= 1, we may

similarly color x2 with 3. Or else, α = 1. In this case, one can reassign color 3 to v2
and then assign color 2 to x2.

Finally consider the case when π(y3) = 1. Recolor v3 with c ∈ L(v3)\{3, 4, π(x′′

3)}.

If c /∈ {1, 2}, it suffices to color x2 with 3. If c = 2, then recolor v2 with 3 and further

color x2 with 2. Otherwise, c = 1. It remains us to properly recolor x3 and y3,

and then recolor v2 with 3. Afterwards, assign color 2 to x2 successfully. It is not
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difficult to inspect that there is no bicolored cycle produced in recoloring process,

and therefore G is acyclically L-colorable, a contradiction. �

Lemma 7. There is no (4∗, 4∗, 4)-face in G.

P r o o f. Suppose that f = [v1v2v3] is a (4, 4, 4)-face with d(v1) = d(v2) =

d(v3) = 4. For each i ∈ {1, 2, 3}, denote by xi and yi the other two neighbors

of vi that are not on the boundary of f . Suppose to the contrary that v1 and v2 are

both 4∗-vertices, that is, each vi is adjacent to exactly one 2-vertex. W.l.o.g., assume

that d(x1) = d(x2) = 2. Let N(x1) = {v1, x′

1} and N(x2) = {v2, x′

2}. Obviously,

x1 6= x2 due to the absence of 4-cycles in G.

Let G′ = G − x1. By the minimality of G, G
′ admits an acyclic L-coloring π.

If π(v1) 6= π(x′

1), then it is easy to extend π to the whole graph G by properly

coloring x1. Otherwise, π(v1) = π(x′

1). Let L(x1) = {1, 2, 3, 4}. If we are not able

to find a way to acyclically color x1, then assume w.l.o.g. that π(v1) = π(x′

1) = 1,

π(y1) = 2, π(v2) = 3 and π(v3) = 4. Furthermore, in G′ there exist one bicolored

(1, 3)-path, denoted by P1, joining x
′

1 and v2 and one bicolored (1, 4)-path, denoted

by P2, joining x
′

1 and v3. It follows that 1 ∈ {π(x2), π(y2)} and 1 ∈ {π(x3), π(y3)}.

By symmetry, assume that π(x3) = 1. If L(v1) 6= {1, 2, 3, 4}, then it suffices to

recolor v1 by a color in L(v1) \ {1, 2, 3, 4} and then color x1 with 2. So, in what

follows, assume that L(v1) = {1, 2, 3, 4}. To extend π from G′ to G, we consider the

following cases according to the colors of x2 and y2.

Case 1 : π(y2) = 1. If there exists a color a ∈ L(v2) \ {1, 3, 4, π(x′

2)}, then we

first recolor v2 with a and v1 with 3. Then properly recolor x2, and finally color x1

with 2. Otherwise, assume that L(v2) = {1, 3, 4, π(x′

2)}. It follows that π(x
′

2) 6= 3.

If π(y3) = 1, we can recolor v2 with π(x′

2), x2 with a color c ∈ L(x2) \ {1, 3, π(x′

2)},

v1 with 3, and afterwards color x1 with 2.

Next assume that π(y3) 6= 1. Then we first recolor v3 with d ∈ L(v3)\{1, 4, π(y3)}.

If d /∈ {2, 3}, then we only need to color x1 with 4 directly and continue to recolor x2

with a color different from 1, 3, d in the case when π(x2) = d and π(x′

2) = 3. If d = 2,

then recolor v1 with 4 and further color x1 with 2, and similarly further recolor x2

with a color different from 1, 2, 3 when π(x2) = 2 and π(x′

2) = 3. Now consider

the case that d = 3. At this moment, we need to recolor v2 with π(x′

2), x2 with

c1 ∈ L(x2) \ {1, 3, π(x′

2)}, and then color x1 with 4. Noting that c1 6= 1, so the

obtained coloring is not acyclic, then it must be the case when π(x′

2) = 2. If c1 6= 4,

it suffices to recolor v1 with 4 and then color x1 with 2. Or else, c1 = 4, implying

that L(x2) = {1, 2, 3, 4}. Recall that there is one bicolored (1, 3)-path P1 joining x
′

1

and y2 and one bicolored (1, 4)-path P2 joining x
′

1 and x3. Then we recolor v1 with 4

and then color x1 with 2. If the resultant coloring is not acyclic, then there exists

one bicolored (2, 4)-path in G′, say P3, joining y1 and x′

2. Since {1, 3} ∩ {2, 4} = ∅,
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together with the planarity of G, one may obtain that only two possible cases may

occur, as depicted in Fig 1.

(C1) (C2)

v1

v2 v3

x1

x′

1

1

x2

x′

2

2

y2

1

x3

1

y3

y1

2

x1

v1

v2 v3

y1

2 x′

1

1

x2

y2

1

x′

2

2

y3

x3

1

P1 P2

P3 P1

P2P3

Figure 1. Two possible cases occurred in Lemma 7.

Clearly, for configuration (C1), we first recolor x2 with 3. Since P2 is a bicolored

(1, 4)-path, we deduce that there is no bicolored (2, 3)-path connecting y1 and x2

outside of f . Thus, we can obtain an acyclic L-coloring of G by recoloring v1 with 3,

v2 with 2, v3 with 4 and later coloring x1 with 2. Similarly, for configuration (C2), we

can recolor x2 and v3 with 4, v2 with 2, v1 with 3 and then color x1 with 2. Since P1

is a bicolored (1, 3)-path, we declare that there is no bicolored (2, 4)-path connect-

ing x′

2 and v3 outside of f . Hence, the obtained coloring is an acyclic L-coloring,

a contradiction.

Case 2 : π(x2) = 1. Since π(y2) 6= 1, we deduce that π(x′

2) = 3 by the existence

of bicolored (1, 3)-path P1.

⊲ π(y2) = 4. If there is a color a ∈ L(v2) \ {1, 3, 4, π(y3)}, then we recolor v2 with a

and then color x1 with 3. Otherwise, assume that L(v2) = {1, 3, 4, π(y3)}. It

follows that π(y3) 6= 1. If L(v3) 6= {1, 2, 4, π(y3)}, then we may recolor v3 with

b ∈ L(v3) \ {1, 2, 4, π(y3)}, v2 with 1, v1 with 4 and then color x1 with 2. After-

wards, x2 can be properly recolored. Now suppose that L(v3) = {1, 2, 4, π(y3)}.

It is easy to recolor v3 with 2, v1 with 4 and then color x1 with 2. In each case,

we always reach an acyclic L-coloring of G, a contradiction.

⊲ π(y2) 6= 4. We first recolor x2 with a ∈ L(x2) \ {1, 3, π(y2)}. If a 6= 4, then we

immediately color x1 with 3. Or else, a = 4. This guarantees us that L(x2) =

{1, 3, 4, π(y2)}. We can do as follows: recolor x2 with π(y2), v2 with a color in

L(v2) \ {3, 4, π(y2)}, v1 with 3 and finally color x1 with 2. �
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Lemma 8. Let v be a 5-vertex. Then

(F1) if v is incident to a (3, 3, 5)-face and n2(v) = 1, then p3(v) = 0;

(F2) if v is incident to a (3, 42p, 5)-face, then n2(v) 6 1;

(F3) if v is incident to a (4∗, 4∗, 5)-face and n2(v) = 2, then p3(v) = 0.

P r o o f. Let v1, v2, . . . , v5 denote all the neighbors of v in a cyclic order. In what

follows, in each case, we always denote by v′i the other neighbor of vi (different

from v) if d(vi) = 2, and xi, yi the other two neighbors of vi (different from v) if vi

is a pendant triangular 3-vertex of v. Here, vixiyivi forms a 3-cycle. We will make

use of contradictions to show (F1) to (F3).

(F1) Suppose to the contrary that f1 = [v1v2v] is a (3, 3, 5)-face, v3 is a 2-vertex

and v4 is a pendant triangular 3-vertex of v. By definition, both v1 and v2 are

3-vertices. We let u1 or u2 denote the neighbor of v1 or v2 that is not on the

boundary of f1.

Let G′ = G − {v, v1, v2, v3, v4}. It is obvious that G′ has an acyclic L-coloring π

by the minimality of G. Let S = {u1, u2, v
′

3, x4, y4}. Since |L(v) \ {π(v5)}| > 3 and

|S| = 5, we conclude that there exists a color α belonging to L(v)\{π(v5)} appearing

at most once on the set S. We first color v with α. Clearly, if no vertex of S is colored

with α, then we may firstly assign a color distinct from that of v, u1, u2 to v1, and

then properly color remaining vertices v2, v3, v4, in succession. So in the following,

assume that such color α appears exactly once on S.

By symmetry, we have three cases to handle. If π(u1) = α, then it suffices to

color v1 with a color in L(v1) \ {α, π(v5), π(u2)} and then properly color v2, v3, v4
in the given order. If π(v′3) = α, then we color v3 with a color in L(v3) \ {α, π(v5)},

v1 with a color in L(v1) \ {α, π(u1), π(u2)}, and finally properly color v2 and v4 in

the given order. Now consider the case when π(x4) = α. We can first color v4

with a color in L(v4) \ {α, π(v5), π(y4)}. Then color v1 with a color belonging to

L(v1) \ {α, π(u1), π(u2)}. Finally, v2 and v3 can be further properly colored without

any trouble. One may verify that in each case we always obtain an acyclic L-coloring

of G, a contradiction.

(F2) Suppose to the contrary that f1 = [v1v2v] is a (3, 42p, 5)-face and v3, v4

are both 2-vertices. Then d(v1) = 3 and v2 is a 42p-vertex, namely, p3(v2) = 2.

Let N(v1) = {v, u1, v2} and N(v2) = {v, v1, w1, w2}, where w1 and w2 are pendant

triangular 3-vertices of v2. For each i ∈ {1, 2}, denote by xi, yi the other two

neighbors of wi such that wixiyiwi forms a 3-cycle.

Let G′ = G − {v, v1, v2, v3, v4}. By the minimality of G, G′ admits an acyclic

L-coloring π. Let S = {u1, w1, w2, v
′

3, v
′

4}. Similarly, since |L(v) \ {π(v5)}| > 3 and

|S| = 5, we assert that there exists a color α ∈ L(v) \ {π(v5)} appearing at most
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once on the set S. Firstly, assign such color α to v. The following discussion is split

into two cases:

Case 1 : Assume that exactly one of w1 and w2 is colored with α, say π(w1) = α.

It follows that none of u1, w2, v
′

3 and v′4 has color α. Because v3 and v4 are

2-vertices, we may first properly color each of them. Then, select a color c ∈ L(v2) \

{α, π(w2), π(v5)} for v2. If c 6= π(u1), then we further properly color v1 and thus

we are done. Otherwise, we can choose a color in L(v1) \ {c, α, π(w2)} for v1. In

each case, one may verify that the resulting coloring of G is an acyclic L-coloring,

a contradiction.

Case 2 : Assume that π(w1) 6= α and π(w2) 6= α.

Subcase 2.1 : π(w1) 6= π(w2). Noting that w1, w2 and v have pairwise distinct

colors, we can choose a color c belonging to L(v2)\{α, π(w1), π(w2)} for v2. Suppose

that c 6= π(u1). If π(v
′

3) 6= α and π(v′4) 6= α, then we may first properly color each

of v3 and v4. Then if π(u1) 6= α, it suffices to further properly color v1; otherwise,

we only need to choose a color for v1 that is distinct from α, c and π(v5). In what

follows, w.l.o.g., suppose that π(v′3) = α. It grantees us that π(u1) 6= α. Thus, we

first properly color v4, then color v3 with a color different from α and π(v5), and

afterwards properly color v1.

Next, suppose that c = π(u1). It implies that π(u1) 6= α due to c 6= α. First,

we can find a possible way for coloring v3 and v4 as follows: if π(vi) 6= α for each

i = 3, 4, then properly color each of v3 and v4; otherwise, say π(v′3) = α, and thus

we can color v3 with a color different from α and π(v5), and then properly color v4.

In what follows, in order to obtain an acyclic L-coloring of G, it remains us to show

how to color v1. If L(v2) 6= {c, α, π(w1), π(w2)}, then recolor v2 with a color in

L(v2)\ {c, α, π(w1), π(w2)} and then further properly color v1. Or else, suppose that

L(v2) = {c, α, π(w1), π(w2)}. At this moment, if v1 cannot be given a proper color,

then one may easily deduce that L(v1) = {c, α, π(w1), π(w2)} and c ∈ {π(xi), π(yi)}

for each i ∈ {1, 2}. By symmetry, let π(x1) = π(x2) = c. In this case, we may

do as follows: recolor v2 with π(w1), then color v1 with π(w2), and finally properly

recolor w1.

Subcase 2.2 : π(w1) = π(w2). Recolor w1 with a color β ∈ L(w1) \ {π(w1), π(x1),

π(y1)}. If β 6= α, then we go back to the previous Subcase 2.1. Otherwise, assume

that β = α. If none of u1, v
′

3 and v′4 has been colored with α, then we reduce the

following proof to Case 1. Or else, exactly one of u1, v
′

3, v
′

4 is colored with α. It

implies that there exists a color γ ∈ L(v) \ {α, π(v5)} such that γ appears at most

once on the set S′ = {u1, w2, v
′

3, v
′

4}. Now we recolor v with γ. If γ = π(w2), then

the following argument is reduced to Case 1. Otherwise, we go back to Subcase 2.1.

(F3) Suppose to the contrary that f1 = [v1v2v] is a (4
∗, 4∗, 5)-face, v3 and v4 are

2-vertices, and v5 is a pendant triangular 3-vertex. By definition, both v1 and v2
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are special 4-vertices. For each i = 1, 2, let ui, wi denote the other two neighbors

of vi not on the boundary of f1 such that d(ui) = 2. Denote by u′

1 and u′

2 another

neighbor of u1 and u2, respectively.

By the minimality of G, G − {v, v3, v4, v5} has an acyclic L-coloring π. Let S =

{v′3, v
′

4, x5, y5}. Obviously, there exists a color α ∈ L(v)\{π(v1), π(v2)} that appears

at most twice on the set S. We assign such color α to v firstly. If there is no vertex

of S colored with α, then it is easy to extend π to G by properly coloring v3, v4, v5
in succession. Next, let us discuss the following two cases depending on the number

of occurrences of α.

Case 1 : There is exactly one vertex of S colored with α. By symmetry, we have

two possibilities as follows:

⊲ π(v′3) = α. We can color v3 with a color belonging to L(v3)\ {α, π(v1), π(v2)} and

then properly color each of v4 and v5.

⊲ π(x5) = α. First properly color each of v3 and v4. Assume, w.l.o.g., that π(v1) = 1

and π(v2) = 2. If L(v5) 6= {1, 2, α, π(y5)}, then it suffices to further color v5 with

a color in L(v5) \ {1, 2, α, π(y5)}. Next, assume that L(v5) = {1, 2, α, π(y5)}.

If we are still not able to successfully color v5, then it must be the case when

in G′ there exists a bicolored (1, α)-path P1 connecting v1 and x5 and a bi-

colored (2, α)-path P2 connecting v2 and x5. That is, α ∈ {π(u1), π(w1)} and

α ∈ {π(u2), π(w2)}.

Consider the case when π(w1) = α. If there is a color β belonging to L(v1) \

{1, 2, α, π(u′

1)}, then we recolor v1 with β, color v5 with 1, and then properly

color u1 (if needed). Otherwise, let L(v1) = {1, 2, α, π(u′

1)}. We recolor v1

with π(u′

1) and then color v5 with 1. Finally, it remains us to recolor u1 with

a color in L(u1) \ {2, α, π(u′

1)}.

Since the discussion for the case when π(w2) = α is the same as the above case,

in what follows, assume that π(w1) 6= α and π(w2) 6= α. By the existences of P1

and P2, we deduce that π(u1) = π(u2) = α. Moreover, π(u′

1) = 1 and π(u′

2) = 2. If

L(v1) 6= {1, 2, α, π(w1)}, then recolor v1 with a color c in L(v1)\{1, 2, α, π(w1)} and

further color v5 with 1. If the resulting coloring is not acyclic, then we deduce that

π(w2) = c and π(w1) = 2. In this case, we further recolor v2 with a color distinct

from 2, c, α, and finally recolor v5 with 2. Otherwise, L(v1) = {1, 2, α, π(w1)}.

Similarly, we deduce that L(v2) = {1, 2, α, π(w2)}. At this moment, we may

destroy P1 and P2 by switching the colors of v1 and v2 and then color v5 with 1

successfully.

Case 2 : There are exactly two vertices of S colored with α. Since π(x5) 6= π(y5),

w.l.o.g., assume that π(v′3) = π(x5) = α. In this case, we may further suppose

that L(v) = {1, 2, α, β} such that π(v′4) = π(y5) = β. First consider the case when
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L(v5) 6= {1, 2, α, β}. Choose a color c ∈ L(v5) \ {1, 2, α, β} for v5. If L(v3) 6=

{1, 2, α, c}, then it is easy to further color v3 with a color in L(v3) \ {1, 2, α, c} and

afterwards properly color v4. Similarly, if L(v4) 6= {1, 2, β, c}, then we can continue

to color v4 with a color in L(v4) \ {1, 2, β, c}, recolor v with β and lastly properly

color v3. Now assume that L(v3) = {1, 2, α, c} and L(v4) = {1, 2, β, c}. Moreover,

one may easily inspect that {π(u1), π(w1)} = {π(u2), π(w2)} = {α, β}. W.l.o.g.,

assume that π(u1) = α and π(w1) = β. At present, we color v3 with 1 and properly

color v4. If the resulting coloring is not acyclic, then it should be the case when

π(u′

1) = 1. We only need to further recolor u1 by a color distinct from 1, α, β.

Next, consider the case when L(v5) = {1, 2, α, β}. If {π(u1), π(w1)} 6= {α, β}, say

α /∈ {π(u1), π(w1)}, then color v5 with 1, and v3 with a color in L(v3)\{α, 1, 2}, and

then properly color v4. So next, assume that {π(u1), π(w1)} = {α, β}, say π(u1) = α

and π(w1) = β. Similarly, we derive that π(u′

1) = 1. Now we can recolor u1 with

a color in L(u1) \ {1, α, β}, then color v5 with 1, v3 with a color in L(v3) \ {1, 2, α},

and finally properly color v4. �

Lemma 9. Let v be a 6-vertex incident to a (6, 3, 3+)-face f . Then

(Q1) n2(v) 6 3;

(Q2) if n2(v) = 3, then f cannot be a (6, 3, 3)-face.

P r o o f. Let v1, v2, . . . , v6 denote all the neighbors of v in cyclic order. Sup-

pose that f = [vv1v2] is a (6, 3, 3+)-face such that d(v1) = 3 and d(v2) > 3. Let

N(v1) = {u1, v2, v}. In each case of the following discussion, we denote by v′i the

other neighbor of vi whenever d(vi) = 2. Next, we shall make use of contradictions

to show (Q1) and (Q2).

(Q1) Suppose to the contrary that n2(v) = 4 so that v3, v4, v5, v6 are all 2-vertices.

Let G′ = G− {v, v3, v4, v5, v6}. Then, by the minimality of G, G′ admits an acyclic

L-coloring π. Let S = {v′3, v
′

4, v
′

5, v
′

6}. Since |L(v) \ {π(v1), π(v2)}| > 2 and |S| = 4,

we declare that there exists a color, say α, belonging to L(v) \ {π(v1), π(v2)} such

that α appears at most twice on the set S. Firstly, we assign α to v. If there

is no vertex of S colored with α, then it is easy to properly color each vi, where

i ∈ {3, 4, 5, 6}. If exactly one vertex of S, say v′3, is colored with α, then we can

color v3 with a ∈ L(v3) \ {α, π(v1), π(v2)} and then properly color each remaining

2-vertex vi for each i ∈ {4, 5, 6}. So, in what follows, assume that there are exactly

two vertices of S colored with α. At this moment, one may immediately deduce that

L(v) = {α, β, π(v1), π(v2)} such that π(v3) = π(v4) = α and π(v5) = π(v6) = β.

Further, w.l.o.g., we may assume that π(u1) 6= α since otherwise we may choose β.

Then it suffices to color v3 with a ∈ L(v3) \ {α, π(v2)}, color v4 with b ∈ L(v4) \

{a, α, π(v2)}, and finally properly color each of v5 and v6.
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(Q2) Suppose to the contrary that f is a (6, 3, 3)-face such that d(v1) = d(v2) = 3.

Let v3, v4, v5 be all 2-vertices. Denote by u2 another neighbor of v2 that is different

from v and v1. By the minimality of G, G − {v, v1, v2, v3, v4, v5} admits an acyclic

L-coloring π. Let S = {u1, u2, v
′

3, v
′

4, v
′

5}. Similarly, there exists a color α ∈ L(v) \

{π(v6)} that appears at most once on the set S. We first color v with α. If no

vertex of S has been colored with α, then it is easy to first color v1 with a ∈

L(v1) \ {α, π(u1), π(u2)}, and then properly color each of v2, v3, v4, v5 in order.

Next, by symmetry, we have to deal with two cases below in light of the location of

the vertex whose color is α.

⊲ π(u1) = α. Then color v1 with a ∈ L(v1) \ {α, π(v6), π(u2)}. Afterwards, each of

v2, v3, v4, v5 can be further properly colored.

⊲ π(v′3) = α. Then color v1 with c ∈ L(v1) \ {α, π(u1), π(u2)}, v3 with d ∈ L(v3) \

{α, π(v6)}, and finally properly color each of v2, v4, v5 in order.

In each case, one may easily verify that the obtained coloring of G is an acyclic

L-coloring. This contradicts the choice of G. �

3.2. Discharging process. Next, we are going to apply a discharging procedure

to reach a contradiction. We define a weight function ω on V (G) ∪ F (G) by letting

ω(v) = 2d(v)−6 if v ∈ V (G) and ω(f) = d(f)−6 if f ∈ F (G). By Euler’s formula, we

have that
∑

v∈V (G)

(2d(v)− 6)+
∑

f∈F (G)

(d(f)− 6) = −12. By transferring weights from

one element to another, we shall obtain a new non-negative weight function ω∗(x)

for all x ∈ V (G) ∪ F (G). Since the total sum of weights is kept fixed when the

discharging is in process, this leads to obvious contradiction

−12 =
∑

x∈V (G)∪F (G)

ω(x) =
∑

x∈V (G)∪F (G)

ω∗(x) > 0,

and hence we complete the proof of Theorem 1.

Let v ∈ V (G). If v is a 4mp-vertex with m ∈ {1, 2}, then we denote v ∈ V4mp .

Similarly, if v is a 4∗-vertex, then we say that v ∈ V4∗ .

In what follows, for x, y ∈ V (G)∪F (G) we use σ(x → y) to denote the amount of

weights transferred from x to y. Our discharging rules are defined as follows:

(R1) Every 4+-vertex sends 1 to each adjacent 2-vertex and 1
4 to each adjacent

pendant triangular 3-vertex.

(R2) Every 5+-vertex sends 1
2 to each incident 5-face.

(R3) Let x be a 4-vertex incident to a 5-face f = [xyzuv]. Then

(R3.1) σ(x → f) = 1
2 if f is either a (4, 3, 4, 2, 4

+)-face or a (4, 3, 3+, 3+, 3)-face;
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(R3.2) σ(x → f) = 3
8 if f is a (4, 3, 3, 4

+, 4+)-face;

(R3.3) σ(x → f) = 1
4 otherwise.

(R4) Let f = [xyz] be a 3-face such that d(x) 6 d(y) 6 d(z). We set

(R4.1) (3, 3, 5+) → (14 ,
1
4 ,

5
2 );

(R4.2) (3, 4, 4) →

{

(14 ,
5
4 ,

3
2 ) if y ∈ V4p ;

(14 ,
11
8 , 118 ) otherwise.

(R4.3) (3, 4+, 5+) →











(14 , 1,
7
4 ) if y ∈ V42p ;

(14 ,
5
4 ,

3
2 ) if y ∈ V4p ;

(14 ,
11
8 , 11

8 ) otherwise.

(R4.4) (4, 4, 4) →

{

(34 ,
9
8 ,

9
8 ) if x ∈ V4∗ and y, z /∈ V4∗ ;

(1, 1, 1) otherwise.

(R4.5) (4, 4, 5+) →











(34 ,
3
4 ,

3
2 ) if x, y ∈ V4∗ ;

(34 ,
9
8 ,

9
8 ) if x ∈ V4∗ and y /∈ V4∗ ;

(1, 1, 1) otherwise.

(R4.6) (4+, 5+, 5+) →

{

(34 ,
9
8 ,

9
8 ) if x ∈ V4∗ ;

(1, 1, 1) otherwise.

Fact 1. By (R3), every 4-vertex sends weight at least 1
4 to each of incident 5-face.

Let us first check that ω∗(f) > 0 for each k-face f . Obviously, k > 3. Moreover,

k 6= 4 due to the absence of 4-cycles. If k > 6, then it is trivial that ω∗(f) = ω(f) > 0

since f does not participate in the discharging by (R1)–(R4). Next, we consider the

case when k ∈ {3, 5}.

First suppose that f is a 3-face. Then ω(f) = −3. Denote f = [xyz] such that

d(x) 6 d(y) 6 d(z). By (A2), none of x, y, z can be a 2-vertex. We have the

following three cases:

⊲ d(x) = 3. If d(y) = 3, then d(z) > 5 by (A4) and Lemma 2. So ω∗(f) >

−3 + 1
4 + 1

4 + 5
2 = 0 by (R4.1). If d(y) > 5, implying that d(z) > 5, then ω∗(f) >

−3+ 1
4 +

11
8 ×2 = 0 by (R4.3). In what follows, assume that d(y) = 4. If d(z) > 5,

namely f is a (3, 4, 5+)-face, then by (R4.3) we see that f receives weight at leastW

from all incident vertices, where W = min{ 1
4 + 1 + 7

4 ,
1
4 + 5

4 + 3
2 ,

1
4 + 11

8 × 2} = 3.

Hence, ω∗(f) > −3 + 3 = 0. Now we suppose that d(z) = 4. It follows that f is

a (3, 4, 4)-face. By (R4.2), one may deduce that either ω∗(f) > −3+ 1
4 +

5
4 +

3
2 = 0

or ω∗(f) > −3 + 1
4 + 11

8 × 2 = 0.

⊲ d(x) = 4. If d(y) > 5, that is, f is a (4, 5+, 5+)-face, then by (R4.6), f gets weight

at least W from all its incident vertices, where W = min{ 3
4 + 9

8 × 2, 1 × 3} = 3.
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Hence, ω∗(f) > −3 + 3 = 0. Now assume that d(y) = 4. If d(z) > 5, namely f

is a (4, 4, 5+)-face, then by (R4.5), one may easily obtain that f gets weight at

least 3 and therefore ω∗(f) > −3+3 = 0. Next, it remains us to consider the case

when d(z) = 4. In other words, f is a (4, 4, 4)-face at this moment. By (R4.4), it is

easy to calculate that either ω∗(f) > −3+ 3
4 +

9
8 ×2 = 0 or ω∗(f) > −3+1×3 = 0.

⊲ d(x) > 5. It follows that f is a (5+, 5+, 5+)-face. By (R4.6), we have that either

ω∗(f) > −3 + 3
4 + 9

8 × 2 = 0 or ω∗(f) > −3 + 1× 3 = 0.

Now suppose that f is a 5-face. Obviously, ω(f) = −1. By (A1), there is no

1-vertex in G, and thus we know that the boundary of f is a cycle. Let f =

[v1v2v3v4v5]. Denote by nk(f) the number of k-vertices incident to f . By (A3),

n2(f) 6 2. If n2(f) = 2, w.l.o.g., assume that d(v1) = d(v3) = 2, then d(vi) > 4 for

all i ∈ {2, 4, 5} by applying (A3) again. Moreover, d(v2) > 5 by (A5). So by (R2),

σ(v2 → f) = 1
2 . Thus, ω

∗(f) > −1 + 1
2 + 1

4 × 2 = 0 by Fact 1. Next consider the

case when n2(f) = 1. W.l.o.g., let d(v1) = 2. Then d(vi) > 4 for each i ∈ {2, 5}

by (A3). If one of v3 and v4 is a 5+-vertex, then we may similarly deduce that

ω∗(f) > −1 + 1
2 + 1

4 × 2 = 0 by (R2) and Fact 1. If v3 and v4 are both 4-vertices,

then by Fact 1, we have that ω∗(f) > −1 + 1
4 × 4 = 0. So, in what follows, assume

that for each i ∈ {3, 4}, d(vi) 6 4, and at most one of them can be a 4-vertex. We

have two possibilities:

⊲ d(v3) = d(v4) = 3. Then d(v2) 6= 4 since otherwise v3 is adjacent to two weak

vertices v2 and v4, which contradicts (A4). By symmetry, d(v5) 6= 4, and hence

both v2 and v5 are of degree at least 5. It is easy to obtain that ω
∗(f) > −1 +

1
2 × 2 = 0 by (R2).

⊲ d(v3) = 3 and d(v4) = 4. In this case, we may further suppose that d(v2) =

d(v5) = 4 by similar discussion as above. Notice that f is a (4, 3, 4, 2, 4)-face.

By (R3.1), σ(v4 → f) = 1
2 , and therefore ω

∗(f) > −1 + 1
2 + 1

4 × 2 = 0 by Fact 1.

Finally, suppose that n2(f) = 0, meaning that d(vi) > 3 for all i ∈ {1, 2, . . . , 5}.

Since each 3-vertex is so called weak, by (A4) we confirm that n3(f) 6 3. If

n3(f) 6 1, then it is obvious that ω∗(f) > −1+ 1
4×4 = 0 by Fact 1. If n3(f) = 3, say

d(v1) = d(v3) = d(v4) = 3, then d(vi) > 4 for each i ∈ {2, 5}. Notice that if d(vi) = 4,

then f is a (4, 3, 3, 4+, 3)-face, and thus by (R3.1) we have that σ(vi → f) = 1
2 .

If d(vi) > 5, then by (R2) we know that vi also sends weight
1
2 to f . Hence,

ω∗(f) > −1 + 1
2 × 2 = 0. So, next assume that n3(f) = 2. If d(v1) = d(v2) = 3,

then each vi is a 4
+-vertex for the remaining index i ∈ {3, 4, 5}. If n5+(f) > 1, then

ω∗(f) > −1+ 1
2 +

1
4 × 2 = 0 by (R2) and Fact 1. Or else, d(v3) = d(v4) = d(v5) = 4.

By (R3.2), each of v3 and v5 sends weight
3
8 to f , and thus ω

∗(f) > −1+ 1
4+

3
8×2 = 0

by Fact 1. Otherwise, assume that d(v1) = d(v3) = 3. Then d(vi) > 4 for all

i ∈ {2, 4, 5}. If d(v2) = 4, then f is a (4, 3, 4+, 4+, 3)-face. By (R3.1), σ(v2 → f) = 1
2 .
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If d(v2) > 5, then again we deduce that σ(v2 → f) = 1
2 by applying (R2). Conse-

quently, ω∗(f) > −1 + 1
2 + 1

4 × 2 = 0 by Fact 1.

In what follows, it remains us to verify that ω∗(v) > 0 for each k-vertex v. By (A1),

k > 2. For our convenience, we let v1, v2, . . . , vk denote the neighbors of v in clockwise

order. Let fi be the face with vvi and vvi+1 as two boundary edges for i = 1, 2, . . . , k,

where indices are taken modulo k. If k = 2, then ω(v) = −2. It follows from (A3)

that v is adjacent to two 4+-vertices, implying that ω∗(v) > −2+1× 2 = 0 by (R1).

If k = 3, then ω(v) = 0. Notice that v only sends weight 1
4 to its incident 3-face

by (R4). If it works, then v is a pendant triangular 3-vertex of a neighbor which

is of degree at least 4 by (A3) and Lemma 3. Thus, by (R1), v receives the same

weight 1
4 from it and hence ω

∗(v) > − 1
4 + 1

4 = 0. So, in what follows, we are going

to show that ω∗(v) > 0 for each k-vertex, where k > 4.

Case 1 : k = 4. Then ω(v) = 2. By (A5), n2(v) 6 1. Moreover, m3(v) 6 1 and

m5(v) 6 1 by the assumption of G.

First suppose that m3(v) = 0. Then d(fi) > 5 for all i ∈ {1, . . . , 4} due to

m4(v) = 0. Since m5(v) 6 1, v sends weight at most 1
2 in total to all its incident

faces by (R3). So if n2(v) = 0, then it is easy to obtain that ω∗(v) > 2− 1
2−

1
4×4 = 1

2

by (R1). Otherwise n2(v) = 1. At present, by (A6) we know that p3(v) = 0, and

therefore ω∗(v) > 2− 1− 1
2 = 1

2 by (R1).

Next suppose that m3(v) = 1, w.l.o.g., say d(f1) = 3. Then for each i ∈ {2, 3, 4},

d(fi) > 5. Note that p3(v) 6 2. Let us first consider the case when f1 is incident to

a 3-vertex, i.e., d(v1) = 3. By (A6), n2(v) = 0.

⊲ p3(v) = 0. Then ω∗(v) > 2− 3
2 − 1

2 = 0 by (R3) and (R4).

⊲ p3(v) = 1. Namely, v ∈ V4p . If d(v2) > 5, say f1 is a (3, 4p, 5+)-face, then

by (R4.3), σ(v → f1) = 5
4 . Otherwise, d(v2) = 4. Namely, f1 is a (3, 4p, 4)-

face. By Lemma 5, v2 cannot be any 4p-vertex. So by (R4.2), we know that v

sends weight 5
4 to f1 rather than

3
2 . In both cases, one may always obtain that

ω∗(v) > 2− 5
4 − 1

4 − 1
2 = 0 by applying (R1) and (R3).

⊲ p3(v) = 2. That is, v ∈ V42p . By Lemma 2, we confirm that d(v2) > 5. In

other words, f1 is a (3, 4
2p, 5+)-face. By (R4.3), σ(v → f1) = 1 and thus ω∗(v) >

2− 1− 1
4 × 2− 1

2 = 0 by (R1) and (R3).

Now let us consider the remaining case when f1 is a (4, 4+, 4+)-face such that

d(v1) > 4 and d(v2) > 4. We have two cases to discuss depending on the value

of n2(v).

⊲ n2(v) = 0. By (R4.4) to (R4.6), we know that v sends weight at most 9
8 to f1. So if

p3(v) 6 1, then ω∗(v) > 2− 9
8−

1
4−

1
2 = 1

8 by (R1) and (R3). Otherwise, p3(v) = 2,

meaning that v ∈ V42p . If d(v1) > 5 and d(v2) > 5, then by (R4.6) we know that

σ(v → f1) = 1 basing on the fact that v /∈ V ∗

4 . Hence, ω
∗(v) > 2−1− 1

4×2− 1
2 = 0
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by (R1) and (R3). Or else, by symmetry, assume that d(v1) = 4. Namely, f is

a (4, 42p, 4+)-face. By Lemma 6, v1 /∈ V ∗

4 and v2 /∈ V ∗

4 , and thus σ(v → f1) = 1

by (R4.4) and (R4.5). Therefore ω∗(v) > 2− 1− 1
4 × 2− 1

2 = 0 by (R1) and (R3).

⊲ n2(v) = 1. Namely, v ∈ V ∗

4 . W.l.o.g., assume that d(v3) = 2. Moreover,

by (A6), p3(v) = 0. It tells us that v /∈ V4p ∪ V42p . If f1 is a (4, 5+, 5+)-face,

then σ(v → f1) = 3
4 by (R4.6). If f1 is a (4, 4, 5+)-face, then by (R4.5) v sends

weight exactly 3
4 to f1. If f1 is a (4, 4, 4)-face, then by Lemma 7 we see that

neither v1 nor v2 can be a 4
∗-vertex, and thus σ(v → f1) =

3
4 by (R4.4). These

facts enable us to confirm that σ(v → f1) =
3
4 regardless the situation of f1. So

if m5(v) = 0 or m5(v) = 1 such that the unique incident 5-face only gets weight

at most 1
4 from v, then we are done by showing that ω∗(v) > 2 − 3

4 − 1 − 1
4 = 0

by (R1). In what follows, assume that fj is a 5-face for some fixed j ∈ {2, 3, 4}. If

j = 2, then f2 is a (4, 2, 4
+, 2+, 4+)-face and thus by (R3.3) v sends weight 1

4 to f2

and then we go back to the previous case. If j = 3, then f3 is a (4, 2, 4
+, 2+, 3+)-

face. By (R3.3), σ(v → f3) = 1
4 and then we also go back to the former case.

Otherwise, j = 4. Let f4 = [vv4w1w2v1]. If d(v4) > 4, then by (R3.3), v sends

at most 1
4 to f4 and thus we are done. Or else, d(v4) = 3. Obviously, d(w1) 6= 2

by (A3). Moreover, by (A4), w1 cannot be a weak vertex. It follows that d(w1) 6= 3

and if d(w1) = 4, then d(w2) 6= 2. So f4 can be either a (4, 3, 5
+, 2+, 4+)-face or

a (4, 3, 4, 3+, 4+)-face. By (R3.3), σ(v → f4) = 1
4 and then we are done by the

former case argument.

Case 2 : k = 5. Then ω(v) = 4. By (A7), n2(v) 6 3. Moreover, mi(v) 6 1 for

each i ∈ {3, 5} by the assumption on G.

First suppose that m3(v) = 0. Then by (R1) and (R2) we deduce that ω∗(v) >

4 − n2(v) −
1
4 × p3(v) −

1
2 = 4 − n2(v) −

1
4 × (5 − n2(v)) −

1
2 = 9

4 − 3
4n2(v) > 0.

Next, suppose that m3(v) = 1. W.l.o.g., assume that f1 = [v1v2v] is a 3-face. Here,

n2(v) 6 2 by (A8). The following discussion is divided into several cases according

to the condition on f1.

⊲ d(v1) = d(v2) = 3. That is, f1 is a (3, 3, 5)-face. By (R4.1), σ(v → f1) = 5
2 .

By Lemma 4, we see that n2(v) 6 1. If n2(v) = 1, then p3(v) = 0 by (F1), and

so ω∗(v) > 4 − 5
2 − 1 − 1

2 = 0 by (R1) and (R2). Otherwise, n2(v) = 0. Then

p3(v) 6 3 and therefore ω∗(v) > 4− 5
2 − 1

4 × 3− 1
2 = 1

4 by (R1) and (R2).

⊲ d(v1) = 3 and d(v2) = 4. If v2 ∈ V42p , namely f1 is a (3, 42p, 5)-face. then

σ(v → f1) =
7
4 by (R4.3). Moreover, by (F2) we are sure that n2(v) 6 1. Thus,

ω∗(v) > 4− 7
4 − n2(v)−

1
4 × (3− n2(v))−

1
2 = 1− 3

4n2(v) >
1
4 by (R1) and (R2).

Otherwise, v2 /∈ V42p . Clearly, by (R4.3), σ(v → f1) 6 3
2 . If n2(v) = 2, then

p3(v) = 0 by (A9), implying that ω∗(v) > 4− 3
2 − 1× 2− 1

2 = 0 by (R1) and (R2).

Or else, n2(v) 6 1. It is easy to deduce that ω∗(v) > 4− 3
2 − 1− 1

4 × 2− 1
2 = 1

2 .
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⊲ d(v1) = 3 and d(v2) > 5. It follows that f1 is a (3, 5+, 5)-face. Then by (R4.3),

σ(v → f1) = 11
8 . If n2(v) 6 1, then ω∗(v) > 4 − 11

8 − 1 − 1
4 × 2 − 1

2 = 5
8

by (R1) and (R2). Otherwise n2(v) = 2. Again, by (A9), p3(v) = 0. Hence,

ω∗(v) > 4− 11
8 − 1× 2− 1

2 = 1
8 by (R1) and (R2).

⊲ d(v1) = d(v2) = 4. Then f1 is a (4, 4, 5)-face. By (R4.5), the weight sent from v

to f1 is either
3
2 ,

9
8 or 1. If σ(v → f1) 6

9
8 , then ω

∗(v) > 4− 9
8 − 1× 2− 1

4 −
1
2 = 1

8

by (R1) and (R2). Otherwise assume that σ(v → f1) =
3
2 . It follows from (R4.5)

that v1 and v2 are both 4∗-vertices. In other words, f1 is a (4∗, 4∗, 5)-face. If

n2(v) 6 1, then ω∗(v) > 4− 3
2 − 1− 1

4 × 2− 1
2 = 1

2 by (R1) and (R2). Otherwise,

n2(v) = 2. By (F3), p3(v) = 0. Hence, it is easy to deduce that ω∗(v) > 4− 3
2 −

1× 2− 1
2 = 0.

⊲ d(v1) > 4 and d(v2) > 5. Then f1 is a (4
+, 5+, 5)-face. By (R4.6), σ(v → f1) 6

9
8 ,

and therefore ω∗(v) > 4− 9
8 − 1× 2− 1

4 − 1
2 = 1

8 by (R1) and (R2).

Case 3 : k = 6. Clearly ω(v) = 6. By (A10), n2(v) 6 4. If d(fi) > 5 for all

i = 1, 2, . . . , 6, then ω∗(v) > 6 − 1 × 4 − 1
4 × 2 − 1

2 = 1 by (R1) and (R2). Next,

suppose that there exists a face fi, say f1 = [vv1v2], such that d(f1) = 3. If f1

is a (6, 4+, 4+)-face, then v sends at most 3
2 to f1 by (R4.5) and (R4.6), and thus

ω∗(v) > 6− 3
2 − 1× 4− 1

2 = 0 by (R1) and (R2). Now suppose that f1 is a (6, 3, 3
+)-

face. By (Q1), we are sure that n2(v) 6 3. Moreover, v sends at most 5
2 to f1

by (R4). If n2(v) 6 2, then it is obvious that ω∗(v) > 6− 5
2 − 1× 2− 1

4 × 2− 1
2 = 1

2

by (R1) and (R2). Otherwise, n2(v) = 3. At this moment, it is guaranteed by (Q2)

that f1 cannot be a (6, 3, 3)-face, which implies that σ(v → f1) 6
7
4 by (R4). Hence,

ω∗(v) > 6− 7
4 − 1× 3− 1

4 − 1
2 = 1

2 by (R1) and (R2).

Case 4 : k > 7. If m3(v) = 0, then it is obvious that ω∗(v) > 2d(v)− 6− n2(v) −
1
4p3(v) −

1
2 > 2d(v) − 6 − n2(v) −

1
4 (d(v) − n2(v)) −

1
2 > 7

4d(v) −
3
4n2(v) −

13
2 >

7
4d(v) −

3
4d(v) −

13
2 > d(v) − 13

2 > 1
2 . Or else, assume that f1 is the unique 3-face

that is incident to v. By (R1), (R2) and (R4), one can easily derive that ω∗(v) >

2d(v)− 6− 5
2 −n2(v)−

1
4p3(v)−

1
2 > 2d(v)− 17

2 −n2(v)−
1
4 (d(v)− 2−n2(v))−

1
2 >

7
4d(v)−

17
2 − 3

4n2(v) >
7
4d(v)−

17
2 − 3

4 (d(v) − 2) > d(v)− 7 > 0.

Therefore, we complete the proof of Theorem 1. �
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