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Abstract. We consider a generalization of the notion of torsion theory, which is associated
with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and
Melkersson investigated the question of when local cohomology modules belong to a Serre
subcategory of the module category. In their study, the notion of Melkersson condition was
defined as a suitable condition in local cohomology theory. One of our purposes in this
paper is to show how naturally the concept of Melkersson condition appears in the context
of torsion theories.
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1. Introduction

Let R be a commutative Noetherian ring. We denote by R-Mod the category of

R-modules and let S be a Serre subcategory of R-Mod. Dickson in [3] introduced the

notion of torsion theory (or torsion pair) in an abelian category. After this, torsion

theory has been investigated as a significant tool in abelian categories, triangulated

categories, and stable categories, for example see [2], [5], [6], [7]. It is a well-known

fact that a pair (T ,F) of subcategories of R-Mod is a hereditary torsion theory if

and only if the torsion class T is a Serre subcategory that is closed under taking
arbitrary direct sums. In this case the torsion class T can be represented as the
subcategory TW = {M ∈ R-Mod: ΓW (M) = M} and the torsion-free class F as
the subcategory FW = {M ∈ R-Mod: ΓW (M) = 0} for a specialization closed
subset W of Spec(R). By virtue of Gabriel’s classification theorem in [4], we can

give a bijective correspondence between hereditary torsion theories in R-Mod and

Serre subcategories of R-Mod that are closed under taking arbitrary direct sums.

With regard to the study of Serre subcategory, our next purpose is to investi-

gate Serre subcategories with a weaker condition than the condition that they are
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closed under taking arbitrary direct sums. We will focus on Serre subcategories that

are closed under taking injective hulls, and more generally, those which satisfy the

following condition:

(CI) If ΓI(M) =M and (0 :M I) is in S, then M is in S

for an ideal I of R and an R-module M . The above condition was introduced as

a suitable condition in local cohomology theory by Aghapournahr and Melkersson,

see [1], and it came to be called the Melkersson condition. It is known that a Serre

subcategory that is closed under taking injective hulls satisfies the Melkersson condi-

tion with respect to all ideals. Furthermore, the converse implication does not hold

in general, see [9]. However, it is a well-known fact that a Serre subcategory is closed

under taking injective hulls if it is closed under taking arbitrary direct sums, and

thus it satisfies the Melkersson condition. Therefore, if we treat the torsion theory

under more general assumptions, there is a possibility that the Melkersson condition

on a Serre subcategory occurs naturally in the context of torsion theories.

The aims of this paper are to generalize the notion of the torsion theory and

to show that the notion of Melkersson condition naturally arises in studying this

generalization. For an ordinary torsion theory, all homomorphisms from a module

in the torsion class to a module in the torsion-free class are zero. In other words,

these homomorphisms must go through the zero object in the zero subcategory. Our

idea will be based on rethinking this condition. Namely, the above homomorphisms

will be allowed to pass through objects in a Serre subcategory. With this in mind,

we define a pair (T ,F) of subcategories of R-Mod to be a torsion theory connected

by S in R-Mod if it satisfies the following conditions:

(1) The module f(T ) is in S for all T ∈ T , F ∈ F and f ∈ HomR(T, F ).

(2) If f(M) ∈ S for all F ∈ F and f ∈ HomR(M,F ), then M ∈ T .
(3) If f(T ) ∈ S for all T ∈ T and f ∈ HomR(T,M), then M ∈ F .
Moreover, if T is closed under taking submodules then (T ,F) is called hereditary.

A torsion theory connected by the zero subcategory is an ordinary torsion the-

ory. (Note that the extension subcategories C ∗ S and S ∗ C for a subcategory C
of R-Mod are in general not equal. Furthermore, we shall see that T is not necessar-
ily closed under taking extensions.) In addition, we define T (W,S) = {M ∈ R-Mod:

M/ΓW (M) ∈ S} = TW ∗ S as a generalization of TW for a specialization closed sub-
set W of Spec(R). However, there are two possible ways to generalize a torsion-free

class as follows: One is defined by FG(W,S) = {M ∈ R-Mod: ΓW (M) ∈ S} =

S ∗ FW associated with the section functor as a generalization of FW and the other
is defined by FH(I,S) = {M ∈ R-Mod: HomR(R/I,M) ∈ S} associated with
the Hom functor as a generalization of FV (I) for an ideal I of R. It is natural to
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ask whether (T (W,S),FG(W,S)) and (T (V (I),S),FH(I,S)) are hereditary torsion
theories connected by S or not. Our first result is given by the following:

Theorem 1.1. The pair (T (W,S),FG(W,S)) is a hereditary torsion theory con-
nected by the Serre subcategory S for a specialization closed subset W of Spec(R).

In general, however, the generalized torsion-free class FG(V (I),S) does not co-
incide with FH(I,S). Moreover, the pair (T (V (I),S),FH(I,S)) is not necessarily
a hereditary torsion theory connected by S. Therefore, one of our purposes in this
paper is to discuss the question of when the pair (T (V (I),S),FH(I,S)) is a hered-
itary torsion theory connected by S. By using the notion of Melkersson condition,
our main result is stated as follows:

Theorem 1.2. Let I be an ideal of R and S a Serre subcategory. Then the
following conditions are equivalent:

(1) The pair (T (V (I),S),FH(I,S)) is a hereditary torsion theory connected by S.
(2) One has T (V (I),S) ∩ FH(I,S) = S.
(3) One has FH(I,S) = FG(V (I),S).
(4) S satisfies the Melkersson condition (CI).

The organization of this paper is as follows. In Section 2, we recall definitions and

basic properties of several subcategories, the Melkersson condition, and the notion

of torsion theory. In Section 3, we give the notion of a torsion theory connected

by a Serre subcategory and a sufficient condition to be such a generalized torsion

theory. After proving Theorem 1.1 in Section 4, we show Theorem 1.2 in Section 5.

In Section 6, we construct an example of a hereditary torsion theory connected by

a Serre subcategory but which is not an ordinary torsion theory.

2. Preliminaries

Throughout this paper, all rings are commutative Noetherian and all modules are

unitary. For a ring R, we suppose that all full subcategories X of the R-module
category R-Mod are closed under isomorphisms.

In this section, we recall notions and results for several subcategories and the

torsion theory. First of all, we recall the definitions of a Serre subcategory and the

Melkersson condition on a Serre subcategory of R-Mod. The Melkersson condition

was introduced by Aghapournahr and Melkersson in [1], Definition 2.1.

Definition 2.1.

(1) A full subcategory S of R-Mod is called a Serre subcategory if S is closed under
taking submodules, quotient modules and extensions.
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(2) A Serre subcategory S of R-Mod is said to satisfy theMelkersson condition (CI)

with respect to an ideal I of R if it satisfies the following condition:

(CI) If ΓI(M) =M and (0 :M I) is in S for an R-module M, then M is in S.

In the rest of this paper, a Serre subcategory of R-Mod will be referred to as

a Serre subcategory simply.

Next, let us recall the notion of a subcategory consisting of extension modules in

two given subcategories of R-Mod.

Definition 2.2. Let X and Y be subcategories of R-Mod. We denote by X ∗ Y
the subcategory consisting of those R-modules M that there exists a short exact

sequence 0 → X →M → Y → 0 of R-modules with X ∈ X and Y ∈ Y.

The following lemma will be used later. We denote by ER(M) the injective hull

of an R-module M .

Lemma 2.3. Let X and Y be subcategories which are closed under taking sub-
modules. Then the following hold:

(1) The subcategory X ∗ Y is closed under taking submodules.
(2) If X and Y are closed under taking injective hulls, then the subcategory X ∗ Y
is closed under taking injective hulls.

P r o o f. (1) Let 0 → L→M → N → 0 be a short exact sequence of R-modules.

We suppose M ∈ X ∗ Y and shall show L ∈ X ∗ Y. It follows from the definition of
X ∗ Y that there exists a short exact sequence 0 → X

ϕ→M → Y → 0 of R-modules

with X ∈ X and Y ∈ Y. Then our assertion is proved by the commutative diagram

0

��

0

��

0

��

0 // X ∩ L

��

// X

ϕ

��

//
X

X ∩ L
ϕ

��

// 0

0 // L

��

// M

��

// N

��

// 0

0 //
L

X ∩ L

��

// Y

��

// N ′

��

// 0

0 0 0
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of R-modules with exact rows and columns, where ϕ is a natural homomorphism

induced by ϕ and N ′ = Coker(ϕ).

(2) For an R-module M in X ∗ Y, there exists a short exact sequence 0 → X →
M → Y → 0 of R-modules with X ∈ X and Y ∈ Y. We consider a commutative
diagram

0 // X
ϕ

//

σ

��

M

η

��

ψ
// Y

τ

��

// 0

0 // ER(X) // ER(X)⊕ ER(Y ) // ER(Y ) // 0

of R-modules with exact rows and vertical injective homomorphisms. (For m ∈ M ,

we define η(m) = (µ(m), τ ◦ ψ(m)) where µ : M → ER(X) is a homomorphism

induced by the injectivity of ER(X) such that σ = µ ◦ϕ.) Since X and Y are closed
under taking injective hulls, the module ER(X)⊕ ER(Y ) is in X ∗ Y. We note that
ER(M) is a direct summand of ER(X) ⊕ ER(Y ). Therefore, we see that ER(M) ∈
X ∗ Y because X ∗ Y is closed under taking submodules by (1). Consequently, the
subcategory X ∗ Y is closed under taking injective hulls. �

The purpose of this paper is to generalize the notion and results of the torsion

theory in R-Mod. Regarding the following or more detailed facts about the torsion

theory, we will refer to Dickson, see [3], Lambek, see [5], and Stenström, see [6], [7].

Definition 2.4. A torsion theory in R-Mod is a pair (T ,F) of subcategories of

R-Mod satisfying the following conditions:

(1) HomR(T, F ) = 0 for all T ∈ T and F ∈ F .
(2) If HomR(M,F ) = 0 for all F ∈ F , then M ∈ T .
(3) If HomR(T,M) = 0 for all T ∈ T , then M ∈ F .
If (T ,F) is a torsion theory, then T is called a torsion class and F is a torsion-free
class. In addition, if T is closed under taking submodules, then a torsion the-
ory (T ,F) is called a hereditary torsion theory.

We recall that a subset W of Spec(R) is said to be specialization closed if it has

the following property: if p is a prime ideal in W and q is a prime ideal containing p,

then q is also in W .

Remark 2.5. The following are well-known facts concerning torsion theories,

see [3], [5], [6], [7].

(1) A pair (T ,F) of subcategories of R-Mod is a torsion theory if and only if it

satisfies the following conditions:

(a) One has T ∩ F = {0}.
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(b) T is closed under taking quotient modules.
(c) F is closed under taking submodules.
(d) One has T ∗ F = R-Mod.

(2) Let T and F be subcategories of R-Mod.

(a) T is closed under taking quotient modules, extensions, and arbitrary direct
sums if and only if T is a torsion class for some torsion theory.

(b) F is closed under taking submodules, extensions, and direct products if
and only if F is a torsion-free class for some torsion theory.

(3) A torsion theory (T ,F) is hereditary if and only if F is closed under taking
injective hulls.

(4) There is a bijective correspondence between

(a) hereditary torsion theories in R-Mod;

(b) left exact radical functors on R-Mod;

(c) section functors with support in a specialization closed subset of Spec(R)

on R-Mod.

We denote by (TW ,FW ) the hereditary torsion theory corresponding to a specializa-

tion closed subset W of Spec(R), that is,

TW = {M ∈ R-Mod: ΓW (M) =M} and FW = {M ∈ R-Mod: ΓW (M) = 0}.

Note that we have

FV (I) = {M ∈ R-Mod: ΓI(M) = 0} = {M ∈ R-Mod: HomR(R/I,M) = 0}

for an ideal I of R, where V (I) = {p ∈ Spec(R) : I j p}.

3. A torsion theory connected by a Serre subcategory

The aim of this section is to generalize the notion of the torsion theory. We start

by giving the definition of the torsion theory connected by the Serre subcategory

in R-Mod.

Definition 3.1. A pair (T ,F) of subcategories of R-Mod is called a torsion

theory connected by a Serre subcategory S in R-Mod if it satisfies the following

conditions:

(TT1) The module f(T ) is in S for all T ∈ T , F ∈ F , and f ∈ HomR(T, F ).

(TT2) If f(M) is in S for all F ∈ F and f ∈ HomR(M,F ), then M is in T .
(TT3) If f(T ) is in S for all T ∈ T and f ∈ HomR(T,M), then M is in F .
In addition, if T is closed under taking submodules, then (T ,F) is called a hereditary

torsion theory connected by S.
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Remark 3.2. A torsion theory connected by the zero subcategory is an ordinary

torsion theory. (The zero subcategory means the subcategory consisting of the zero

module.)

Any subcategory generates a torsion theory connected by a Serre subcategory.

Example 3.3. Let C be a subcategory of R-Mod and S a Serre subcategory.
We set

FC(S) = {F ∈ R-Mod: f(C) ∈ S ∀C ∈ C and f ∈ HomR(C,F )} and,
TC(S) = {T ∈ R-Mod: f(T ) ∈ S ∀F ∈ FC(S) and f ∈ HomR(T, F )}.

Then it is clear that the pair (TC(S),FC(S)) satisfies the conditions (TT1) and (TT2).
We suppose that an R-module M satisfies f(T ) ∈ S for all T ∈ TC(S) and f ∈
HomR(T,M). We note that C is contained in TC(S) by virtue of the definition
of FC(S). Therefore, the above assumption can be applied to R-modules in C.
Namely, we have f(C) ∈ S for all C ∈ C and f ∈ HomR(C,M). By the defini-

tion of FC(S), we obtain M ∈ FC(S). Therefore, the condition (TT3) is satisfied.
Consequently, the pair (TC(S),FC(S)) is a torsion theory connected by S.

The name of torsion theory connected by a Serre subcategory comes from the

following property, corresponding to Remark 2.5, case (1) (a).

Proposition 3.4. Let (T ,F) be a pair of subcategories of R-Mod and S a Serre
subcategory. Then the following assertions hold.

(1) The condition (TT1) implies T ∩ F j S.
(2) The condition (TT2) implies T k S.
(3) The condition (TT3) implies F k S.
In particular, a torsion theory (T ,F) connected by S satisfies T ∩ F = S.

P r o o f. The last part is clear if we can prove that the assertions (1)–(3) hold.

(1) We suppose that M is in T ∩ F . Then, the identity map idM on M can be

regarded as a homomorphism from M ∈ T to M ∈ F . By the condition (TT1), we
see that M = idM (M) is in S.
(2) We take an R-module M in S. For all F ∈ F and f ∈ HomR(M,F ), one has

f(M) ∈ S because S is closed under taking quotient modules. The condition (TT2)
implies M ∈ T .
(3) Let M be an R-module in S. Then we have f(T ) j M for all T ∈ T and

f ∈ HomR(T,M). Since S is closed under taking submodules, we have f(T ) ∈ S.
Consequently, the condition (TT3) yields M ∈ F . �

Remark 2.5, cases (1) (b) and (1) (c) correspond to the following proposition.
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Proposition 3.5. Let (T ,F) be a pair of subcategories of R-Mod and S a Serre
subcategory. Then the following assertions hold.

(1) If (T ,F) satisfies the conditions (TT1) and (TT2), then T is closed under taking
quotient modules.

(2) If (T ,F) satisfies the conditions (TT1) and (TT3), then F is closed under taking
submodules.

In particular, a torsion theory (T ,F) connected by S satisfies the conclusion in (1)

and (2).

P r o o f. (1) Let T be an R-module in T and N a quotient module of T with
a surjective homomorphism ϕ ∈ HomR(T,N). By the condition (TT2), it is sufficient

to show that f(N) is in S for all F ∈ F and f ∈ HomR(N,F ). We consider the

homomorphism f ◦ ϕ ∈ HomR(T, F ). Then we see that f(N) = f ◦ϕ(T ) ∈ S by the
condition (TT1). Consequently, T is closed under taking quotient modules.
(2) Let F be an R-module in F and L a submodule of F with an injective ho-

momorphism ψ ∈ HomR(L, F ). We shall show that f(T ) ∈ S for all T ∈ T and
f ∈ HomR(T, L). Since ψ ◦ f ∈ HomR(T, F ), we have f(T ) = ψ ◦ f(T ) ∈ S by the
condition (TT1). Therefore, the condition (TT3) implies L ∈ F . Consequently, F is
closed under taking submodules. �

Next, we give a sufficient condition to be closed under taking extensions for T
and F .

Proposition 3.6. Let (T ,F) be a torsion theory connected by a Serre subcate-

gory S. Then the following hold.
(1) If T is closed under taking submodules, then F is closed under taking extensions.
(2) If F is closed under taking quotient modules, then T is closed under taking
extensions.

P r o o f. (1) Let 0 → F1 → M → F2 → 0 be a short exact sequence of R-modules

with F1, F2 ∈ F . If we can show f(T ) ∈ S for all T ∈ T and f ∈ HomR(T,M), then

one has M ∈ F by the condition (TT3). We consider a commutative diagram

0 // f−1(F1) //

f |
f−1(F1)

��

T

f

��

// T/f−1(F1)

f

��

// 0

0 // f(T ) ∩ F1
// f(T ) // f(T )/(f(T ) ∩ F1) // 0

of R-modules with exact rows and vertical surjective homomorphisms, where f is

a natural homomorphism induced by f . Since T is closed under taking submod-
ules by our assumption and quotient modules by Proposition 3.5, case (1), the
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R-modules f−1(F1) and T/f
−1(F1) are in T . (We note that the condition (TT2)

was used here.) However, we have f(T )∩F1 j F1 and f(T )/(f(T )∩F1) jM/F1
∼=

F2. Since F is closed under taking submodules by Proposition 3.5, case (2), the
R-modules f(T )∩F1 and f(T )/(f(T )∩F1) are in F . Therefore, we see that f |f−1(F1)

and f are homomorphisms from an R-module in T to an R-module in F . The con-
dition (TT1) implies that f(T ) ∩ F1 and f(T )/(f(T ) ∩ F1) are in S. Consequently,
the R-module f(T ) is also in S because S is closed under taking extensions.
(2) Let 0 → T1 → M → T2 → 0 be a short exact sequence of R-modules with

T1, T2 ∈ T . If we can prove that f(M) is in S for all F ∈ F and f ∈ HomR(M,F ),

then one has M ∈ T by the condition (TT2). We consider a commutative diagram

0 // T1 //

f |T1

��

M

f

��

// T2

f

��

// 0

0 // f(T1) // f(M) // f(T )/f(T1) // 0

of R-modules with exact rows and vertical surjective homomorphisms where f is

a natural homomorphism induced by f . Since f(T1) j f(M) j F and F is closed un-
der taking submodules by Proposition 3.5, case (2), the R-modules f(T1) and f(M)

are in F . (Here, we used the condition (TT3).) Furthermore, F is closed under
taking quotient modules by our assumption, the R-module f(M)/f(T1) is also in F .
Therefore, we see that f |T1 and f are homomorphisms from an R-module in T to
an R-module in F . The condition (TT1) implies that f(T1) and f(M)/f(T1) are

in S. Consequently, the R-module f(M) is also in S because S is closed under taking
extensions. �

Here, we will give a sufficient condition to be a torsion theory connected by a Serre

subcategory. If we take the zero subcategory as a Serre subcategory, the proposition

below gives a necessary and sufficient condition to be an ordinary torsion theory by

combining Remark 2.5, cases (1) and (2). However, this proposition does not give

a necessary condition to be a generalized torsion theory. Indeed, we will show the

existence of a torsion theory (T ,F) connected by a Serre subcategory that is not

closed under taking extensions for T , see Example 6.2.

Proposition 3.7. Let S be a Serre subcategory. For a pair (T ,F) of subcategories

of R-Mod, we suppose that the following statements hold:

(1) One has T ∩ F = S.
(2) T is closed under taking quotient modules and extensions.
(3) F is closed under taking submodules and extensions.
(4) One has T ∗ F = R-Mod.

Then (T ,F) is a torsion theory connected by S.
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P r o o f. First of all, we shall see that the condition (TT1) is satisfied by the

assumptions (1), that T is closed under taking quotient modules, and that F is
closed under taking submodules. Let us take an R-module T in T , an R-module F
in F , and f ∈ HomR(T, F ). Then, since T is closed under taking quotient modules,
we have f(T ) ∈ T . However, since F is closed under taking submodules, one has
f(T ) ∈ F . Therefore, we see that f(T ) ∈ T ∩ F = S by (1).
Next, we shall show that (T ,F) satisfies the condition (TT2) by the assump-

tions (1), that T is closed under taking extensions, and (4). Let M be an R-module
such that f(M) ∈ S for all F ∈ F and f ∈ HomR(M,F ). By (4), there exists a short

exact sequence

0 → T →M
ϕ→ F ′ → 0

of R-modules with T ∈ T and F ′ ∈ F . Since ϕ is a homomorphism from M to an

R-module in F , we can apply our assumption to ϕ. Then, we obtain ϕ(M) ∈ S =

T ∩ F j T by (1). Since T is closed under taking extensions, the above short exact
sequence implies M ∈ T .
Finally, we shall show that the condition (TT3) holds for (T ,F) by the assump-

tions (1), that F is closed under taking extensions, and (4). Let M be an R-module
such that f(T ) ∈ S for all T ∈ T and f ∈ HomR(T,M). By (4), there exists a short

exact sequence

0 → T ′ ψ→M → F → 0

of R-modules with T ′ ∈ T and F ∈ F . We apply our assumption to ψ ∈
HomR(T

′,M). Then one has ψ(T ′) ∈ S = T ∩ F j F by (1). Since F is
closed under taking extensions, the above short exact sequence yields M ∈ F . �

4. A generalized torsion theory associated with

the section functor

To present examples of hereditary torsion theories connected by a Serre subcate-

gory, we try to generalize the torsion class TW and the torsion-free class FW asso-
ciated with a specialization closed subset W of Spec(R). In particular, there exist

two possible ways to generalize the torsion-free class: one is associated with the sec-

tion functor and the other is associated with the Hom functor. After investigating

torsion-free classes associated with the section functor in this section, we will study

torsion-free classes associated with the Hom functor in the next section.

First of all, we introduce the notions of generalized torsion class and generalized

torsion-free class associated with the section functor. The main purpose of this

section is to prove that a pair of these classes is always a torsion theory connected

by a Serre subcategory.
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Definition 4.1. IfW is a specialization closed subset of Spec(R) and S is a Serre
subcategory, we denote by

T (W,S) = {M ∈ R-Mod: M/ΓW (M) ∈ S}

the torsion class connected by S for W , and by

FG(W,S) = {M ∈ R-Mod: ΓW (M) ∈ S}

the Γ-torsion-free class connected by S for W . In particular, for an ideal I of R,
we will simply denote T (V (I),S) and FG(V (I),S) by T (I,S) and FG(I,S), respec-
tively.

Remark 4.2. Let S be a Serre subcategory.
(1) It is easy to see that if S = {0} then the pair (T (W, {0}),FG(W, {0})) coincides
with the ordinary torsion theory (TW ,FW ) corresponding to the specialization

closed subset W of Spec(R).

(2) We have T (I,S) = T (
√
I,S) and FG(I,S) = FG(

√
I,S) for an ideal I of R.

Here, we will observe the relationship between T (W,S) and TW for a specialization
closed subset W of Spec(R) and a Serre subcategory S.

Proposition 4.3. Let W be a specialization closed subset of Spec(R) and S
a Serre subcategory. Then the following hold.

(1) T (W,S) is closed under taking submodules and quotient modules.
(2) One has T (W,S) = TW ∗ S j S ∗ TW .
(3) T (W,S) is closed under taking extensions if and only if one has T (W,S) =

TW ∗ S = S ∗ TW . In this case, T (W,S) is a Serre subcategory.
(4) If S is closed under taking injective hulls, then one has T (W,S) = TW ∗ S =

S ∗ TW .

P r o o f. (1) It is directly proved from the definition of T (W,S).
(2) Let M be an R-module in T (W,S). Then we have a short exact sequence

0 → ΓW (M) →M →M/ΓW (M) → 0

of R-modules with ΓW (M) ∈ TW and M/ΓW (M) ∈ S. Therefore, M is in TW ∗ S.
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Conversely, let us take an R-module M ∈ TW ∗ S. Then there exists a short exact
sequence 0 → L → M

ϕ→ S → 0 of R-modules with L ∈ TW and S ∈ S. Applying
the left exact functor ΓW (−) to this sequence, we obtain the commutative diagram

0

��

0

��

0

��

0 // ΓW (L) // ΓW (M)

��

ϕ′

// Imϕ′

��

// 0

0 // L // M

��

ϕ
// S

��

// 0

M/ΓW (M)

��

ϕ
// S/Imϕ′

��

0 0

of R-modules where ϕ′ = ϕ|ΓW (M) and ϕ is a natural homomorphism induced by ϕ.

The snake lemma implies that ϕ is an isomorphism. Since S is closed under taking
quotient modules, we see that M/ΓW (M) ∼= S/Imϕ′ ∈ S. Consequently, M is

in T (W,S).
Finally, since TW is a Serre subcategory that is closed under taking injective hulls,

the subcategory S ∗TW is Serre by [8], Corollary 3.5. In particular, this subcategory
is closed under taking extensions. Therefore, we have TW ∗ S j S ∗ TW because TW
and S are contained in S ∗ TW .
(3) It follows from the assertions (1), (2), and [8], Theorem 3.2.

(4) We suppose that S is closed under taking injective hulls. Then the subcategory
T (W,S) = TW ∗ S is Serre by [8], Corollary 3.5. Therefore, the assertion (3) implies
T (W,S) = TW ∗ S = S ∗ TW . �

Remark 4.4. Let W be a specialization closed subset of Spec(R) and S a Serre
subcategory. By virtue of Proposition 4.3, case (2), for any R-module M in TW ∗ S,
we can see that there is a short exact sequence

0 → ΓW (M) →M →M/ΓW (M) → 0

of R-modules with ΓW (M) ∈ TW and M/ΓW (M) ∈ S.

Now, we will see that a torsion class connected by a Serre subcategory for a spe-

cialization closed subset of Spec(R) is not necessarily closed under taking extensions.

We denote by Sfg the subcategory consisting of finitely generated (fg) modules.

132



Example 4.5. We suppose that R is a 1-dimensional Gorenstein local ring with

maximal ideal m. Then, let us prove that T (m,Sfg) is not closed under taking

extensions. We consider a minimal injective resolution of R:

0 → R→
⊕

p∈Spec(R),
htp=0

ER(R/p) → ER(R/m) → 0.

Since R/Γm(R) and ER(R/m)/Γm(ER(R/m)) = 0 are finitely generated R-modules,

the modules R and ER(R/m) are in T (m,Sfg). Here, we denote by E the middle

term
⊕

ht p=0

ER(R/p) in the above resolution. Then one has E/Γm(E) = E because

we have AssR(E) ∩ V (m) = {p ∈ Spec(R) : ht p = 0} ∩ V (m) = ∅. Since R is a non-
Artinian local ring, there exists no nonzero finitely generated injective R-module.

This fact yields E/Γm(E) 6∈ Sfg, whence one has E 6∈ T (m,Sfg). Consequently,

T (m,Sfg) is not closed under taking extensions. Moreover, we note that the above

argument also gives an inclusion relation

T (m,Sfg) = TV (m) ∗ Sfg $ Sfg ∗ TV (m)

because E is obviously in Sfg ∗ TV (m).

However, the following torsion class connected by a Serre subcategory is closed

under taking extensions.

Example 4.6. Let V , W be specialization closed subsets of Spec(R) and S
a Serre subcategory. Then we have

T (V,S ∗ TV ∪W ) k S ∗ TV ∪W k T (V,S ∗ TW ).

Therefore, if V j W , then T (V,S ∗ TW ) = S ∗ TW is a Serre subcategory. In

particular, the subcategory T (p,S ∗ TW ) is Serre for p ∈W .

Let us prove that our assertion holds. It is clear that TV , TW and TV ∪W are Serre

subcategories that are closed under taking injective hulls. Therefore, the subcate-

gories S ∗ TV ∪W , S ∗ TW , and (S ∗ TW ) ∗ TV are Serre by [8], Corollary 3.5. Then we
have

T (V,S ∗ TV ∪W ) = TV ∗ (S ∗ TV ∪W ) k S ∗ TV ∪W
(a)
= S ∗ (TW ∗ TV )

(b)
= (S ∗ TW ) ∗ TV

(c)

k TV ∗ (S ∗ TW ) = T (V,S ∗ TW ).
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The equality (a) is given by [8], Lemma 2.2, case (1). Next, the equality (b) is given

by the push out diagram

0

��

0

��

S

��

S

��

0 // L

��

// M

��

// TV // 0

0 // TW

��

// Y

��

// TV

��

// 0

0 0 0

of R-modules with L ∈ S ∗ TW , S ∈ S, TW ∈ TW , and TV ∈ TV , and the pull back
diagram

0

��

0

��

0 // S′ // Z //

��

T ′
W

��

// 0

0 // S′ // M

��

// N

��

// 0

T ′
V

��

T ′
V

��

// 0

0 0

of R-modules with N ∈ TW ∗ TV , T ′
W ∈ TW , T ′

V ∈ TV , and S′ ∈ S. Finally, since
(S ∗ TW ) ∗ TV is closed under taking extensions, we see that the relation (c) holds.

Next, we observe the relationship between FG(W,S) and FW for a specialization
closed subset W of Spec(R) and a Serre subcategory S.

Proposition 4.7. Let W be a specialization closed subset of Spec(R) and S
a Serre subcategory. Then the following hold.

(1) FG(W,S) is closed under taking submodules and extensions.
(2) One has FG(W,S) = S ∗ FW k FW ∗ S.
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(3) If S is closed under taking injective hulls, then one has FG(W,S) = S ∗ FW =

FW ∗ S.
P r o o f. (1) For a short exact sequence 0 → L → M → N → 0 of R-modules,

there exists an exact sequence 0 → ΓW (L) → ΓW (M) → ΓW (N). Thus, our as-

sertion obviously holds due to the definition of FG(W,S) because S is closed under
taking submodules and extensions.

(2) Let M be an R-module in FG(W,S). Then we have a short exact sequence

0 → ΓW (M) →M →M/ΓW (M) → 0

of R-modules with ΓW (M) ∈ S and M/ΓW (M) ∈ FW . Therefore, M is in S ∗ FW .
Conversely, let us take an R-module M ∈ S ∗ FW . Then there exists a short

exact sequence 0 → S → M → F → 0 of R-modules with S ∈ S and F ∈ FW .
We apply the left exact functor ΓW (−) to this exact sequence. Since ΓW (F ) = 0

and S is closed under taking submodules, one has ΓW (M) = ΓW (S) ∈ S. This yields
M ∈ FG(W,S).
Finally, we shall see that FG(W,S) k FW ∗ S. Let M be an R-module in FW ∗ S.

Then there exists a short exact sequence

0 → F →M → S → 0

of R-modules with F ∈ FW and S ∈ S. Applying the left exact functor ΓW (−) to

the above short exact sequence, we obtain an exact sequence 0 → ΓW (M) → ΓW (S).

Since S is closed under taking submodules, we see that ΓW (M) ∈ S. Conse-
quently, M is in FG(W,S).
(3) We only have to show S ∗ FW j FW ∗ S. Let us take an R-module M in

S ∗ FW . Then there exists a short exact sequence

0 → S →M → F → 0

of R-modules with S ∈ S and F ∈ FW . Here, we consider a push out diagram

0 // S

��

// M

��

// F // 0

0 // ER(S) // X // F // 0

of R-modules with exact rows and vertical injective homomorphisms. The second

row splits, and thus we have an injective homomorphism M → F ⊕ER(S). Since S
is closed under taking injective hulls, we have F ⊕ ER(S) ∈ FW ∗ S. Furthermore,
Lemma 2.3, case (1) implies that FW ∗S is closed under taking submodules. Conse-
quently, we obtain M ∈ FW ∗ S. �
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Remark 4.8. Let W be a specialization closed subset of Spec(R) and S a Serre
subcategory. By virtue of Proposition 4.7, case (2), we can see that an R-module M

in S ∗ FW has a short exact sequence

0 → ΓW (M) →M →M/ΓW (M) → 0

of R-modules with ΓW (M) ∈ S and M/ΓW (M) ∈ FW .

Here, we investigate the extension and the intersection of a torsion class and

a Γ-torsion free class connected by a Serre subcategory.

Lemma 4.9. Let W be a specialization closed subset of Spec(R) and S a Serre
subcategory. Then the following hold.

(1) One has T (W,S) ∗ FG(W,S) = R-Mod.

(2) One has T (W,S) ∩ FG(W,S) = S.

P r o o f. (1) We note that T (W,S) k TW and FG(W,S) k FW . Therefore, one
has

R-Mod k T (W,S) ∗ FG(W,S) k TW ∗ FW = R-Mod.

(2) It is clear that T (W,S) k S and FG(W,S) k S. Therefore, T (W,S) ∩
FG(W,S) k S holds. Conversely, let M be an R-module in T (W,S) ∩ FG(W,S).
Since M ∈ T (W,S), there exists a short exact sequence 0 → ΓW (M) → M →
M/ΓW (M) → 0 of R-modules withM/ΓW (M) ∈ S. However, sinceM ∈ FG(W,S),
we have ΓW (M) ∈ S. Consequently, the above short exact sequence implies M ∈ S
because S is closed under taking extensions. �

Now, we can give the main result of this section.

Theorem 4.10. The pair (T (W,S),FG(W,S)) is a hereditary torsion theory con-
nected by the Serre subcategory S for a specialization closed subset W of Spec(R).

P r o o f. It must be checked that the pair (T (W,S),FG(W,S)) satisfies the con-
ditions (TT1), (TT2), and (TT3) in Definition 3.1.

In the first and third parts of the proof for Proposition 3.7, we have already seen

that the following assertions hold for a pair (T ,F) of subcategories of R-Mod in

general:

(a) We suppose that one has T ∩ F = S, T is closed under taking quotient mod-
ules, and F is closed under taking submodules. Then (T ,F) satisfies the con-

dition (TT1).

(b) We suppose that one has T ∩ F = S, F is closed under taking extensions, and
one has T ∗ F = R-Mod. Then (T ,F) satisfies the condition (TT3).
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The pair (T (W,S),FG(W,S)) satisfies the conditions in (a) by Proposition 4.3,
case (1), Proposition 4.7, case (1), and Lemma 4.9, case (2). However, it also satis-

fies the conditions in (b) by Proposition 4.7, case (1) and Lemma 4.9. Consequently,

we can conclude that the pair (T (W,S),FG(W,S)) satisfies the conditions (TT1)
and (TT3). It remains to be checked that the condition (TT2) is satisfied. Let us take

an R-module M such that f(M) ∈ S for all F ∈ FG(W,S) and f ∈ HomR(M,F ).

We consider the short exact sequence 0 → ΓW (M) → M
ϕ→ M/ΓW (M) → 0 of

R-modules. Since M/ΓW (M) ∈ FW j FG(W,S), we see that ϕ is a homomorphism
from M to an R-module in FG(W,S). Therefore, we can apply the above assump-
tion for M to ϕ. Then, one has M/ΓW (M) = ϕ(M) ∈ S. Consequently, we see that
M ∈ T (W,S), and thus the pair (T (W,S),FG(W,S)) satisfies the condition (TT2).
Finally, the subcategory T (W,S) is closed under taking submodules by Proposi-

tion 4.3, case (1). Therefore, the pair (T (W,S),FG(W,S)) is a hereditary torsion
theory connected by S. �

5. A generalized torsion-free class associated with the Hom functor

and the relationship with the Melkersson condition

We start by giving a generalization of torsion-free class associated with the Hom

functor.

Definition 5.1. If I is an ideal of R and S is a Serre subcategory, we denote

FH(I,S) = {M ∈ R-Mod: HomR(R/I,M) ∈ S}.

If FH(I,S) is a torsion-free class for some torsion theory connected by S, then
FH(I,S) is called the Hom-torsion-free class connected by S for I.

Remark 5.2. Let I be an ideal of R and S a Serre subcategory.
(1) It is easy to see that if S = {0} then the pair (T (I, {0}),FH(I, {0})) coincides
with the ordinary torsion theory (TV (I),FV (I)) corresponding to the closed sub-

set V (I) of Spec(R).

(2) It is possible to consider the subcategory T H(I,S) = {M ∈ R-Mod: M/(0 :M
I) ∈ S} associated with the Hom functor. In general, however, we see that
T H(I, {0}) does not coincide with TV (I). To see this, let us take the zero

subcategory as S over a local ring R with maximal ideal m. Then the module
ER(R/m) is in TV (m). However, if we suppose that ER(R/m) is in T H(m, {0}),
then we have ER(R/m)/(0 :ER(R/m) m) = ER(R/m)/(R/m) ∈ {0}. Namely,
one has ER(R/m) = R/m. This equality means that R must be an Artinian

ring.
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(3) It is clear that T (I,S) k TV (I) and FH(I,S) k FV (I). Therefore, we have

T (I,S) ∗ FH(I,S) = TV (I) ∗ FV (I) = R-Mod.

The main purpose of this section is to investigate the problem of whether the pair

(T (I,S),FH(I,S)) is a hereditary torsion theory connected by a Serre subcategory S
or not for an ideal I of R. However, we shall see that this problem has a negative

answer. Therefore, we will try to give necessary and sufficient conditions for the

pair (T (I,S),FH(I,S)) to be the hereditary torsion theory connected by S. One of
these conditions will be given by using the notion of Melkersson condition.

First of all, we observe the relationship between FH(I,S) and a Γ-torsion-free

class FG(I,S) connected by the Serre subcategory S for an ideal I of R. We
note that these subcategories may not be Serre subcategories because FH(I, {0}) =
FG(I, {0}) = FV (I) is not necessarily closed under taking quotient modules.

Proposition 5.3. Let I be an ideal of R and S a Serre subcategory. Then the
following hold.

(1) FH(I,S) is closed under taking submodules and extensions.
(2) One has FH(I,S) = FH(In,S) = FH(

√
I,S) for each positive integer n.

(3) One has FH(I,S) k FG(I,S) = S ∗ FV (I) k FV (I) ∗ S.

P r o o f. (1) For a short exact sequence 0 → L → M → N → 0 of R-modules,

there exists an exact sequence

0 → HomR(R/I, L) → HomR(R/I,M) → HomR(R/I,N).

Thus, our assertion is proved from the definition of FH(I,S) because S is closed
under taking submodules and extensions.

(2) We take an R-module M and a positive integer n. Since we have

HomR(R/
√
I,M) j HomR(R/I,M) j HomR(R/I

n,M)

and S is closed under taking submodules, one has

FH(
√
I,S) k FH(I,S) k FH(In,S).

Next, we will show FH(
√
I,S) j FH(In,S). Let us take an R-module M in

FH(
√
I,S). There exists a positive integer s such that (

√
I)s j I. Then, we have

HomR(R/I
n,M) j HomR(R/(

√
I)ns,M).

Thus, if we can show HomR(R/(
√
I)ns,M) ∈ S, then one has M ∈ FH(In,S)

because S is closed under taking submodules.
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We denote
√
I by J . Since J/J2 is a finitely generated R/J-module, there exists

a surjective homomorphism ϕ from
⊕t

R/J to J/J2 for some positive integer t.

Then, we have

HomR(J/J
2,M) j HomR

(

⊕t
R/J,M

)

∼=
⊕t

HomR(R/J,M).

Thus HomR(J/J
2,M) is in S because S is closed under taking submodules and

extensions. The short exact sequence 0 → J/J2 → R/J2 → R/J → 0 provides an

exact sequence

0 → HomR(R/J,M) → HomR(R/J
2,M) → HomR(J/J

2,M).

Consequently, sinceM is in FH(J,S), we see that HomR(R/J
2,M) ∈ S. By repeat-

ing the same argument as above, we can prove that HomR(R/J
ns,M) is in S.

(3) By virtue of Proposition 4.7, case (2), it remains to show FH(I,S) k FG(I,S).
Let us take an R-module M in FG(I,S). Then, we have

HomR(R/I,M) ∼= (0 :M I) j ΓI(M) ∈ S.

Therefore, since S is closed under taking submodules, we obtain M ∈ FH(I,S). �

In general, FH(I,S) does not coincide with FG(I,S) for a Serre subcategory S
and an ideal I of R.

Example 5.4. Let R be a non-Artinian local ring with maximal ideal m.

(1) Since ER(R/m)/Γm(ER(R/m)) = ER(R/m)/ER(R/m) = 0 ∈ Sfg, one has

ER(R/m) ∈ T (m,Sfg).

(2) We have HomR(R/m, ER(R/m)) ∼= R/m ∈ Sfg. Thus, we obtain ER(R/m) ∈
FH(m,Sfg).

(3) One has Γm(ER(R/m)) = ER(R/m) 6∈ Sfg because there exists no nonzero

finitely generated injective module over a non-Artinian local ring. Therefore,

we see that ER(R/m) /∈ FG(m,Sfg).

Consequently, we see that FH(m,Sfg) % FG(m,Sfg) by Proposition 5.3, case (3).

Moreover, we have T (m,Sfg) ∩ FH(m,Sfg) % Sfg. It follows from Theorem 4.10

that the pair (T (m,Sfg),FG(m,Sfg)) is a hereditary torsion theory connected by Sfg.

However, Proposition 3.4 yields the pair (T (m,Sfg),FH(m,Sfg)) is not a hereditary

torsion theory connected by Sfg.

Now, the following natural questions arise: For an ideal I of R and a Serre sub-

category S:
(1) When is the pair (T (I,S),FH(I,S)) a hereditary torsion theory connected
by S?
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(2) What kind of Serre subcategory S does the equality T (I,S) ∩ FH(I,S) = S
hold?

(3) When does FH(I,S) coincide with FG(I,S)?
The following theorem gives answers to these questions, which is the main result

of this paper.

Theorem 5.5. Let I be an ideal of R and S a Serre subcategory. Then the
following conditions are equivalent:

(1) A pair (T (I,S),FH(I,S)) is a hereditary torsion theory connected by S.
(2) One has T (I,S) ∩ FH(I,S) = S.
(3) One has FH(I,S) = FG(I,S).
(4) S satisfies the Melkersson condition (CI).

P r o o f. We will show the implications (1) ⇒ (2) ⇒ (4) ⇒ (3) ⇒ (1) hold.
(1) ⇒ (2): It follows from Proposition 3.4.
(2) ⇒ (4): We suppose that ΓI(M) = M and (0 :M I) is in S for an R-

module M . Since M/ΓI(M) = 0 ∈ S, we have M ∈ T (I,S). Moreover, we have
HomR(R/I,M) ∼= (0 :M I) ∈ S. This means M ∈ FH(I,S). Consequently, we ob-
tainM ∈ T (I,S)∩FH(I,S) = S, and thus S satisfies the Melkersson condition (CI).
(4) ⇒ (3): We have already seen that FH(I,S) k FG(I,S) in Proposition 5.3.

We suppose that S satisfies the Melkersson condition (CI) and an R-moduleM is in
FH(I,S). We apply the left exact functor HomR(R/I,−) to a short exact sequence

0 → ΓI(M) → M → M/ΓI(M) → 0 of R-modules. Then we obtain an exact

sequence

0 → HomR(R/I,ΓI(M)) → HomR(R/I,M) → HomR(R/I,M/ΓI(M)).

Since HomR(R/I,M/ΓI(M)) = 0 and M ∈ FH(I,S), one has

HomR(R/I,ΓI(M)) ∼= HomR(R/I,M) ∈ S.

Furthermore, it is clear that ΓI(ΓI(M)) = ΓI(M). Thus, we see that ΓI(M) ∈ S by
the Melkersson condition (CI) for S. Consequently, we have M ∈ FG(I,S).
(3) ⇒ (1): By Theorem 4.10, we can conclude that the pair

(T (I,S),FH(I,S)) = (T (I,S),FG(I,S))

is a hereditary torsion theory connected by S. �

The following corollary is the FH(I,S)-version for Proposition 4.7, case (3).
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Corollary 5.6. Let I be an ideal of R. If a Serre subcategory S is closed under
taking injective hulls, then one has

FH(I,S) = FG(I,S) = S ∗ FV (I) = FV (I) ∗ S.

P r o o f. A Serre subcategory that is closed under taking injective hulls satisfies

Melkersson condition with respect to all ideals ofR. Therefore, our assertion is proved

by Proposition 4.7, case (3) and the implication (4) ⇒ (3) in Theorem 5.5. �

6. Examples of generalized torsion theories

In this section, we give examples of hereditary torsion theories connected by a Serre

subcategory.

The first example is a torsion class connected by a Serre subcategory that is

not closed under taking arbitrary direct sums. Therefore, the following generalized

hereditary torsion theory is not an ordinary one. Let us denote by SArtin and SFA

the Serre subcategory consisting of the Artinian modules and the Serre subcategory

Sfg ∗ SArtin consisting of the Minimax modules, respectively.

Example 6.1. We suppose that R is a 1-dimensional semi-local ring with at least

two minimal prime ideals and p is a minimal prime ideal of R. Then the following

assertions (1)–(4) hold.

(1) The Serre subcategory SFA is closed under taking injective hulls. In particular,

it satisfies the Melkersson condition (Cp).

(2) One has T (p,SFA) = TV (p) ∗ SFA = SFA ∗ TV (p). Furthermore, this is a Serre

subcategory which is closed under taking injective hulls but not closed under

taking arbitrary direct sums. Therefore, T (p,SFA) is not a torsion class for any

torsion theory in the ordinary sense.

(3) One has FH(p,SFA) = FG(p,SFA) = SFA ∗ FV (p) = FV (p) ∗ SFA and this is

closed under taking injective hulls.

(4) The pair (T (p,SFA),FH(p,SFA)) is a hereditary torsion theory connected by

SFA with the inclusion relations

R-Mod

T (p,SFA) FH(p,SFA)

SFA

$

$%

%
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of subcategories such that T (p,SFA) ∗ FH(p,SFA) = R-Mod and T (p,SFA) ∩
FH(p,SFA) = SFA.

Let us prove that the above assertions hold.

(1): By virtue of [8], Corollary 3.3, the subcategory SFA is a Serre subcategory.

Since R is a 1-dimensional semi-local ring, we see that SFA is closed under taking

injective hulls by [9], Theorem 3.5. Moreover, if a Serre subcategory is closed under

taking injective hulls, then it satisfies the Melkersson conditions with respect to all

ideals of R. Therefore, the subcategory SFA satisfies the Melkersson condition (Cp).

(2): We have T (p,SFA) = TV (p) ∗ SFA = SFA ∗ TV (p) by the assertion (1) and

Proposition 4.3, case (4). Moreover, T (p,SFA) is a Serre subcategory that is closed

under taking injective hulls by Lemma 2.3, case (2), Proposition 4.3, cases (1) and (3).

Next, we will prove that T (p,SFA) is not closed under taking arbitrary direct

sums. By our assumption, we can take a minimal prime ideal q with q 6= p. The

R-module R/q is in Sfg j SFA j T (p,SFA). Since T (p,SFA) is closed under taking

injective hulls, we have ER(R/q) ∈ T (p,SFA).

Here, we denote an infinite direct sum of copies of ER(R/q) by E(q), and shall see

E(q) /∈ T (p,SFA). We assume E(q) ∈ T (p,SFA) = TV (p) ∗ SFA. Then there exists

a short exact sequence

0 → T → E(q) → S → 0

of R-modules with T ∈ TV (p) and S ∈ SFA. This sequence implies AssR(T ) j

AssR(E(q)) = {q}. However, since T is in TV (p), one has AssR(T ) j V (p). Therefore,

we can see that AssR(T ) = ∅ because the minimal prime q cannot belong to V (p).

This equality means T = 0, and thus the above short exact sequence yields E(q) ∼=
S ∈ SFA. Then, there exists a short exact sequence

0 → X → E(q) → Y → 0

of R-modules with X ∈ Sfg and Y ∈ SArtin. We note that E(q) is a direct summand

of ER(X) ⊕ ER(Y ), and ER(X) ⊕ ER(Y ) is a finite direct sum of indecomposable

injective R-modules. However, this is not possible because E(q) is an infinite di-

rect sum of indecomposable injective R-modules. Consequently, the contradiction is

derived, and hence we see that E(q) 6∈ T (p,SFA).

In addition, we note that an ordinary torsion class must be closed under taking

arbitrary direct sums. (See [7], Ch. VI, Proposition 2.1.) Hence, the above argument

shows that for T (p,SFA) it is not possible to be a torsion class for some ordinary

torsion theory.

(3): It follows from our assertion (1), Lemma 2.3, case (2), and Corollary 5.6.
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(4): We have already seen that SFA satisfies the Melkersson condition (Cp) in the

assertion (1). Therefore, Theorem 5.5 implies that the pair

(T (p,SFA),FH(p,SFA))

is a hereditary torsion theory connected by SFA and that one has T (p,SFA) ∩
FH(p,SFA) = SFA. Furthermore, we have T (p,SFA) ∗ FH(p,SFA) = R-Mod by

Remark 5.2, case (3).

Next, we shall see that the inclusion relations hold. It is easy to see that we have

SFA j T (p,SFA) j R-Mod. Moreover, T (p,SFA) is strictly contained in R-Mod

because we have already seen that E(q) 6∈ T (p,SFA). If we denote an infinite direct

sum of copies of ER(R/p) by E(p), then one has E(p) ∈ TV (p) j T (p,SFA). However,

we can deduce E(p) 6∈ SFA for the same reason when discussing E(q) 6∈ SFA in the

proof of assertion (2).

Finally, it remains to prove SFA $ FH(p,SFA) $ R-Mod. It is easy to see that the

inclusion relations hold. We assume SFA = FH(p,SFA). Since T (p,SFA) is closed

under taking extensions, one has

R-Mod = T (p,SFA) ∗ FH(p,SFA) = T (p,SFA) ∗ SFA

j T (p,SFA) ∗ T (p,SFA) = T (p,SFA).

However, this conclusion contradicts T (p,SFA) $ R-Mod. On the other hand, we

assume FH(p,SFA) = R-Mod. Then the following equalities hold:

SFA = T (p,SFA) ∩ FH(p,SFA) = T (p,SFA).

These equalities imply a contradiction because we have SFA $ T (p,SFA).

The second example states that a torsion class connected by a Serre subcategory

is not necessarily closed under taking extensions.

Example 6.2. Let R be a 1-dimensional Gorenstein local ring with maximal

ideal m.

(1) The subcategory Sfg is a Serre subcategory which does not satisfy the Melkers-

son condition (Cm).

(2) One has T (m,Sfg) = TV (m) ∗ Sfg $ Sfg ∗ TV (m). Moreover, T (m,Sfg) is closed

under taking submodules and quotient modules. However, this subcategory is

not closed under taking extensions or injective hulls.

(3) One has FH(m,Sfg) % FG(m,Sfg) = S ∗ FV (m). These two subcategories are

closed under taking submodules and extensions.
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(4) The pair (T (m,Sfg),FG(m,Sfg)) is a hereditary torsion theory connected by Sfg

with T (m,Sfg) ∗ FG(m,Sfg) = R-Mod and T (m,Sfg) ∩ FG(m,Sfg) = Sfg.

(5) The pair (T (m,Sfg),FH(m,Sfg)) is not a hereditary torsion theory connected

by Sfg with T (m,Sfg)∗FH(m,Sfg) = R-Mod and T (m,Sfg)∩FH(m,Sfg) % Sfg.

Let us prove that the above assertions hold.

(1): We have Γm(ER(R/m)) = ER(R/m) and (0 :ER(R/m) m) ∼= R/m ∈ Sfg.

However, since R is a non-Artinian local ring, one has ER(R/m) 6∈ Sfg.

(2): It follows from Proposition 4.3 and Example 4.5. In particular, we have

already seen that R is in T (m,Sfg) but ER(R) is not in T (m,Sfg) in Example 4.5.

(3)–(5): Our assertions have been already seen in Proposition 4.7, Theorem 4.10,

Proposition 5.3, Example 5.4, and Theorem 5.5.

The third example is a trivial case. However, this example states that T (I,S) $
FG(I,S) j FH(I,S) or T (I,S) % FH(I,S) k FG(I,S) may occur for an ideal I
of R and a Serre subcategory S.

Example 6.3. Let I be an ideal of R and W a specialization closed subset of

Spec(R). Then the following assertions (1)–(4) hold.

(1) The subcategory TW is a Serre subcategory that is closed under taking injective
hulls. In particular, TW satisfies the Melkersson condition (CI).

(2) One has T (I, TW ) = TV (I) ∗TW = TW ∗TV (I) = TV (I)∪W . (As for the last equal-

ity, also see [8], Lemma 2.2, case (1).) This subcategory is a Serre subcategory

that is closed under taking arbitrary direct sums.

(3) One has FH(I, TW ) = FG(I, TW ) = FV (I) ∗ TW = TW ∗FV (I) = {M ∈ R-Mod:

ΓW (ΓI(M)) = ΓI(M)}. (The last equality is derived from the definition of
FG(I, TW ).) This subcategory is closed under taking submodules, extensions,

and injective hulls.

(4) The pair (T (I, TW ),FH(I, TW )) is a hereditary torsion theory connected by TW
with T (I, TW ) ∗ FH(I, TW ) = R-Mod and T (I, TW ) ∩ FH(I, TW ) = TW .

The above assertions are proved by the same arguments as in Example 6.1. In

particular, if we take V (I) $ Spec(R) as W , then we have

T (I, TV (I)) = TV (I) $ FH(I, TV (I)) = FG(I, TV (I)) = R-Mod.

Moreover, if we suppose W $ Spec(R), then one has

T ((0), TW ) = TV ((0)) = R-Mod % FH((0), TW ) = FG((0), TW ) = TW .
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