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Abstract. The main objective of this paper is to study the global strong solution of the
parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional
space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes
equation and Solonnikov’s theorem on LP-LJ-estimates for the evolution Stokes equation,
it is shown that this coupled magnetohydrodynamic equations possesses a global strong
solution. In addition, the uniqueness of the global strong solution is obtained.
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1. INTRODUCTION

We consider the following 2-D incompressible magnetohydrodynamic (MHD)
model, which describes the interaction between moving conductive fluid flows and
electromagnetic fields in [11],

1 e
%—i—(wa)u:VAu——Vp—l—Q—uXcurlA—i—f(x) in Qx[0,7),
(1.1) 2 , 90 90
g e~ A+ %y VD, V.ou=0, V-A=0 inQx][0,7).
ot?2  eopo €0
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Here Q@ C R? is a bounded smooth domain, T > 0 is any fixed time, u(x,t) =
(ur(z,t), us(z,t)), Az, t) = (A1(z,t), Aa(z,t)), p(z,t) are the velocity field, the mag-
netic potential, and the pressure function, respectively, and ® = 9Ay/0t represents
the magnetic pressure with the scalar electromagnetic potential Ay. The constants
V, 00, Oc, €0, (o denote the kinetic viscosity, mass density, equivalent charge density,
electric permittivity, and magnetic permeability of free space, respectively.

In this paper, we focus on the system (1.1) with the initial-boundary conditions

(12) u(oa (E) = @(x)v A(Oa (E) = 1?(%), At(oa (E) = ﬂ(x) in Q,
(1.3) u(t,z) =0, A(t,z) =0 on 9 x[0,T).

Note that the authors have established the N-dimensional (N > 2) new MHD
model (1.1) in [11] based on the fundamental physical principles — the Newton’s
second law and the Maxwell equations for the electromagnetic fields. Moreover, it
is worth noticing that the new model (1.1) is established without any assumptions,
which implies that (1.1) is a physical principle for the incompressible magnetohy-
drodynamics. Differing from the classical MHD equation, the MHD model (1.1)
describes the motion of plasma under the standard Coulomb gauge and is also com-
patible with the Maxwell equations. In addition, the global weak solutions of the
corresponding 3-D MHD model (1.1) with initial-boundary conditions has been ob-
tained by using the Galerkin technique and standard energy estimates in [11]. In this
paper, what we are mainly concerned with is the existence and regularity of a global
strong solution of the 2-D MHD model (1.1) with the initial-boundary conditions
(1.2)—(1.3).

It is known that there have been huge mathematical studies on the existence
of solutions to the N-dimensional (N > 2) classical MHD model established by
Chandrasekhar [4]. In particular, Duvaut and Lions [5] constructed a global weak
solution and the local strong solution to the 3-D classical MHD equations with the
initial boundary value problem, and the properties of such solutions have been inves-
tigated by Sermange and Temam in [18]. Furthermore, some sufficient conditions for
smoothness were presented for the weak solution to the 3-D classical MHD equations
in [7] and some sufficient conditions for local regularity of a suitable weak solution to
the 3-D classical MHD system for the points belonging to a C3-smooth part of the
boundary were obtained in [21]. Also, the global strong solutions for heat conduct-
ing 3-D classical magnetohydrodynamic flows with non-negative density were proved
in [26]. For other various results related to the classical MHD model, we refer to
[10], [13], [17], [22], and the references therein.

Furthermore, let us recall some known results for the 2-D classical and generalized
MHD equations. It is noticed in [5], [18] that the 2-D classical MHD equations admit
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a unique global strong solution. Then, Ren, Wu et al. [16] have proved the global
existence and the decay estimates of small smooth solutions for the 2-D classical MHD
equations without magnetic diffusion and Cao, Regmi, and Wu [3] have obtained the
global regularity for the 2-D classical MHD equations with mixed partial dissipation
and magnetic diffusion. Besides, Regmi [15] established the global weak solution for
the 2-D classical MHD equations with partial dissipation and vertical diffusion. There
are also very interesting investigations concerning the existence of strong solutions
to the 2-D classical and generalized MHD equations, see [8], [9], [14], [18], [23], [24],
[25], and the references therein.

However, it is worth pointing out that the incompressible MHD system (1.1) is
a mixed-type model which is combined with the parabolic equation (1.1); and the
hyperbolic equation (1.1)s. The main challenge in obtaining global strong solution of
the 2-D MHD model (1.1) with (1.2)—(1.3) is the estimate for ||u x curl A|| ;e (0, 7;1.2)
and |[(u-V)ul| L (0,7;22). The difficulty is overcome by applying the Solonnikov’s the-
orem [6], [12], [19] on LP-L%-estimates for the non-stationary Stokes equations and
Agmon, Douglis, and Nirenberg’s estimates [1], [2], [12] for the stationary Stokes
equations. As we know, Solonnikov [19] first gave the proof of Maximal LP-L9-
estimates for the Stokes equation (2.3) using potential theoretic arguments. Re-
cently, Geissert, Hess, Hieber et al. [6] provided a short proof of the corresponding
Solonnikov’s theorem in [19].

The rest of this article is organized as follows. In Section 2, we introduce some
elementary function spaces, a vital embedding theorem and some regularity results
of both the non-stationary and stationary Stokes equations. Section 3 is mainly
devoted to giving the main results and proofs.

2. PRELIMINARIES

2.1. Notation and definitions. First, we introduce some notation and conven-
tions used throughout this paper.

Let Q C R? be a bounded sufficiently smooth domain. Let H™(2) (7 = 1,2) be
the general Sobolev space on () with the norm ||| z- and L?(Q) the Hilbert space
with the usual norm ||-||. By the space H}(2) we mean the completion of C§°(Q)
under the norm ||-||g1. If § is a Banach space, we denote by LP(0,T;F) (1 < p < o0)
the Banach space of the §-valued functions defined in the interval (0,7") that are
LP-integrable.

We also consider the following spaces of divergence-free functions (see Temam [20]):

X ={uec C&(Q,R?); divu=0 inQ},
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Y = the closure of X in L?(Q,R?) = {u € L*(Q,R?); divu =0 in Q},
Z = the closure of X in H'(Q,R?) = {u € H}(Q,R?); divu=0 in Q}.
Definition 2.1. Suppose that p,n € Y, € Z. For any T > 0, a vector function

(u, A) is called a global weak solution of problem (1.1)—(1.3) on (0, T) x £ if it satisfies
the following conditions:

1. w€ L?(0,T; Z)NL>=(0,T;Y),
2. Ae L>~(0,T;Z), A € L>=(0,T;Y),
3. for any function v € X,

¢
/u-vdx—l—//((u-V)u-v—l—uVu-Vv—&(uxcurlA)-v)da:dt
Q 0J/Q Qo0

t
://f~vdxdt+/<p~vdx
0Ja Q
/ vdx—l—// —VA Vv +—u v)dxdt:/nvda:.
ot €olto Eolo Q

Now, we define the strong solution of the problem (1.1)—(1.3).

Definition 2.2. Suppose that o, € H?>(Q,R?)N Z, n € Z. Then (u, A) is
called a global strong solution to (1.1)—(1.3), if (u, A) satisfies

u € L®(0,T; H*(Q,R*) N Z), uy € L>=(0,T;Y)NL*0,T; Z),

p € L>(0,T; H(Q)),

Ae L0, T; H*(Q,R*)N Z), Ay € L™=(0,T; Z), Ay € L=(0,T;Y),
® € L>=(0,T; H'(Q)),

where 0 < T < oo. Furthermore, (1.1) holds almost everywhere in Q x (0,7),
and (1.2) holds pointwise in .

2.2. Crucial lemmas. Some lemmas will be frequently used later. One is the
following embedding result [12], so we omit the proof.

Lemma 2.1. For any k > 0, the following inclusion holds:
(2.1) LP(0, T, WHLP(Q)) N L (0, T; L7 (Q)) € LY(0,T; W*1(Q)),
where ¢ = (r(k+ 1)p+ np)/(rk + n). In the special case of k =0, (2.1) reduces to
(2.2) LP(0, T; WHP(Q)) N L0, T L™ () € LY((Q2) x (0,T)),
provided that ¢ = (n + r)p/n.
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Another lemma is responsible for the estimates for u,p,u; and follows from the
LP-Li-estimates [6], [19] for non-stationary Stokes equations. For its proof, we refer
to [6], [19].

Let us consider the Stokes equations

ou

2 AU —

U v Vp ().
ulan =0,

u(0) = uyg,

where v > 0 is a constant.

Lemma 2.2. Let Q C R" (n = 2,3) be a domain with compact C®-boundary,
l<r,p <oo,0<T < oo. Then for any f € L"(0,T;L9(Q,R")) and uy €
W?24(Q, R™), there exists a unique solution (u,p) of (2.3) satisfying

we LV(0,T;W(Q,R™), u; € L (0,T; LY(Q, R™),
pe L0, T; Wh9(Q)),

such that

lull o, rsw2.a) + l[uellLr(o,rs00) + Dl Lr0,m5w10) < CULf I Lr(0,7500) + l[uollwz.a),
where C > 0 is a constant.
Finally, we give some regularity results for the stationary Stokes system. For their

proof, we refer to [1], [2], [12].

Lemma 2.3. Assume that (v,p) € W?P(Q,R") x WhP(Q) (1 < p < o) is
a solution of the stationary Stokes equations

—vAv —Vp=F(z) inQ,
V-v=0 in Q,
vl =0 on 092,
and F € Wk4(Q,R") (k> 0, 1 < q < o). Then
(v,p) € WH2I(Q,R™) x WFH9(Q)
and
[ollwrza + pllwesre < CUFwo + [|(u, p)l La)

with some constant C' depending on n, ), and q.
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3. MAIN RESULTS AND PROOFS

In this section, we state the existence results of the global weak solution and the
global strong solution for the 2-D problem (1.1)—(1.3), and the partial regularity for
the 3-D problem (1.1)—(1.3), and also prove them.

3.1. Strong solutions of the 2-D new MHD model.

Theorem 3.1. Let the initial values be ¢p,n € Y, € Z. If f € Y, then there
exists a global weak solution for the problem (1.1)—(1.3).

Proof. By the standard Galerkin method and estimates similar to those in [11],
the existence of global weak solution of (1.1)—(1.3) is also valid, so we omit the proof.
O

Theorem 3.2. Let Q be a bounded domain with compact C3-boundary. If ¢,
v e H?(Q,R?)NZ, n € Z for any f € Y, then there exists a unique global strong
solution to the problem (1.1)—(1.3), i.e., for any 0 < T' < o0,

u € L®(0,T; HX(Q,R*) N Z), uy € L=(0,T;Y) N L*0,T; Z),

p e L>(0,T; H(Q)),

A€ L®0,T; H*(Q,R*) N Z), A, € L™(0,T; Z), Ay € L=(0,T;Y),
® € L>(0,T; H(Q)).

Proof. The proof will be divided into 3 steps. We will use the same generic
constant C' to denote various constants that depend on g, 0g, ge, €0, and T only.

Step 1. The estimates and regularity for A.

From Theorem 3.1, for any 0 < T' < oo we get the global weak solution

(3.1) u e L*0,T;Z)NL*(0,T;Y),
AeL*0,T;Z), A € L>*0,T;Y).

Multiplying both sides of (1.1)2 by —AA,; and integrating over 2, we have

1d 1 0
2 - @ A2+ ——|AAPR)d :—e/ A.d
(3.2) 2dﬁ(/ﬂ(w R |) x> o | vuvads

since div A = 0 and (1.3).
Using the Holder inequality, it is easy to see that

(3.3) (HVAt||L2+ 1841 ) < 2(IV Al + —— 41 + & |Vu|\Lz)
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Then, by the Gronwall inequality, (3.3) implies
o2 [T

B VA + 1841 < @O (Iavl + 19l + 25 [ (9l as)
0

forall 0 < T < oc.
Therefore, we conclude that

(3.5) VA, € L®(0,T;Y), AAeL>(0,T;Y).

Next, we need to derive an estimate for || Ay (0, 7;v)-
Multiplying both sides of (1.1)2 by A4 and integrating over 2 leads to

1 e
(36) / |f4t15|2 de = — AAAtt dx + Q— / UAtt d(E,
Q EoMo Jq €0 Ja

since — [, V@A, dz = [, ®div A dz = 0.
Using the Holder inequality and the Young inequality, we deduce from (3.6) that

1 2 1
(3.7) /|Att|2dx< ﬂ/ |AA|2dx+Q—§/ |u|2dx+—/ A2 da
Q €oMo Ja €0 Ja 2 Ja

It is easy to see that

2 20?

(3.8) esssup/ | Ay |* dz < sup —/ |AA|?dz + sup Qe/ lu|? dz.

2.2 2
0<t<T JQ 0<t<T €0Mp Ja 0<t<T € Ja

Putting the estimates (3.1), (3.5), and (3.8) together, we have
(39) Ay e L™ (0, T, Y)
Hence, (3.5) and (3.9) imply the regularity for A.
Step 2. The L*/3-L*/3_estimates for v - Vu and u x A.
From (3.1) and Lemma 2.3 (the case that k = 0), it is easy to check that

(3.10) u € L*Y(0,T) x Q).

Note that

T ) T 2/3 T 1/3
(3.11) //|Du|4/‘3|u|4/3dxdt< (//|Du|2dxdt> (//|u|4da:dt) ,
0JQ 0JQ 0JQ
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which implies that
(3.12) w-Vu e LY3(0,T; LY3(Q, R?)).

Combining (3.1) and (3.10), we get

T
(3.13) //|u><cur1A|4/3dxdt
0Ja

T 1/3 T 2/3
< <// |u|4dxdt) <// |Cur1A|2dxdt)
0JQ 0JQ
T 1/3 T 2/3
<C<//|u|4dxdt> <//|VA|2dxdt>
0./ 0./
< 00,

which in turn implies that
(3.14) u x curl A € L*3(0, T; L*3(Q, R?)).

Recall that (u,p) satisfies the Stokes system

ou 1

M JAu— —Vp+ F

5 vAu QOVp—I— (z,t),
(3.15) V-u=0,

ulan =0,

u(0) = ¢,

where F(z,t) = f — (u- V)u + (0¢/00)(u x curl A).
By (3.12) and (3.14), we get F € L*3(0,T;L*3(Q,R?)). Applying this to
Lemma 2.4, we obtain that
(3.16) we LY30,T; W3Y3(Q,R?), wu, € LY3(0,T; LY3(Q, R?)),
p € LY3(0,T; Wh/3(Q)).
In the next step, Lemma 2.5 will be used, since (3.15) can be rewritten as the

Stokes equations

—vAu + in = ﬁ(x,t),
Q0

(3.17) V-u=0,
ulan =0,
u(0) = o,

where F(z,t) = f — (u-V)u + (0e/00)(u x curl A) — u,.

112



Step 3. The estimate for Hﬁ||Loo(07T;L2(Q’R2)).
(i) The estimate for ||Vul| e (0,7;12(0,r2))-
Multiplying (1.1); by u; and integrating over €2, we have

(3.18) 3 dt / |Vu|2dx—|—/ Jug|? do = / ( (u-V)u- ut—i—g (uxcurlA)ut—f—fut) x.
Note that the following continuous embeddings hold:
(3.19) W25(Q, R?) = WH(Q, R?) < CY/2(Q, R?) — CO(Q, R?).

Combining (3.19), the Holder inequality and the e-Young inequality, we derive that

(3.20) /|u V)u - ug| dz < Cllu| 2 [|ull oo [Vl 2 < HutHL?+CQHU'HCOHVU'HL2
and
(3.21) %/ [(u x curl A)ug| dz < Cllul|co||V Al L2 ||ue]| L2

Q

1
< ZHUtH%z + C?ul|go [ VA2,
which together with Gronwall’s inequality implies that

(3.22) esssup||VuHLz < 00.
0<t<

(ii) The estimate for ||ut ||z (0,7;02(0,R2))-
Taking the t-derivative of (1.1)1, one gets that

(3.23) up —vAur = —(up-Viu— (u-V)uy — —th + Q—ut x curl A+ —u x curl A;.
©o ©o ©o

Multiplying (3.23) by u; and integrating over €2, we obtain

(3.24) 55/ |ut|2dx+y/ |Vut|2dx_/(_( -V)u- ut—i-io(uxcurlAt)ut) dz

since

(ug x curl A) - uy = O,/

Q
Next, we estimate the two terms on the right-hand side of (3.24). By (3.19) and
integrating by parts, we have

1
(u'V)ut'utdx:—/ iufdivudx:O.
Q

(3.25) - /Q(ut -V)u - ugde = /Q(uiuj&ug —ul;(uiud)) da

= / uj Oyu] da < Cllulloo(fJuelge + 1 Vae]Z2)-
Q
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Similarly,

(3.26) &/ [(u x curl Ap)ug|da < Cge/|uutVAt|dx
20 Jo 0 Jo

o

Co
< —lullco([luell7z + VA7)

Q0

Hence, by (3.24), (3.25) and (3.26), we get that

1d
B2 g3 [ uldr+ [ [V de < Clullon(( + oo/on)luli + [ Vul)
Coe
+ 2 ul ol A,
]

which together with Gronwall’s inequality completes the estimate

(3.28) esssup |[ug()]|72 < oo.
0<t<T

(111) The estimates for ||(u : VU)HLN(O,T;L2(Q,R2)) and Hu X AHLOO(O’T;LZ(Q’R2)).
From (3.22) it is easy to see that

(3.29) Vu e L®(0,T;Y).

Therefore,
u € L0, T; HY).

It is known that H' < L9 (1 < ¢ < oo) when n = 2. Note that

1/r 1/2 (2—r)/2r
(3.30) (/ |(u-V)u|’“dx) < (/ |Vu|2da:> (/ |u|2r/<2—r>dx) < oo
Q Q Q

provided that 1 < r < 2. Hence,
(3.31) (u-V)u € L=(0,T; L"(2, R?)).

By using the Holder inequality and the Sobolev embedding theorem, it follows
that

(3.32) / lu x curl A]* dz < C’/ lu|?|VA* do
Q Q

<C</ |u|4dx+/ |VA|4dx)

Q Q

<c(/ |Vu|2dx+/ |AA|2da:>.
Q Q
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Combining (3.5) with (3.32), we have

(3.33) u x curl A € L>=(0,T; L*(, R?)).

According to (3.28), (3.31), (3.33), and the assumption, F in (3.17) satisfies
(3.34) FeL (R (1<r<2) forany0<T < oo.

Applying (3.34) to Lemma 2.5, we get

(3.35) uwe L0, T; W2 (Q,R?)), pe L=0,T; W (Q)).

Using the Sobolev embedding theorem W2 <« C* — C* (0 < a < 1, n = 2), we
deduce from (3.29) and (3.35) that

(3.36) (u-V)u e L*(Q,R?) for any 0 < T < 0.
By (3.28), (3.33), and (3.36), we get that

(3.37)  F=f—(u-Vu+ 5 (u x curl A) — u; € L(Q, L2(Q, R?)).
0

Applying (3.37) to Lemma 2.5, we obtain that for any 7" > 0
(3.38) u € L0, T; W22(Q,R?)), pe L0, T;WH3(Q)).

Therefore, (3.1), (3.5), (3.9), (3.28), and (3.38) yield the existence of the global strong
solution of (1.1)—(1.3).

Now, we prove the global strong solution of (1.1)—(1.3) is unique. Without loss of
generality, we suppose that (u’, p’, A, ®%) (i = 1,2) are two different strong solutions
of (1.1)—(1.3).

Let u=u'—u?, p=p' —p?, A= Al — A%, & = ! — ®2. Then we have

gu + (@-V)u=vAu — —Vp—|— Qe x curl A + 2 x curl 4
ot Qo Qo
—(@- V)u® - (u* - V)z,
0A  —
A, — ‘it
(3.39) ot
94 _ L Ad4 %q_va,
ot 60#0 €0
V.u=0,
V- A=
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and the initial-boundary conditions

(3.40) u(0,2) =0, A(0,z) =0, A;(0,2)=0 inQ,
(3.41) u(t,z) =0, A(t,z)=0 on 9N x[0,T).

Multiplying both sides of (3.39) by (W, A, A;) and integrating over Q, it follows
from (3.40) and (3.41) that

—/ |u|2dx+21// |Va|* do

—2/(u x curl A) - ﬂdx—Q/(ﬂ~V)u2~ﬂdx,
Q

i/ |A|2dx=2/Zt-de,

/|At|2 = — AA Atdl‘
oMo €0

(3.42)

Uztdx

By using the Sobolev embedding theorem and the Hoélder inequality, we can obtain
that

d _ o —112 2 =T — 2 — —

g lalze +viValz: < Cllulleo VAN L2 ([l 22 + [ Ve©| e[l el 22),

d — _
(3:43) { 407 <2 2[4l 2,

d — 2 d 296
Al + — - 3| VAlIZ: <

lalze Al e,

where C' is a constant depending on €2, N and p.
By applying the Sobolev embedding theorem, it is easy to check that

(3.44) IVusllps|[ull s ull L2 < [[Vus | 4l VEl| 2 [l 2

Combining (3.43)with (3.44), we can get the following inequalities by using the Young
inequality and the Holder inequality:

d, _ _
(3.45) &HuHQLQ + 2v|| Va2,
Cu? 2o IVANL: + Il + e M IVe? | FallullF2) + el VallZe,
d — _ _
(3.46) &HAH%z < NAel%s + A1l -,

d, —= 9 2 d 7112 Qi —[2 T 12
(347) ZIANT: + == VAT < Sl + A
0
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If we take € = v, then (3.45) can be rewritten as

d, o 112 212 19AI2 12 1 202 172
(348)  —ll@lz: +v[Valz: < Cllullco[VAIL: + l[allz: + —lIVulzalallze).
Moreover, we can infer from (3.46)—(3.48) that

d/ _ — — 2 — _
= (22 + A2 + A + —— VA3 ) + v Val.
EoMo
< (a3 + AN + I Adl3e + I VAN),

Hence,

d _ _ _
(3.49) &(HUH%z + 4172 + [ Adll72 + (IVA]72)
< C([ulzz + [Al72 + A7 + IVA][72),

where C' = C(Q, eo, ||uz|l g2, 0e, V).
Combining the Gronwall inequality and (3.40), we get

(3.50) u=0, A=0, A;=0.

Therefore, the global strong solution of (1.1)—(1.3) is unique, which completes the
proof. O

3.2. Partial regularity of the 3-D new MHD model. Analogously, we estab-
lish the following partial regularity of the 3-D new MHD model (1.1) with (1.2)—(1.3).
For convenience, we set

X ={ueCP,R?); divu=0 in Q},

Y = the closure of X in L*(Q,R?) = {u € L*(Q,R?); divu =0 in Q},

Z = the closure of X in H*(Q,R®) = {u € H}(Q,R®%); divu =0 in Q}.
Theorem 3.3. Let Q be a bounded domain with compact C3-boundary. If ¢,

¢ € HXQ,R¥)NZ, n € Z for any f € Y, then there exists a partial regularity
solution for the 3D problem (1.1)—(1.3), i.e., for any 0 < T < o0

ue L4((0,T), W54 (Q,R?)), u, € L¥*(0,T; L*(Q, R?)),
p € LY40, T; W'/4(Q)),
AeL™(0,T;Z), A e L>®0,T;Y).
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Proof.
in [11]:

(3.51)

For any 0 < T < oo we can get the following results from Theorem 3.2

u e L2((0,T), Z) N L=((0,T),Y),

Ae L*((0,T),2), Ase L>=((0,T),Y).

Combining (3.51) and Lemma 2.1 (k = 0), we can infer that

(3.52)

Notice that

(3.53)

ue LY3((0,T) x Q).

T T
// |(u-V)u|5/4dxdt<// | Dul>|u|?/* dz dt
0JQ 0JQ

T 5/8 T 3/8
< <// |Du|2dxdt> (// |u|10/3dxdt> .
0JQ 0JQ

It follows from (3.53) that

(3.54)

(u ’ V)u € L5/4((07 T)v L5/4(Qa RJ))

Combining (3.51) with (3.52), we derive that

(3.55)

T
//|u><cur1A|5/4dxdt
0Ja

T
<// [ul>4|curl A/* da dt
0Jo

T 3/8 T 5/8
< (// |u|10/3 dxdt) (/ /|cur1A|2dmdt)
0/9Q 0JQ
T 3/8 T 5/8
<C(//|u|10/3dxdt> (//|DA|2da:dt) < 00,
0JQ 0JQ

which implies that

(3.56)

u x curl A € L*((0,T), L>*(Q, R®)).

Now, we consider (u,p) satisfying the Stokes equations

(3.57)

ou 1

Y UAu— ZVp+ Fla,t
57 =AU - Vpt Fat),
divu =0,

ulaq = 0,

u(0) = ¢,

where F(z,t) = f — (u- V)u + (0¢/00)(u x curl A).
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By (3.54) and (3.56), it is clear that F' € L>/*((0,T), L>/*(92, R?)). Moreover, by

Lemma 2.2 we have

(3.58) we LYY(0,T), WS4, R%)), w, € L*((0,T), L*(Q, R?)),

p e LY4((0,T), WH5/4(Q)).

Therefore, (3.58) and Theorem 3.2 in [11] complete the proof. O
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