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Abstract. We investigate an inverse eigenvalue problem for constructing a special kind
of acyclic matrices. The problem involves the reconstruction of the matrices whose graph
is an m-centipede. This is done by using the (2m − 1)st and (2m)th eigenpairs of their
leading principal submatrices. To solve this problem, the recurrence relations between
leading principal submatrices are used.
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1. Introduction

An inverse eigenvalue problem (IEP) concerns the reconstruction of a matrix from

prescribed spectral data. Determinant factors of the level of difficulty of an IEP are

the structure of the matrices which are to be reconstructed and the type of eigen

information available. In [3] detailed characterization of inverse eigenvalue problems

is mentioned. Special types of inverse eigenvalue problems have been studied in [4],

[5], [6], [8], [9], [11], [13], [14], [17]. Inverse eigenvalue problems are important in

many applications such as mechanical system simulation, control theory, structural

analysis, mass spring vibrations and graph theory [3], [9], [10]. In this paper, we

investigate an IEP, namely the IEPC (inverse eigenvalue problem for matrices whose

graph is a m-centipede). Similar problems were studied in [11], [15], [16]. The usual

process of solving such problems involves the use of recurrence relations between

the leading principal submatrices of λI − A where A is the required matrix. Some

applications of the acyclic matrix discussed in this paper are in chemistry, energy and
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graph theory [1], [2]. In addition, the idea in this paper may provide some insights

into other acyclic matrix inverse eigenvalue problems.

The rest of the paper is organized as follows. In Section 2, we begin to present

some preliminaries and lemmas that will be used throughout the paper. In Section 3,

we discuss some properties of A2m. In Section 4, we discuss the solution of IEPC

and present an algorithm. In Section 5, we report numerical examples to illustrate

the solution of IEPC. In Section 6 the conclusion is presented.

2. Preliminaries

Let G be a simple undirected graph on n vertices, whose vertices are positive

integers. A real symmetric matrix A = (aij) is said to have a graph G provided

aij 6= 0 if and only if the vertices i and j are adjacent in G.

Given an n × n symmetric matrix A, the graph of A, denoted by G(A), has the

vertex set V (G) = {1, 2, 3, . . . , n} and the edge set {ij : i 6= j, aij 6= 0}. For a graphG

with n vertices, we denote by S(G) the set of all real symmetric matrices whose

graph is G. A matrix whose graph is a tree is called an acyclic matrix. Some simple

examples of acyclic matrices are the matrices whose graphs are paths orm-centipedes.

Definition 2.1. The m-centipede is the tree on 2m nodes obtained by joining

the bottoms of m copies of the path graph P2 laid in a row with edges (Figure 1).

1 3 5 2m−1

2 4 6 2m

Figure 1. m-centipede Cm.

Throughout this paper, we use the following notation:

1. The matrix of a m-centipede is

(2.1) A2m =
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a1 b1 c1 0 . . . . . . 0 0 0

b1 a2 0 0 . . . . . . 0 0 0

c1 0 a3 b3 c3 0 . . . 0 0

0 0 b3 a4 0 . . . . . . . . . 0

0 0 c3 0 a5 b5 c5
... 0
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




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


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where b2j+1 and c2k+1 are nonzero for all j = 0, 1, 2, . . . ,m − 1 and k =

0, 1, 2, . . . ,m− 2.

2. Aj is a j × j matrix that will denote the jth leading principal submatrix of the

matrix A2m for all j = 1, 2, . . . , 2m.

3. Pj(λ) = det(λIj −Aj), i.e., the jth leading principal submatrix of λI2m −A2m,

Ij being the identity matrix of order j. For convenience of discussion, we define

P0(λ) = 1, b−1 = 0, c−1 = 0.

In this paper, we solve the following IEP:

IEPC:Given two real numbers λ
(2m)
2m , λ

(2m−1)
2m−1 , real vectorsX2m=(x1, x2, . . . , x2m)⊤

and X ′

2m−1 = (x′

1, x
′

2, . . . , x
′

2m−1)
⊤, the problem is to find a 2m × 2m matrix

A2m ∈ S(Cm) such that λ
(2m)
2m and λ

(2m−1)
2m−1 are the maximal eigenvalues of A2m

and A2m−1, respectively, (λ
(2m)
2m , X2m) is an eigenpair of A2m and (λ

(2m−1)
2m−1 , X ′

2m−1)

is an eigenpair of A2m−1.

The following lemmas will be necessary for solving the problem in this paper.

Lemma 2.2 ([12]). Let P (λ) be a monic polynomial of degree n with all real

zeroes. If λ1 and λn are, respectively, the minimal and the maximal zero of P (λ),

then:

(i) If x < λ1, we have that (−1)nP (x) > 0.

(ii) If x > λn, we have that P (x) > 0.

Lemma 2.3 ([7], Cauchy’s Interlacing Theorem). Let λ1 6 λ2 6 . . . 6 λn be the

eigenvalues of an n × n real symmetric matrix A and µ1 6 µ2 6 . . . 6 µn−1 the

eigenvalues of an (n− 1)× (n− 1) principal submatrix B of A, then

λ1 6 µ1 6 . . . 6 µn−1 6 λn.

An immediate consequence of Cauchy’s Interlacing Theorem is

Corollary 2.4. Let A be an n × n real symmetric matrix and λ
(j)
1 and λ

(j)
j ,

the minimal and maximal eigenvalues of the leading principal submatrix Aj , j =

1, 2, . . . , n, of A, respectively. Then

(2.2) λ
(n)
1 6 λ

(n−1)
1 6 . . . 6 λ

(2)
1 6 λ

(1)
1 6 λ

(2)
2 6 . . . 6 λ

(n−1)
n−1 6 λ(n)

n ,

and

(2.3) λ
(j)
1 6 ai 6 λ

(j)
j , i = 1, 2, . . . , j, j = 2, . . . , n.
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In the next section we present some properties of the matrix A2m that we need to

prove the problem IEPC.

3. Properties of the matrix A2m

In the following, we investigate the relation between successive leading principal

submatrices of λI2m −A2m.

Lemma 3.1. Let A be a 2m× 2m matrix of the form (2.1). Then the sequence

{Pl(λ) = det(λIl −Al)}
2m
l=1 satisfies the following recurrence relations:

(i) P1(λ) = (λ− a1),

(ii) P2j(λ) = (λ− a2j)P2j−1(λ)− b22j−1P2j−2(λ), j = 1, 2, . . . ,m,

(iii) P2j+1(λ) = (λ− a2j+1)P2j(λ)− c22j−1(λ− a2j)P2j−2(λ), j = 1, 2, . . . ,m− 1.

P r o o f. The result follows by expanding the determinant. �

Lemma 3.2. Let A2m be a matrix of the form (2.1) and λ
(j)
j the maximal eigen-

value of the leading principal submatrix Aj of A2m, j = 1, 2, . . . , 2m. Then

(3.1) λ
(1)
1 < λ

(2)
2 < . . . < λ

(j)
j ,

and

(3.2) ak < λ
(j)
j , k = 1, 2, . . . , j,

for each j = 2, . . . , 2m.

P r o o f. From Corollary 2.4, (2.2) and (2.3) we have

λ
(1)
1 6 λ

(2)
2 6 . . . 6 λ

(j)
j ,

and

ak 6 λ
(j)
j , k = 1, 2, . . . , j,

for each j = 2, . . . , 2m. Now it remains to prove that inequalities (2.2) and (2.3)

are strict for j = 2, . . . , 2m. By the inductive hypothesis and contradiction, the

discussion shows as follows.

(a) When j = 2, by Lemma 3.1 we have

(3.3) P2(λ) = (λ− a2)P1(λ) − b21.
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Let λ
(2)
2 = λ

(1)
1 , by equation (3.3) we obtain

P2(λ
(1)
1 ) = −b21 = 0.

Then we obtain b1 = 0, but this contradicts the restriction on A2m that b1 6= 0.

Hence λ
(1)
1 < λ

(2)
2 . The same occurs if we assume that λ

(2)
2 = a2, then we have

a2 < λ
(2)
2 .

For j = 3 by Lemma 3.1 we have

(3.4) P3(λ) = (λ− a3)P2(λ) − c21(λ− a2).

Let λ
(3)
3 = λ

(2)
2 , by equation (3.4) we have

P3(λ
(2)
2 ) = (λ

(2)
2 − a3)P2(λ

(2)
2 )− c21(λ

(2)
2 − a2) = −c21(λ

(2)
2 − a2) = 0.

Since λ
(2)
2 −a2 > 0 we obtain then c1 = 0, but this contradicts the restriction on A2m

that c1 6= 0. Hence λ
(2)
2 < λ

(3)
3 .

If λ
(3)
3 = a3 then by equation (3.4) we know

P3(a3) = (a3 − a3)P2(a3)− c21(a3 − a2) = −c21(a3 − a2) = −c21(λ
(3)
3 − a2).

From the above results we have a2 < λ
(2)
2 < λ

(3)
3 , then −c21(λ

(3)
3 − a2) 6= 0 and we

get P3(a3) 6= 0, which contradicts P3(λ
(3)
3 ) = 0. Hence, we obtain a3 < λ

(3)
3 .

(b) Now we assume that (3.1), (3.2) hold for j = 4, . . . , 2m− 2 and consider

P2m−1(λ) = (λ − a2m−1)P2m−2(λ) − c22m−3(λ− a2m−2)P2m−4(λ).

We know

λ
(2m−4)
2m−4 < λ

(2m−2)
2m−2 , c22m−3 6= 0, ai < λ

(2m−2)
2m−2 , i = 2, . . . , 2m− 2,

then

−c22m−3(λ
(2m−2)
2m−2 − a2m−2)P2m−4(λ

(2m−2)
2m−2 ) 6= 0,

hence λ
(2m−2)
2m−2 is not a zero of P2m−1(λ) and when j = 2m− 1, we have λ

(2m−2)
2m−2 <

λ
(2m−1)
2m−1 .

If λ
(2m−1)
2m−1 = a2m−1 then by Lemma 3.1 we have

P2m−1(λ
(2m−1)
2m−1 ) = P2m−1(a2m−1) = −c22m−3(a2m−1 − a2m−2)P2m−4(a2m−1).
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From the above verified results, we know

ak < λ
(j)
j < λ

(2m−1)
2m−1 , k = 1, . . . , j; j = 2, . . . , 2m− 2.

Then −c22m−3(a2m−1 − a2m−2)P2m−4(a2m−1) 6= 0 and we get

P2m−1(a2m−1) 6= 0.

But this contradicts P2m−1(λ
(2m−1)
2m−1 ) = 0. Therefore, we obtain

a2m−1 < λ
(2m−1)
2m−1 .

Finally, if j = 2m, by Lemma 3.1 we have

(3.5) P2m(λ) = (λ− a2m)P2m−1(λ) − b22m−1P2m−2(λ).

Since λ
(2m−2)
2m−2 < λ

(2m−1)
2m−1 , we have −b22m−1P2m−2(λ

(2m−1)
2m−1 ) 6= 0, and λ

(2m−1)
2m−1 is not

a root of P2m(λ). Hence, we get λ
(2m−1)
2m−1 < λ

(2m)
2m .

If λ
(2m)
2m = a2m then

P2m(a2m) = −b22m−1P2m−2(a2m) = −b22m−1P2m−2(λ
(2m)
2m ) = 0,

contradicting λ
(2m−2)
2m−2 < λ

(2m)
2m . Then from (2.3)

ak < λ
(2m)
2m , k = 1, . . . , j; j = 2, . . . , 2m.

(c) In conclusion, inequalities (3.1) and (3.2) hold for any positive integer j when

2 6 j 6 2m. �

From Lemma 3.2 we get the following result.

Corollary 3.3. Let A2m be a matrix of the form (2.1) and λ
(2m)
2m , λ

(2m−1)
2m−1 the

maximal eigenvalues of A2m and A2m−1, respectively. Then we have

(i)
j
∏

i=1

(a2i − λ
(2m)
2m ) 6= 0, j = 1, . . . ,m,

(ii)
j
∏

i=1

(a2i − λ
(2m−1)
2m−1 ) 6= 0, j = 1, . . . ,m− 1.
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In the next lemma we show that every component xl of the eigenvector X2m,

l = 2, 3, . . . , 2m, is the coefficient of x1 and every component x
′

k of the eigenvector

X ′

2m−1, k = 2, 3, . . . , 2m− 1, is the coefficient of x′

1.

Lemma 3.4. Let X2m = (x1, x2, . . . , x2m)⊤ and X ′

2m−1 = (x′

1, x
′

2, . . . , x
′

2m−1)
⊤

be respectively eigenvectors of A2m and A2m−1 corresponding to eigenvalues λ
(2m)
2m ,

λ
(2m−1)
2m−1 . Then x1 6= 0, x′

1 6= 0 and the components of these eigenvectors are given

by

x2j+1 =
(−1)jP2j(λ

(2m)
2m )x1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

, j = 1, 2, . . . ,m− 1,(3.6)

x2j =
(−1)jb2j−1P2j−2(λ

(2m)
2m )x1

(a2j − λ
(2m)
2m )

j−1
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

, j = 1, 2, . . . ,m,(3.7)

x′

2j+1 =
(−1)jP2j(λ

(2m−1)
2m−1 )x′

1

j
∏

i=1

(a2i − λ
(2m−1)
2m−1 )c2i−1

, j = 1, 2, . . . ,m− 1,(3.8)

x′

2j =
(−1)jb2j−1P2j−2(λ

(2m−1)
2m−1 )x′

1

(a2j − λ
(2m−1)
2m−1 )

j−1
∏

i=1

(a2i − λ
(2m−1)
2m−1 )c2i−1

, j = 1, 2, . . . ,m− 2.(3.9)

P r o o f. Because (λ
(2m)
2m , X2m) is an eigenpair of A2m, we have

A2mX2m = λ
(2m)
2m X2m,

which can be transformed into the form

(a1 − λ
(2m)
2m )x1 + b1x2 + c1x3 = 0,(3.10)

b2j−1x2j−1 + (a2j − λ
(2m)
2m )x2j = 0, j = 1, 2, . . . ,m,(3.11)

c2j−1x2j−1 + (a2j+1 − λ
(2m)
2m )x2j+1(3.12)

+ b2j+1x2j+2 + c2j+1x2j+3 = 0, j = 1, 2, . . . ,m− 2.

c2m−3x2m−3 + (a2m−1 − λ
(2m)
2m )x2m−1 + b2m−1x2m = 0.(3.13)

We define the values v1, v3, . . . , v2m−1 as

v1 = x1, v2j+1 = x2j+1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1, j = 1, 2, . . . ,m− 1.
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Multiplying (3.12) by
j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1, we have

c2j−1x2j−1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 + (a2j+1 − λ

(2m)
2m )x2j+1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

+ b2j+1x2j+2

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 + c2j+1x2j+3

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 = 0.

By (3.11) we have

x2j+2 =
−b2j+1x2j+1

a2j+2 − λ
(2m)
2m

,

by replacing x2j+2 in the above expression we get

c2j−1x2j−1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 + (a2j+1 − λ

(2m)
2m )x2j+1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

−
b22j+1x2j+1

a2j+2 − λ
(2m)
2m

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 + c2j+1x2j+3

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1 = 0.

Thus

(a2j+2 − λ
(2m)
2m )(a2j − λ

(2m)
2m )c22j−1v2j−1

+ ((a2j+2 − λ
(2m)
2m )(a2j+1 − λ

(2m)
2m )− b22j+1)v2j+1 + v2j+3 = 0,

which for j = 1, 2, . . . ,m− 3 gives

(3.14) v2j+3 = (b22j+1 − (a2j+2 − λ
(2m)
2m )(a2j+1 − λ

(2m)
2m ))v2j+1

− (a2j+2 − λ
(2m)
2m )(a2j − λ

(2m)
2m )c22j−1v2j−1.

Now, from (3.10) and (3.11) we have

v3 = (b21 − (a2 − λ
(2m)
2m )(a1 − λ

(2m)
2m ))x1 = −P2(λ

(2m)
2m )x1.

From (3.14) we have

v5 = (b23 − (a4−λ
(2m)
2m )(a3 −λ

(2m)
2m ))v3 − (a4 −λ

(2m)
2m )(a2 −λ

(2m)
2m )c21v1 = P4(λ

(2m)
2m )x1,

and following this way, we see that

v2j+1 = (−1)jP2j(λ
(2m)
2m )x1, j = 1, 2, . . . ,m− 1.
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We have

x2j+1 =
(−1)jP2j(λ

(2m)
2m )x1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

, j = 1, 2, . . . ,m− 1.

From (3.11), we obtain

x2j =
−b2j−1x2j−1

(a2j − λ
(2m)
2m )

=
(−1)jb2j−1P2j−2(λ

(2m)
2m )x1

(a2j − λ
(2m)
2m )

j−1
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

, j = 1, 2, . . . ,m.

Since X2m is an eigenvector, we have X2m 6= 0. If x1 = 0, then from (3.6) and (3.7)

we see that all of the other components of X2m are zero and we have a contradiction.

Thus x1 6= 0. The formulas (3.8) and (3.9) can be proved analogously. �

4. The solution of IEPC

The following theorem solves the problem IEPC.

Theorem 4.1. The IEPC has a unique solution if the following conditions are

satisfied:

(i) xl 6= 0 for l = 1, 2, . . . , 2m and x′

k 6= 0 for k = 1, 2, . . . , 2m− 1.

(ii) Ej =

∣

∣

∣

∣

x2j+1 x′

2j+1

x2j−1 x′

2j−1

∣

∣

∣

∣

6= 0, j = 1, 2, . . . ,m− 1.

The elements of the matrix A2m are:

b2j−1 =
(λ

(2m)
2m − λ

(2m−1)
2m−1 )x′

2jx2j

x2j−1x′

2j − x′

2j−1x2j
,

a2j = λ
(2m)
2m −

b2j−1x2j−1

x2j
,

c2j−1 = (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2j
∑

i=1

xix
′

i/Ej ,

a2j−1 = λ
(2m)
2m −

c2j−3x2j−3 + b2j−1x2j + c2j−1x2j+1

x2j−1

for j = 1, 2, . . . ,m− 1, and
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a2m−1 = λ
(2m−1)
2m−1 −

c2m−3x
′

2m−3

x′
2m−1

,

b2m−1 = (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2m−1
∑

i=1

xix
′

i/x2mx′

2m−1,

a2m = λ
(2m)
2m −

b2m−1x2m−1

x2m
.

P r o o f. We assume that xl 6= 0 for l = 1, 2, . . . , 2m and x′

k 6= 0 for k =

1, 2, . . . , 2m− 1.

Here (λ
(2m)
2m , X2m) and (λ

(2m−1)
2m−1 , X ′

2m−1) are eigenpairs of matrices A2m and

A2m−1, respectively, so for j = 1, 2, . . . ,m− 1 we have

{

b2j−1x2j−1 + (a2j − λ
(2m)
2m )x2j = 0,

b2j−1x
′

2j−1 + (a2j − λ
(2m−1)
2m−1 )x′

2j = 0.

Let Dj denote the determinant of the coefficient matrix of the above system of

linear equations in a2j and b2j−1. Then

Dj = x2j−1x
′

2j − x′

2j−1x2j .

If Dj 6= 0, then the system will have a unique solution, given by

b2j−1 =
(λ

(2m)
2m − λ

(2m−1)
2m−1 )x′

2jx2j

x2j−1x′

2j − x′

2j−1x2j
,

a2j = λ
(2m)
2m −

b2j−1x2j−1

x2j
.

We claim that the expression Dj 6= 0. This follows from Lemma 3.4.

By Lemma 3.4 we have

Dj =
(−1)2j−1b2j−1P2j−2(λ

(2m)
2m )P2j−2(λ

(2m−1)
2m−1 )x1x

′

1(λ
(2m−1)
2m−1 − λ

(2m)
2m )

(a2j − λ
(2m)
2m )(a2j − λ

(2m−1)
2m−1 )

j−1
∏

i=1

(a2i − λ
(2m−1)
2m−1 )c2i−1

j−1
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

.

By Lemma 2.2 and (3.1) we get

P2j−2(λ
(2m)
2m )P2j−2(λ

(2m−1)
2m−1 )(λ

(2m−1)
2m−1 − λ

(2m)
2m ) 6= 0,

then Dj 6= 0. Since (λ
(2m)
2m − λ

(2m−1)
2m−1 )x′

2jx2j 6= 0, we obtain b2j−1 6= 0.
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For finding the values of c2j−1 and a2j−1, j = 1, 2, . . . ,m− 1, we have
{

c2j−3x2j−3 + (a2j−1 − λ
(2m)
2m )x2j−1 + b2j−1x2j + c2j−1x2j+1 = 0,

c2j−3x
′

2j−3 + (a2j−1 − λ
(2m−1)
2m−1 )x′

2j−1 + b2j−1x
′

2j + c2j−1x
′

2j+1 = 0.

Because the values of c2j−3 and b2j−1 are known, so by solving the above system

the values c2j−1, a2j−1 will be obtained. Since Ej 6= 0 the system will have a unique

solution, given by

c2j−1 = (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2j
∑

i=1

xix
′

i/Ej ,

a2j−1 = λ
(2m)
2m −

c2j−3x2j−3 + b2j−1x2j + c2j−1x2j+1

x2j−1
.

By Lemma 3.4 we have

x2j+1x
′

2j+1 =
(−1)2jP2j(λ

(2m)
2m )P2j(λ

(2m−1)
2m−1 )x′

1x1

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

j
∏

i=1

(a2i − λ
(2m−1)
2m−1 )c2i−1

.

Also, by Lemma 2.2, Corollary 3.3, and (3.1) we obtain

(−1)2jP2j(λ
(2m)
2m )P2j(λ

(2m−1)
2m−1 )

j
∏

i=1

(a2i − λ
(2m)
2m )c2i−1

j
∏

i=1

(a2i − λ
(2m−1)
2m−1 )c2i−1

> 0,

therefore, the sign of x2j+1x
′

2j+1 and x1x
′

1 is the same. Similarly, we can show that

the sign of x2jx
′

2j and x1x
′
1 is the same. Hence,

2j
∑

i=1

xix
′

i 6= 0, and c2j−1 6= 0.

For finding the value of a2m−1 we have

c2m−3x
′

2m−3 + (a2m−1 − λ
(2m−1)
2m−1 )x′

2m−1 = 0

⇒ a2m−1 = λ
(2m−1)
2m−1 −

c2m−3x
′
2m−3

x′

2m−1

.

By (3.13) we have

b2m−1 =
−(c2m−3x2m−3 + (a2m−1 − λ

(2m)
2m )x2m−1)

x2m

= (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2m−1
∑

i=1

xix
′

i/x2mx′

2m−1,

and by (3.11) we have

a2m = λ
(2m)
2m −

b2m−1x2m−1

x2m
.

�
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From the discussion of Theorem 4.1, we propose Algorithm 1 for solving the IEPC.

Algorithm 1 (To solve problem IEPC)

Input: λ
(2m−1)
2m−1 , λ

(2m)
2m , ε,

X2m = (x1, . . . , x2m),

X ′

2m−1 = (x′

1, . . . , x
′

2m−1).

Output: A2m ∈ S(Cm).

1: For j = 1 to m− 1 do

2: If |x2j−1x
′

2j − x′

2j−1x2j | and |x2j+1x
′

2j−1 − x′

2j+1x2j−1| < ε problem IEPC can

not be solved by this algorithm.

3: End If

4: b2j−1 =
(λ

(2m)
2m − λ

(2m−1)
2m−1 )x′

2jx2j

x2j−1x′

2j − x′

2j−1x2j
,

5: a2j = λ
(2m)
2m −

b2j−1x2j−1

x2j
,

6: c2j−1 = (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2j
∑

i=1

xix
′

i/Ej ,

7: a2j−1 = λ
(2m)
2m −

c2j−3x2j−3 + b2j−1x2j + c2j−1x2j+1

x2j−1
,

8: End For

9: a2m−1 = λ
(2m−1)
2m−1 −

c2m−3x
′

2m−3

x′

2m−1

,

10: b2m−1 = (λ
(2m)
2m − λ

(2m−1)
2m−1 )

2m−1
∑

i=1

xix
′

i/x2mx′

2m−1,

11: a2m = λ
(2m)
2m −

b2m−1x2m−1

x2m
.

5. Numerical examples

To illustrate the results of the previous section, some numerical examples are given

which have been carried out using Matlab software.

E x am p l e 5.1. Given are two distinct real numbers

λ
(7)
7 = 3, λ

(8)
8 = 5, ε = 10−4,

and real vectors

X8 = (1, 0.6, 3.2, 3.2,−6.1, 0.4, 2.8,−1.7)⊤

and

X ′

7 = (1, 0.7, 3, 3.5,−5.5, 0.4, 1.8)⊤,
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find a matrix 8× 8 ∈ S(C4) such that (λ
(8)
8 , X8) is an eigenpair of A8 and (λ

(7)
7 , X ′

7)

is an eigenpair of A7.

Solution: By applying Algorithm 1, we get the unique solution

A8 =















−45.4800 8.4000 14.2000 0 0 0 0 0

8.4000 −9.0000 0 0 0 0 0 0

14.2000 0 −134.4571 14.0000 −63.4857 0 0 0

0 0 14.0000 −9.0000 0 0 0 0

0 0 −63.4857 0 −40.0081 −1.3333 −25.3077 0

0 0 0 0 −1.3333 −15.3333 0 0

0 0 0 0 −25.3077 0 −74.3291 −39.8497

0 0 0 0 0 0 −39.8497 −60.6348















.

From the above matrix A8 we compute the spectra of A7 , A8 and obtain

σ(A7) = {−169.9934,−80.4461,−46.4863,−15.4582,−11.0080,−7.2156, 3.0000},

σ(A8) = {−170.2365,−109.7715,−47.3047,−33.5653,−15.3924,

− 9.7731,−7.1962, 5.0000}.

The data which is obtained shows that the algorithm is correct.

E x am p l e 5.2. Given are two distinct real numbers

λ
(5)
5 = 10, λ

(6)
6 = 13, ε = 10−4,

and real vectors

X6 = (0.5, 0.25, 1.4, 0.9, 8, 7.1)⊤

and

X ′

5 = (−0.25,−0.2,−0.35,−0.3,−0.075)⊤,

find a matrix 6× 6 ∈ S(C3) such that (λ6, X6) is an eigenpair of A6 and (λ5, X
′
5) is

an eigenpair of A5.

Solution: By applying Algorithm 1, we get the unique solution

A6 =



















2.6000 4.0000 3.0000 0 0 0

4.0000 5.0000 0 0 0 0

3.0000 0 1.0219 7.7143 1.0408 0

0 0 7.7143 1.0000 0 0

0 0 1.0408 0 5.1429 8.6479

0 0 0 0 8.6479 3.2559



















.

From the above matrix A6 we compute the eigenvalues of A5, A6 and obtain

σ(A5) = {−7.2909,−0.2524, 5.0414, 7.2666, 10.0000},

σ(A6) = {−7.3471,−4.4329,−0.2518, 7.1986, 9.8539, 13.0000}.

The underlined eigenvalues are in consonance with the maximal eigenvalues and the

algorithm is correct.
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6. Conclusions

The inverse eigenvalue problem for graphs has been previously solved only for

special classes of graphs, such as trees, paths and brooms. In this paper, we solved

the inverse eigenvalue problem for the construction of matrices whose graphs are

m-centipedes by using mixed eigen data. The results obtained in this paper provide

an efficient method for constructing such matrices from two eigenpairs of leading

principal submatrices of the desired matrix. The problem IEPC is important in the

sense that it partially describes the inverse eigenvalue problem while it constructs

matrices from partial information of the prescribed eigenvalues and eigenvectors.

Such partially described problems may occur in computations involving a complex

physical system such that it is difficult to obtain its entire spectrum. It would be

interesting to consider such IEPs for other acyclic matrices as well.
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