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Contractible simplicial objects

Michael Barr, John F. Kennison, Robert Raphael

Dedicated to the memory of Věra Trnková

Abstract. We raise the question of when a simplicial object in a catetgory is
deemed contractible. The literature offers three definitions. One is the existence
of an “extra degeneracy”, indexed by −1, which does not quite live up to the
name. This can be strengthened to a “strong extra degeneracy”. Another possi-
bility is that it be homotopic to a constant simplicial object. Despite claims in
the literature to the contrary, we show that all three are distinct concepts with
strong extra degeneracy implies extra degeneracy implies homotopic to a con-
stant and give explicit examples to show the converses fail.

Keywords: contractible; homotopic to a constant; reduced homotopy; partial
simplicial object

Classification: 18G30, 55U10

1. Introduction

The notion of simplicial homotopy is well known, see Section 2 below. But
it raises several interesting questions that we have not found answered in the
literature, including one for which the literature is wrong.

First we raise the question of when a simplicial object in some category is
contractible. We begin by showing that, assuming the category is idempotent
complete, it does not matter whether we are dealing with a simplicial object that
is augmented or not. Looking through the literature, we find essentially three
definitions of contractibility. The first two are in terms of what are called “extra
degeneracies” although there is some question what that means, and the third is
that a simplicial object is contractible if it is homotopic to a constant.

There are at least three places in the literature that claim that being homotopic
to a constant is equivalent to (one of) the extra degeneracy definitions. Regret-
tably, one of the three is in [1, Theorem 3.3]. Unfortunately, what is proved there
is only that the extra degeneracy implies homotopic to a constant (see Theo-
rem 4.3, below); the converse is ignored. In fact, the converse is false, as we will
show below, based on Subsection 4.5. The second, [4, Proposition 1.2.12] repeats
and cites the claim from [1]. The third appears in [9, Lemma 4.5.1], which cites
[8, Theorem 6.4], which seems to be the required result but includes one equation
(the one labeled (Ci)

n, in our notation dih0 = h0di−1, 1 ≤ i ≤ n + 1), which is
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not generally satisfied by a homotopy when i = 1. Thus although Meyer’s result
as stated is correct, the extra hypothesis means that it does not support the im-
plication claimed by E. Riehl. See the discussion just before Subsection 4.5 for
a further explanation.

It turns out that there are two versions of extra degeneracies, which we will
call extra degeneracies and strong extra degeneracies. We will show that

strong extra degeneracies =⇒ extra degeneracies =⇒ homotopic to a constant

and give examples to show that both implications are strict.
As the names suggest, having strong extra degeneracies immediately implies

having extra degeneracies. Theorem 4.3, as noted above, shows that having extra
degeneracies implies homotopic to a constant.

The proofs that these implications are strict are done using examples that
begin with a truncated simplicial set, Subsections 4.4 and 4.5. and are completed
using a construction called the coskeleton. This is usually described using a Kan
extension, but we have not found an explicit description of the coskeleton and so
we include one; see Section 5.1. One problem with coskeletons is that they do
not get along well with simplicial homotopies. We use a notion we call reduced
homotopy which is fully equivalent to the usual, yet does lift to coskeletons. See
Section 3 for details.

We say that a simplicial object is contractible, respectively strongly contractible,
if it has extra degeneracies, respectively strong extra degeneracies. One question
that started us looking at these things was wondering whether a retract of a con-
tractible simplicial object is contractible. It turns out that for simplicial objects
in an idempotent-complete category, the properties of being homotopic to a con-
stant and of being contractible are closed under the formation of retracts, but the
property of being strongly contractible is not. See Section 6 for details.

Section 7 gives an explicit equational proof that if a topological space is topo-
logically contractible to a point, then its singular simplicial set is contractible,
but not necessarily strongly contractible. It is this example that leads us to take
one of the senses of contractibility as definitive. We have not been able to find
this explicit construction in the literature.

Since many of the computations involving simplicial objects are long and com-
plicated, we have relegated several of them to appendices.

2. Simplicial objects and partial simplicial objects

To make this self-contained, we briefly describe simplicial objects in a category.
A simplicial object in a category X consists of a countable sequence of objects
{Xn : n ≥ 0}; arrows din = di : Xn

//Xn−1 for n > 0 and 0 ≤ i ≤ n, called face

operators; and arrows sin = si : Xn
// Xn+1 for n ≥ 0 and 0 ≤ i ≤ n, called

degeneracies. These are subject to the following equations. Note that, as already
indicated, we usually omit the lower indices.
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◦ didj = dj−1di for i < j;
◦ sisj = sjsi−1 for j < i;

◦ disj =











sj−1di if i < j,

id if i = j or i = j + 1,

sjdi−1 if i > j + 1.

An augmented simplicial object X //X
−1 consists of a simplicial object X and

a map d00 = d0 : X0
//X

−1 such that d0d0 = d0d1 : X1
//X

−1.
If X and Y are simplicial objects, a simplicial map f : X // Y consists of

morphisms fn : Xn
// Yn that commute with the faces and degeneracies in the

obvious way. If f, g : X // Y is a pair of simplicial maps a homotopy, written
h : f  g, consists of morphisms hi

n = hi : Xn
// Yn+1 such that

◦ d0h0 = fn;
◦ dn+1hn = gn;

◦ dihj =











hj−1di if i < j,

dihi−1 if i = j,

hjdi−1 if i > j + 1;

◦ sihj =

{

hjsi−1 if i > j,

hj+1si if i ≤ j.

Note that the relation  is neither symmetric nor transitive. It is reflexive. We
leave it as an exercise to show that h : f  f if we define hi = sif .

We will also have occasion to deal with partial simplicial objects, also known as
truncated simplicial objects. An m-partial simplicial object X is a finite sequence
X0, X1, . . . , Xm, face maps di = din : Xn

//Xn−1 for 0 < n ≤ m and 0 ≤ i ≤ n,
and degeneracies si = sin : Xn

//Xn+1 for 0 ≤ n < m and 0 ≤ i ≤ n satisfying the
same identities as a simplicial object insofar as they are defined. We will show
that every partial simplicial object is the truncation of a full simplicial object,
Section 5.1.

3. Reduced homotopy1

By a reduced homotopy between f, g : X // Y we mean a family ri = rin :
Xn

// Yn for all n and 0 ≤ i ≤ n+ 1 such that

RH-1. r0 = fn;
RH-2. rn+1 = gn;

RH-3. dirj =

{

rj−1di for i < j,

rjdi for i ≥ j;

1As far as we are aware, the definition of reduced homotopy is new. There are hints in the
literature, but we have not found a precise definition nor a theorem such as Proposition 3.1.
We needed this because the usual definition of homotopy does not work well with coskeleton

Subsection 5.1. The difficulty lies in describing the value of di+1

n+1
h
i
n = d

i

n+1h
i
n, in terms of Xn.
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RH-4. sirj =

{

rj+1si for i < j,

rjsi for i ≥ j.

Some special cases of this are worth mentioning. When j = 0, it follows that
dir0 = r0di and sir0 = r0si, which are just the conditions that f is simplicial.
When j = n+1, it follows that dirn+1 = rndi, while sirn+1 = rn+2si, which just
express that g is simplicial.

Proposition 3.1. There is a bijection between homotopies and reduced homo-

topies between pairs of arrows X // // Y .

Proof: Let f, g : X // Y and h : f  g. Define r0 = f , rn+1 = g and ri =
dihi = dihi−1 for 1 ≤ i ≤ n. Then the first two equations of RH are satisfied. For
RH-3, we consider cases:

i < j < n+ 1: dirj = didjhj = dj−1dihj = dj−1hj−1di = rj−1di;
i < j = n+ 1: dirn+1 = dig = gdi = rndi;
i > j : dirj = didjhj = djdi+1hj = djhjdi = rjdi;
i = j > 0: diri = didihi = didihi−1 = didi+1hi−1 = dihi−1di = ridi;
i = j = 0: d0r0 = d0f = fd0 = r0d0.

To verify RH-4, we calculate sirj . When i < j, we have

sirj = sidjhj = dj+1sihj = dj+1hj+1si = rj+1si.

When i ≥ j, we have

sirj = sidjhj = djsi+1hj = djhjsi = rjsi.

In the other direction, given a reduced homotopy r, we let hi = ri+1si. To see
that h is a homotopy, first we calculate

d0h0 = d0r1s0 = r0d0s0 = f

dn+1hn = dn+1rn+1sn = rn+1dn+1sn = g.
Next we see that

dihi = diri+1si = ridisi = ri

while
dihi−1 = dirisi−1 = ridisi−1 = ri.

For i < j we have

dihj = dirj+1sj = rjdisj = rjsj−1di = hj−1di.

For i > j + 1 we have

dihj = dirj+1sj = rj+1disj = rj+1sjdi−1 = hjdi−1.

Next we calculate sihj .

i ≤ j : sihj = sirj+1sj = rj+2sisj = rj+2sj+1si = hj+1si;
i > j : sihj = sirj+1sj = rj+1sisj = rj+1sjsi−1 = hjsi−1.
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Now we must show that these constructions are inverse to each other. If we begin
with h and define ri = dihi, then ri+1si = di+1hi+1si = di+1sihi = hi. The
other way around, if we start with r and let hi = ri+1si, then dihi = diri+1si =
ridisi = ri. �

4. Contractible simplicial objects

What does it mean for a simplicial object to be contractible? We know what
it means for a topological set to be contractible. A space S is topologically con-

tractible if there exists a continuous map H : S × I // S, where I is the unit
interval, such that H(s, 0) = s for all s ∈ S and H(s, 1) is constantly equal to
some s0 ∈ S.

This definition makes special use of a one point space. The most important
feature, at least from our point of view, of a one point space is that it is discrete,
which implies that its singular simplicial complex (see Section 7) is constant in
the following sense.

4.1 Constant simplicial objects. A constant simplicial object C is one for
which every term is the same, say A and every face and degeneracy is the identity.
We will say thatX is homotopic to C if there are maps f : C // X and g : X // C
such that gf = idC and idX  fg. On the one hand, this is (apparently) too
weak, as will be discussed later. On the other hand, we ought to be content with
gf  1 and both instances of should be replaced by the equivalence relation it
generates. If we did this for fg, the problem would become intractible. As for gf ,
the only map homotopic to idC is itself (easy exercise) so that point resolves itself.
We stick to the above definition.

4.2 Extra degeneracies. But there is another way to look at a contraction.
Given a space S we will show in Section 7 that the singular simplicial complex (see
Section 7) has an “extra degeneracy”. This is a sequence of maps tn : Xn

//Xn+1

such that

◦ d0t = id;
◦ dit = tdi−1 for i > 0;
◦ sit = tsi−1 for i > 0.

This almost satisfies the same equations as a degeneracy labeled s−1. But such
a degeneracy would also satisfy s0s−1 = s−1s−1 or, in the notation we are using,
s0t = tt. We will call t a contraction, and say that X is contractible or has extra
degeneracies if t satisfies the three equations. We will call t a strong contraction,
and say thatX is strongly contractible or has strong extra degeneracies if t satisfies
the three equations above and, in addition, satisfies s0t = tt.

Example 4.4 below shows that contractibility does not imply strong con-
tractibility. What we do have is Theorem 6.1 which, for simplicial sets, is [3,
Lemma III.5.1]. Incidentally, that reference (page 200) defines an extra degener-
acy the way we do. But first we need an interlude to discuss augmentations.
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4.3 Augmentation. We show that if the ambient category has split idempo-
tents, then it does not matter whether we are dealing with an augmented or non-
augmented simplicial object. For the augmentation can be added in essentially
one way. If X is a simplicial set and the category has coequalizers, it is natural to
augment it by letting d00 : X0

//X
−1 be the coequalizer of d01, d

1
1 : X1

//X0. It
is slightly surprising that if X is a contractible simplicial object in a category X
that is idempotent complete, you do not need coequalizers.

Assuming a contraction t, we begin with d1td1t = d1d2tt = d1d1tt =

d1td0t = d1t. We then split the idempotent d1t as X0
d0

// X
−1

t // X0 so
that d1t = td0 as required. We also have

d0d0 = d0td0d0 = d0d1td0 = d0d1d1t = d0d1d2t = d0d1td1 = d0td0d1 = d0d1

so that we have an augmented simplicial object. It is immediate that

X1

d0

//

d1

// X0
d0

// X
−1

is a coequalizer. These considerations are closely related to Beck’s precise triplea-
bleness theorem which is not quite stated in [2, Theorem 1] but is clearly explained
in [7, Section 1].

4.4 A contractible simplicial set that is not strongly contractible. We
begin with a contractible truncated augmented simplicial set X , defined only in
dimensions −1, 0, 1, 2. The elements of the Xn are as shown in this table:

X
−1 X0 X1 X2

α β γ δ ε ζ η θ

d0 α β β γ δ γ δ

d1 β β γ γ γ δ

d2 γ γ δ δ

s0 δ η θ

s1 ζ θ

t β γ ε ζ

Proposition 4.1. These equations define a short simplicial object with t as

a contraction.

Proof: There are many computations; see Appendix A for details. �

Proposition 4.2. Neither t nor any other map is a strong contraction.

Proof: First we observe that if τ : X0
// X1 satisfies ττ = s0τ as well as all

the other identities it has to satisfy to be a strong contraction, then so does
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τ : X
−1

//X0. In fact

ττ = ττd0τ = d2τττ = d2s0ττ = s0τd0τ = s0τ.

Now suppose we had a candidate τ for a strong contraction. Since τ(α) = β,
we must have τ(β) = ττ(α) = s0τ(α) = s0(β) = δ. In a similar way, τ(δ) = θ. As
for τ(γ), the first constraint is that d0τ(γ) = γ, which forces τ(γ) to be either ε
or η. But we must also satisfy d1τ(γ) = τd0(γ) = τ(β) = δ, which forces τ(γ) = θ,
a contradiction. �

This is now completed to an example using the coskeleton, Section 5.1.

Theorem 4.3. A contractible simplicial object in an idempotent complete cate-

gory is homotopic to a constant simplicial object.

Proof: Suppose X
d0

//A has a contraction t = {tn : Xn
//Xn+1 : n ≥ 0}. Let

A
t
−1 //X0

d0

//A split the idempotent d1t0. We define fn = (s0)nt : A // Xn

and gn = (d0)n+1 : Xn
// A. We begin by showing that these are simplicial maps

between X and the constant simplicial object A. We must show that the diagram

A A A

Xn+1 Xn Xn−1

A A A

idoo id //

(s0)n+1t

��

(s0)nt

��

(s0)n−1t

��
sioo di

//

(d0)n+2

��

(d0)n+1

��

(d0)n

��
idoo id //

(4.3.1)

commutes. We have si(s0)nt = (s0)n+1t, di(s0)nt = (s0)n−1t, (d0)n+2si =

(d0)n+1, and (d0)ndi = (d0)n+1. Clearly gf = id, and we wish to show that
id fg. We define hi = (s0)it(d0)i : Xn

// Xn+1. A number of equations have
to be satisfied.

(1) d0h0 = d0t = id.
(2) dn+1hn = dn+1(s0)nt(d0)n = (s0)nd1t(d0)n = (s0)nt(d0)n+1 = fngn.
(3) dihi = di(s0)it(d0)i = (s0)i−1d1s0t(d0)i = (s0)i−1t(d0)i, while dihi−1 =

di(s0)i−1t(d0)i−1 = (s0)i−1t(d0)i.
(4) If i > j+1, dihj = di(s0)jt(d0)j = (s0)jdi−jt(d0)j = (s0)jtdi−j−1(d0)j =

(s0)jt(d0)jdi−1 = hjdi−1.
(5) If i < j, dihj = di(s0)jt(d0)j = (s0)j−1t(d0)j , while hj−1di =

(s0)j−1t(d0)j−1di = (s0)j−1t(d0)j .
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(6) If i > j, sihj = si(s0)jt(d0)j = (s0)jsi−jt(d0)j = (s0)jtsi−j−1(d0)j =
(s0)jt(d0)jsi−1 = hjsi−1.

(7) If i ≤ j, sihj = si(s0)jt(d0)j = (s0)j+1t(d0)j , while hj+1si =
(s0)j+1t(d0)j+1si = (s0)j+1t(d0)j .

Thus X is homotopic to a constant simplicial object. �

Note that in the third equation above, we could continue to get

dihi−1 = (s0)i−1t(d0)i = (s0)i−1t(d0)i−1di−1 = hi−1di−1

which is not necessarily satisfied by a homotopy that makes a simplicial object
homotopic to a constant simplicial object. This is the equation that [8] added
without comment that allowed him to conclude that homotopic to a constant
implied extra degeneracy.

Suppose C is a constant simplicial object in which every term is A every face
and degeneracy is the identity and that f : C // X and g : X // C are such that
gf = idC and h : idX  fg. Meyer defined tn = h0

n in each dimension. But one of
the equations that has to be satisfied by a contraction is d1t = td0 or d1h0 = h0d0.
This equation is not satisfied by homotopies in general, but it is exactly Meyer’s
additional equation.

4.5 A partial simplicial object homotopic to a constant, but not con-

tractible. We let C denote the 2-partial simplicial set which is constantly equal
to {∗}, the one-point set whose only element is ∗. We embed C as a subsimplicial
set of Y = {Y0, Y1, Y2}. We let Y0 = {∗} and let Y1 be the set which is generated
by ∗, an element α, and by action of the map r11 : Y1

// Y1, which we will denote
by u. We assume that u(∗) = ∗ and we let Y1 = {∗, α, uα, . . . , unα, . . .}.

In this chart, n, k are non-negative but l has to be strictly positive.

Y0 Y1 Y2

∗ ∗ α unα ∗ β γ vnβ vnγ wkβ wlγ vnwkβ vnwlγ

d0 ∗ ∗ ∗ ∗ α ∗ α ∗ ukα ∗ ukα ∗

d1 ∗ ∗ ∗ ∗ α α unα unα ukα ulα un+kα un+lα

d2 ∗ ∗ α ∗ unα ∗ ∗ ∗ ∗

s0 ∗ ∗ β wnβ

s1 ∗ ∗ γ vnγ

r0 ∗ ∗ α unα ∗ β γ vnβ vnγ wkβ wlγ vnwkβ vnwlγ

r1 ∗ ∗ uα un+1α ∗ vβ vγ vn+1β vn+1γ vwkβ vwlγ vn+1wkβ vn+1wlγ

r2 ∗ ∗ ∗ ∗ wβ wγ vnwβ vnwγ wk+1β wl+1γ vnwk+1β vnwl+1γ

r3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To construct Y2, we let β = s0(α) and γ = s1(α). We also let v = r12 : Y2
// Y2

and w = r22 : Y2
// Y2. For convenience we look for an example for which vw = wv
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and such that Y2 is the set generated by ∗, β, γ, and the action of v, w. We let
Y2 have the elements ∗, β, γ, and all elements of the form vn(β), wn(β), vnγ,
wn(γ), vkwl(β), vkwl(γ). The definitions of the faces and degeneracies and of the
reduced homotopy are then given by the chart above.

There is some redundancy in the chart as, for example, the values of si(α),
dj(α), rk(α) can be determined by looking at the column headed by α or at the
next column, headed by un(α) and letting n = 0. Note that we set u0, v0, w0

equal to the identity function. For further redundancy see Appendix B. Also note
that we cannot set l = 0. For example, the column for wl(γ) would contradict
the column for γ if we set l equal to zero.

We claim that this defines a truncated simplicial homotopy between the con-
stant simplicial object C and the the truncated simplicial set Y . See Appendix B
for details.

We claim that this is not contractible. If there were a contraction t, we focus
on tα. From d0tα = α, we infer from the chart that tα can only be vnβ for some
n ≥ 0. From t∗ = td0α = d1tα = d1vnβ = unα, we see that t∗ = unα. From
t∗ = td1α = d2tα = d2vnβ = ∗ we derive a contradiction.

Finally, we note that by using the coskeleton, see below, we can construct a full
simplicial set which is homotopic to a constant but not contractible.

5. The coskeleton of a partial simplicial object

5.1 Coskeleton. Suppose that X has finite limits. Here we show how to extend
a truncated (augmented) simplicial object, such as the ones described in Subsec-
tions 4.4 and 4.5, to a simplicial object. This construction is well known; we have
included it to make this note self contained. It can be described as the right Kan
extension from the inclusion of the truncation of the standard simplex into the
full standard simplex.

We will show that if two maps between (n − 1)-partial simplicial objects are
reduced homotopic, so are the induced maps between the coskeletons. We will
also show that if the partial object is (strongly) contractible, the full object will be
also. By an obvious induction, it will suffice to begin with a partial (augmented)
simplicial object X = {X

−1, X0, X1, . . . , Xn−1}, together with the relevant faces
and degeneracies.

In the argument below, we pretend that the category is set-based and that the
limits can be defined by elements. This can of course always be replaced by actual
limits. Then we let Coskn(X) = {X

−1, X0, . . . , Xn−1, Xn} where Xn is the set of
all (n+1)-tuples x = (x0, x1, . . . , xn) ∈ (Xn−1)

n+1 for which dixj = dj−1xi when
i < j. We define dix = xi, from which it is immediate that didjx = dj−1dix when
i < j.

Moreover, given x ∈ Xn−1, the definition of si(x) ∈ Xn is forced because the
simplicial identities determine the values of dksi. So we define si : Xn−1

//Xn
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by:

six = x = (si−1d0x, si−1d1x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x).

More precisely, six = (x0, . . . , xn), where

xk =











si−1dkx if k < i,

x if k = i, i+ 1,

sidk−1x if k > i+ 1.

Defining si : Xn−1
//Xn as above and di : Xn

//Xn−1 by di(x0, x1, . . . , xn) = xi,
we claim that we have extended X to Coskn(X), a partial simplicial object
of degree n. Moreover, the extended object will preserve the contractibility
(and strong contractibility) when the original (n− 1)-partial simplicial object X
has these properties. See Appendix C for details. The first step is to prove
si(x) = (x0, x1, . . . , xn) ∈ Coskn(X) for all x ∈ Xn−1, by showing djxk = dj−1xj

whenever j < k.

Proposition 5.1. Suppose X and Y are (n − 1)-partial simplicial objects, f, g:
X // Y are (n − 1)-partial simplicial maps and r : f  g is an (n − 1)-partial
reduced homotopy. Then f , g, and r extend to the nth coskeletons.

Proof: That f and g extend is obvious. To extend r, let (x0, x1, . . . , xn) be an
element of the Coskn(X). This means that for 0 ≤ i < j ≤ n, dixj = dj−1xi.
For 0 ≤ k ≤ n + 1, let rk(x0, . . . , xn) = (rk−1x0, . . . , rk−1xk−1, rkxk, . . . , rkxn).
In particular

r0(x0, . . . , xn) = (r0x0, . . . , r0xn) = (fx0, . . . , fxn) = f(x0, . . . , xn)
and

rn+1(x0, . . . , xn) = (rnx0, . . . , rnxn) = (gx0, . . . , gxn) = g(x0, . . . , xn).

We must show that rk(x0, . . . , xn) ∈ Coskn(Y ). We have to consider cases.

i < j < k : dirk−1xj = rk−2dixj = rk−2dj−1xi = dj−1rk−1xi;
i < k ≤ j : dirkxj = rk−1dixj = rk−1dj−1xi = dj−1rk−1xi;
k ≤ i < j : dirkxj = rkdixj = rkdj−1xi = dj−1rkxi.

It is clear from the definition that for i < j, dirj = rj−1di and for i ≥ j,
dirj = rjdi. These equations are where the formula came from. We must show
that the commutation equations of the r with the degeneracies is satisfied. (Recall
that for x ∈ Xn−1, six = (si−1d0x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x).)
We must show that j < k implies that sjrk = rk−1sj . Since the face operators
in Coskn(Y ) are collectively monic, it suffices to show that disjrk = dirk−1sj for
i = 0, . . . , n. Again we consider cases.

i < j < k :

disjrk = sj−1dirk = sj−1rk−1di = rk−2sj−1di = rk−2disj = dirk−1sj ;

j < k and i = j, j + 1: disirk = rk = rkdisi = dirk+1si;
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j < i+ 1 ≤ k :

disjrk = sjdi−1rk = sjrk−1di−1 = rksjdi−1 = rkdisj = dirk+1sj ;

j < k < i+ 1:

disjrk = sjdi−1rk = sjrkdi−1 = rk+1sjdi−1 = rk+1disj = dirk+1sj .

�

In order to apply this to Subsection 4.5 we need the following.

Proposition 5.2. If C is a constant partial simplicial object, then its coskeleton

is also constant.

Proof: Suppose C is defined up to degree n− 1. As in the definition of coskele-
ton, we will pretend we are in sets. Then Cn = {(x0, . . . , xn) ∈ Cn+1

n : dixj =
dj−1xi for i < j}. But all di are identities, so this says that all xi are equal
so that Cn = Cn−1 and it is easy to see that all faces and degeneracies are the
identity. �

6. Retracts

One of our original motivations for this paper was to discover whether a retract
of a contractible simplicial object is contractible.

Theorem 6.1. A retract of a contractible simplicial object is contractible; ev-

ery contractible simplicial object is a retract of a strongly contractible simplicial

object.

Proof: Suppose Y
f //X

g // Y are simplicial maps such that gf = id and that
X has a contraction tX . We define tY = gtXf . The proof that tY is a contraction
is trivial.

To go the other way, suppose t is a contraction onX . The cone CX is defined by
(CX)n = Xn+1, (Cd)i = di+1 and (Cs)i = si+1. We claim that the s0 constitute
a strong contracting homotopy on CX . In fact, (Cd)0s0 = d1s0 = id. For i > 0,
(Cd)is0 = di+1s0 = s0di = s0(Cd)i−1 and (Cs)is0 = si+1s0 = s0si = s0(Cs)i−1.
In addition, (Cs)0s0 = s1s0 = s0s0 so that s0 is a strong contraction on CX . Now
we wish to show that the existence of a contraction on X gives X as a retract
of CX . In fact, tn : Xn

// (CX)n = Xn+1 and d0 : (CX)n = Xn+1
// Xn

exhibit Xn as a retract of (CX)n so it suffices to show that these are simplicial
maps. We have (Cd)it = di+1t = tdi and similarly (Cs)it = tsi. Finally, for
i ≥ 0, (Cd)id0 = di+1d0 = d0di and similarly, (Cs)id0 = d0si. �

Corollary 6.2. A retract of a strongly contractible simplicial set need not be

strongly contractible.

Proof: This is immediate from Example 4.4. �

The story of simplicial objects that are homotopic to a constant is a bit more
complicated. We begin with three lemmas of which the first is standard and
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left to the reader. The third says that the horizontal composite of homotopies
is a homotopy. This is doubtless known although the use of reduced homotopy
makes it trivial. It remains the case that homotopies do not generally compose
vertically.

Lemma 6.3. Suppose that h : g  k in the diagram X
f // Y

g //
k

// Z
l // W

of simplicial objects, then lhf : lgf  lkf .

Lemma 6.4. Suppose C is a constant simplicial object. Then any two homotopic

maps X // C are equal.

Proof: Assume that f, g : X // C and h : f  g. Then from f0 = d0h0 = h0

and g0 = d1h0 = h0 in degree 0, we see that f0 = g0. If we suppose that
fn−1 = gn−1, then we have that fn = d0fn = fn−1d

0 = gn−1d
0 = d0gn = gn. �

Lemma 6.5. Suppose that in the diagram X
f //
g

// Y
k //
l

// Z, we have f  g

and k  l, then kf  lg.

Proof: Although it must be possible to prove this using ordinary homotopies,
the use of reduced homotopies renders it easy. Assuming that r : f  g and
q : k  l are reduced homotopies, let pin = qinr

i
n for 0 ≤ i ≤ n + 1. It is now

a trivial computation to see that the pin define a reduced homotopy kf  lg. �

Theorem 6.6. If idempotents split in X , a retract of a simplicial object in X
that is homotopic to a constant is also homotopic to a constant.

Proof: Suppose that we have a diagram

C X C

Y

f // g //

k

��

l

OO

kf

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

gl

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

in which C is constant, gf = id, id  fg, and kl = id. We claim that glkf :
C // C is idempotent. Observe that glkfglkf  glklkf by Lemma 6.3 as
fg  id. By Lemma 6.4 this implies glkfglkf = glklkf which equals glkf as

kl = id. We then split this idempotent getting maps B
u // C

v // B such that
vu = id and uv = glkf . Then vglkfu = vuvu = id. For the other composite
kfuvgl = kfglkfgl, we have id = klkl kfglkfgl from Lemma 6.5. �
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7. Singular simplicial complexes

As usual, ∆n denotes the set of all points (a0, . . . , an) ∈ R
n such that all ai ≥ 0

and a0 + · · ·+ an = 1. We map δi : ∆n−1
// ∆n by

δi(a0, . . . , an−1) = (a0, . . . , ai−1, 0, ai, . . . , an−1)

and σi : ∆n+1
// ∆n by

σi(a0, . . . , an+1) = (a0, . . . , ai−1, ai + ai+1, ai+2, . . . , an).

If X is a topological space, we let SS(X) denote the simplicial set whose nth term
is Hom(∆n, X) with di given by di = Hom(δi, X) and si = Hom(σi, X). Then
SS(X) becomes a simplicial set, as is well-known and readily verified. We also
note that if f : X // Y is continuous, then SS(f) : SS(X) // SS(Y ), defined so
that f(u) = fu, is easily seen to be a simplicial map.

Theorem 7.1. Suppose X and Y are topological spaces, f, g : X // Y maps

and H : X × I // Y a map such that H(x, 0) = fx and H(x, 1) = gx. Then H
induces a simplicial homotopy SS(f) SS(g).

Proof: Define ri : SSn(X) // SSn(Y ) by letting u : ∆n
// X and defining

riu(a0, . . . , an) = H(u(a0, . . . , ai, ai+1, . . . , an), a0 + · · · + ai−1). We give the de-
tails in Appendix D. �

It is standard that a topological space X is contractible to the point ∗ ∈ X if
there is a map H : X × I // X such that H(x, 1) = x and H(x, 0) = ∗ for all
x ∈ X . It will be convenient in this section to denote H(x, a) by ax for x ∈ X
and a ∈ I, treating it as the set I acting on X . Should it happen that it is the
monoid I that acts, meaning that (ab)x = a(bx) for all x ∈ X and a, b ∈ I, we
will say that we have a regular contraction and that X is regularly contractible.

Any convex set in R
n is regularly contractible. By translating, we can assume

that it contains the origin and then we can let ∗ = 0 and ax have its standard
value. In fact, it would suffice that there be a single element ∗ in the set such
that the line segment between each other point and ∗ lie in the set. Such a set is
called star-shaped.

Theorem 7.2. Let X be a contractible topological space. Then the singular

simplicial set overX is contractible; if X is regularly contractible, then its singular

simplicial set is strongly contractible.

Proof: Suppose X × I // X is contraction, denoted (x, a) 7→ ax. We define
a contraction t : Hom(∆n, X) // Hom(∆n+1, X) by

tu(a0, a1, . . . , an+1) =

{

(1− a0)u
(

a1

1−a0
, . . . , an+1

1−a0

)

if a0 6= 1,

∗ otherwise.
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The details, including the proof that tu is well-defined and continuous, are
found in Appendix D. Note that this equation is not like the one used in the
preceding theorem.

7.1 A contractible space that is not regularly contractible. Unfortu-
nately, the space is not Hausdorff, nor even T 1. It is equivalent to a subspace of
the Khalimsky topology on the integers, see [6], [5].

We let E be the space with five elements we will denote v, w, x, y, z and whose
basic open sets are {v}, {v, w, x}, {z}, and {x, y, z}. We define a topological
contraction H of E to the single point v, as follows, where H(u, r) = ru for
u ∈ E and r ∈ [0, 1]:

(1) rv = v for all 0 ≤ r ≤ 1;

(2) rw =

{

v for 0 ≤ r < 1
5 ,

w for 1
5 ≤ r ≤ 1;

(3) rx =











v for 0 ≤ r < 1
5 ,

w for 1
5 ≤ r ≤ 2

5 ,

x for 2
5 < r ≤ 1;

(4) ry =



















v for 0 ≤ r < 1
5 ,

w for 1
5 ≤ r ≤ 2

5 ,

x for 2
5 < r < 3

5 ,

y for 3
5 ≤ r ≤ 1;

(5) rz =































v for 0 ≤ r < 1
5 ,

w for 1
5 ≤ r ≤ 2

5 ,

x for 2
5 < r < 3

5 ,

y for 3
5 ≤ r ≤ 4

5 ,

z for 4
5 < r ≤ 1.

Continuity follows from the calculation

(1) H−1({v}) = ({v} × [0, 1]) ∪ (E × [0, 1/5));
(2) H−1({v, w, x}) = ({v, w, x} × [0, 1]) ∪ (E × [0, 3/5));
(3) H−1{z}) = ({z} × (4/5, 1];
(4) H−1{x, y, z} × (2/5, 1].

Finally, we will show that neither this action nor any other is regular. Suppose
“r · ” is a regular action with base point u ∈ E. We can suppose without loss
of generality that u ∈ {x, y, z} since there is a symmetry on E that exchanges
{x, y, z} with {v, w, x}. Since 1 · v = v and {v} is open, there is some r < 1 such
that r · v = v. But then rn · v = v for all n. Since lim rn = 0, it follows that
lim rnv = 0 · v = u. But {x, y, z} is a neighbourhood of u that excludes every
rn · v, so that is impossible. �
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Appendix A. Details for example in Subsection 4.4

These are the detailed computations required in Subsection 4.4:

(1) For i < j, didj = dj−1di. But all composites of faces end in a one element
set, so this is automatic.

(2) For i < j, sjsi = sisj−1 : s1s0(β) = s1(δ) = θ = s0(δ) = s0s0(β).

(3) d0s0 = d1s0 = d1s1 = d2s1 = id:

d0s0(β) = d0(δ) = β; d0s0(γ) = d0(η) = γ; d0s0(δ) = d0(θ) = δ;

d1s0(β) = d1(δ) = β; d1s0(γ) = d1(η) = γ; d1s0(δ) = d1(θ) = δ;

d1s1(γ) = d1(ζ) = γ; d1s1(δ) = d1(θ) = δ;

d2s1(γ) = d2(ζ) = γ; d2s1(δ) = d2(θ) = δ.

(4) d0s1 = s0d0:

d0s1(γ) = d0(ζ) = δ = s0(β) = s0d0(γ); d0s1(δ) = d0(θ) = δ = s0(β) = s0d0(δ).

(5) d2s0 = s0d1:

d2s0(γ) = d2(η) = δ = s0(β) = s0d1(γ); d2s0(δ) = d2(θ) = δ = s0(β) = s0d1(δ).

Proposition. The map t is a contraction.

Proof: Again there are a number of computations.

(1) d0t = id:
d0t(α) = d0(β) = α; d0t(β) = d0(γ) = β;

d0t(γ) = d0(ε) = γ; d0t(δ) = d0(ζ) = δ.

(2) d1t = td0:

d1t(β) = d1(γ) = β = t(α) = td0(β); d1t(γ) = d1(ε) = γ = t(β) = td0(γ);

d1t(δ) = d1(ζ) = γ = t(β) = td0(δ).

(3) d2t = td1:

d2t(γ) = d2(ε) = γ = t(β) = td1(γ); d2t(δ) = d2(ζ) = γ = t(β) = td1(δ).

�

Appendix B. Details for Subsection 4.5

We will verify that Y , as given in Subsection 4.5, is homotopically equivalent
to the constant partial simplicial set C. In what follows, steps 1–5 show that Y is
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a partial simplicial set, while steps 6–11 verify that the maps r0, r1, r2, r3 define
a reduced homotopy with the required properties.

It is not necessary to prove that two maps into Y0, from the same domain, are
equal as this is immediate, because Y0 has only one element. Similarly, two maps
from Y0 into the same codomain are, for the maps we are using, always equal
because these maps always preserve the element labeled ∗.

We often prove that two maps, say p and q, are equal by showing that p(x) =
q(x) for all x in their common domain. We can omit the case of x = ∗ because
the maps we are using always preserve ∗.

If the common domain of p and q is Y1, then to prove p = q, we only need to
verify that p(x) = q(x) for x = unα because the case x = α follows when n = 0.

If the common domain of p and q is Y2, then to prove p = q, we only need to
verify that p(x) = q(x) for x = vnγ, vkwkβ and vkwlγ because the case x = ∗ is
immediate and the other cases follow by setting n or k equal to 0.

We find it convenient to use notation such as “r2 ≡ ∗ on Y1” to indicate that
r2 maps every element of Y1 to ∗.

(1) Proof that didj = dj−1di for i < j.
This follows because didj and dj−1di both map to Y0 (see above).

(2) Proof that sisj = sjsi−1 for i > j.
This follows because sisj and sjsi−1 both map from Y0 (see above).

(3) Proof that disj = sj−1di when i < j.
Since the only degeneracies in this example of a partial simplicial set are
s0, s1 and since i < j, we only have to show that d0s1 = s0d0.
d0s1 = s0d0 : d0s1(unα) = d0(vnγ) = ∗ = s0(∗) = s0d0(unα).

(4) Proof that disj = id for i = j or i = j + 1.
d0s0 = id: d0s0(unα) = d0(wnβ) = unα;
d1s0 = id: d1s0(unα) = d1(wnβ) = unα;
d1s1 = id: d1s1(unα) = d1(vnγ) = unα;
d2s1 = id: d2s1(unα) = d2(vnγ) = unα.

(5) Proof that disj = sjdi−1 for i > j + 1.
The only case that meets this condition is:
d2s0 = s0d1 : d2s0(unα) = d2(wnβ) = ∗ = s0(∗) = s0d1(unα).

(6) Proof of RH-1, that r0 is the identity.
A glance at the chart makes it clear that r0(x) = x for all x ∈ Y0∪Y1∪Y2.

(7) Proof of RH-2, that rn+1 ≡ ∗ on Yn.
Three glances at the chart make it clear that r1 ≡ ∗ on Y0; that r

2 ≡ ∗
on Y1 and that r3 ≡ ∗ on Y2.

(8) Proof that dirj = rj−1di for i < j (first half of RH-3).
Cases of the form dir3 = r2di are immediate because dir3 ≡ ∗ as r3 ≡ ∗
on Y2 and r2di ≡ ∗ as r2 ≡ ∗ on Y1. Aside from maps to Y0, the following
cases remain:



Contractible simplicial objects 489

d1r2 = r1d1 :

d1r2(vnγ) = d1(vnwγ) = un+1α = r1(unα) = r1d1(vnγ),

d1r2(vnwkβ) = d1(vnwk+1β) = un+k+1α = r1(un+kα) = r1d1(vnwkβ),

d1r2(vnwlγ) = d1(vnwl+1γ) = un+l+1α = r1(un+lα) = r1d1(vnwlγ);

d0r2 = r1d0 :

d0r2(vnγ) = d0(vnwγ) = ∗ = r1(∗) = r1d0(vnγ),

d0r2(vnwkβ) = d0(vnwk+1β) = uk+1α = r1(ukα) = r1d0(vnwkβ),

d0r2(vnwlγ) = d0(vnwl+1γ) = ∗ = r1(∗) = r1d0(vnwlγ);

d0r1 = r0d0 :

d0r1(vnγ) = d0(vn+1γ) = ∗ = r0(∗) = r0d0(vnγ),

d0r1(vnwkβ) = d0(vn+1wkβ) = ukα = r0(ukα) = r0d0(vnwkβ),

d0r1(vnwlγ) = d0(vn+1wlγ) = ∗ = r0(∗) = r0d0(vnwlγ).

(9) Proof that dirj = rjdi for i ≥ j. (Second half of RH-3.)
Note that if j = 0 then dirj = rjdi is immediate as r0 is the identity
d2r2 = r2d2 :

d2r2(vnγ) = d2(vnwγ) = ∗ = r2d2(vnγ),

d2r2(vnwkβ) = d2(vnwk+1β) = ∗ = r2d2(vnwkβ),

d2r2(vnwlγ) = d2(vnwl+1γ) = ∗ = r2d2(vnwlγ);

d2r1 = r1d2 :

d2r1(vnγ) = d2(vn+1γ) = un+1α = r1(unα) = r1d2(vnγ),

d2r1(vnwkβ) = d2(vn+1wkβ) = ∗ = r1(∗) = r1d2(vnwkβ),

d2r1(vnwlγ) = d2(vn+1wlγ) = ∗ = r1(∗) = r1d2(vnwlγ);

d1r1 = r1d1 :

d1r1(vnγ) = d1(vn+1γ) = un+1α = r1(unα) = r1d1(vnγ),

d1r1(vnwkβ) = d1(vn+1wkβ) = un+1+kα = r1(un+kα) = r1d1(vnwkβ),

d1r1(vnwlγ) = d1(vn+1wlγ) = un+l+1α = r1(un+lα) = r1d1(vnwlγ).

(10) Proof that sirj = rj+1si for i < j. (First half of RH-4.)
The proof that sir2 = r3si for i < j is immediate because we have s1r2 ≡ ∗
as r2 ≡ ∗ on Y1 and r3si ≡ ∗ because r3 ≡ ∗ on Y2. The only remaining
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case is:
s0r1 = r2s0 : s0r1(unα) = s0(un+1α) = wn+1β = r2(wnβ) = r2s0(unα).

(11) Proof that sirj = rjsi for i ≥ j. (Second half of RH-4, so this will
complete the proof that Example 4.5 has the indicated properties.)

Note that i can only be 0 or 1 as there is no s2 in the partial simplicial
set of Subsection 4.5. Also, if j = 0, then the result is immediate as r0 is
the identity. And if i = 0 then we must have j = 0 as i ≥ j. The maps
sidj with domain Y0 are trivially equal to djsi when i ≥ j because these
maps agree on ∗, the only element of Y0. It follows that it only remains
to show that s1r1 = r1s1:
s1r1 = r1s1 : s1r1(unα) = s1(un+1α) = vn+1γ = r1(vnγ) = r1s1(unα).

Appendix C. The coskeleton equations

We start by completing the proof that the function si actually maps Xn−1

to Xn. It clearly suffices to show that djdksix = dk−1djsix for x ∈ Xn−1 and
j < k. Recall that

six = (si−1d0x, si−1d1x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x).

There are a number of cases to consider:

(1) j < k < i:

djdksix = djsi−1dkx = si−2djdkx = si−2dk−1djx,

dk−1djsix = dk−1si−1djx = si−2dk−1djx;

(2) j < k = i, i+ 1:

djdksix = djx,

dk−1djx = dk−1si−1djx = djx;

(3) j < i < k − 1:

djdksix = djsidk−1x = si−1djdk−1x = si−1dk−2djx,

dk−1djsix = dk−1si−1djx = si−1dk−2djx;

(4) j = i, i+ 1, k > i+ 1:

djdksix = djsidk−1x = dk−1x,

dk−1djsix = dk−1x;

(5) i+ 1 < j < k:

djdksix = djsidk−1x = sidj−1dk−1x = sidk−2dj−1x,

dk−1djsix = dk−1sidj−1x = sidk−2dj−1x.
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The simplicial identities for didj and disj are immediate consequences of the
definitions. Next we show that for i > j, sisj = sjsi−1. The {dk}, being the
projections on the limit, are collectively monic, so it suffices to show that dksisj =
dksjsi−1, which allows an inductive argument. We must consider a number of
cases depending on where k falls with respect to i and j. We always suppose
i > j.

(1) k < j:

dksisj = si−1dksj = si−1sj−1dk = sj−1si−2dk,

dksjsi−1 = sj−1dksi−1 = sj−1si−2dk;

(2) k = j, j + 1:

dksisj = si−1dksj = si−1,

dksjsi−1 = si−1;

(3) i > k > j + 1:

dksisj = si−1dksj = si−1sjdk−1 = sjsi−2dk−1,

dksjsi−1 = sjdk−1si−1 = sjsi−2dk−1;

(4) k = i, i+ 1:

dksisj = sj ,

dksjsi−1 = sjdk−1sj−1 = sj ;

(5) k > i + 1:
dksisj = sidk−1sj = sisjdk−2 = sjsi−1dk−2,

dksjsi−1 = sjdk−1si−1 = sjsi−1dk−2.

Now suppose the original fragment is contractible so far. We extend the con-
traction to t : Xn−1

// Xn by

tx = (x, td0x, td1x, . . . , tdn−1x).

We must show that this is an element of Xn. Suppose i < j. When i = 0,
d0djtx = dj−1d0tx = dj−1x = dj−1x. For 0 < i < j, we have

didjtx = ditdj−1x = tdi−1dj−1x = tdj−1di−2x,

djdi−1tx = djtdi−2x = tdj−1di−2x.

We will show that the above extension of a contraction t is a contraction on
Cosk(X), and, if the original contraction t is strong, then the extension will be
strong. sit = tsi−1 for i > 0. Again we compose with all the dk.

(1) 1 < k < i :
dksit = si−1dkt = si−1tdk−1 = tsi−2dk−1,

dktsi−1 = tdk−1si−1 = tsi−2dk−1;

(2) 1 < k = i, i+ 1: dksit = t = tdk−1si−1 = dktsi−1;
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(3) k > i + 1:

dksit = sidk−1t = sitdk−2 = tsi−1dk−2,

dktsi−1 = tdk−1si−1 = tsi−1dk−2.

Finally, we show that if the original contraction t is a strong contraction, then so
is its extension.

(1) k = 0: d0s0t = t = d0tt;
(2) k = 1: d1s0t = t = td0t = d1tt;
(3) k > 1: dks0t = s0dk−1t = s0tdk−2 = ttdk−2 = dktt.

Appendix D. The simplicial homotopy equations

Proof of Theorem 7.1.

Proof of RH-1:

r0u(a0, . . . , an) = H(u(a0, . . . , an), 0) = fu(a0, . . . , an) = SS(f)(u).

Proof of RH-2:

rn+1(u(a0, . . . , an) = H(u(a0, . . . , an), 1) = gu(a0, . . . , an) = SS(g)(u).

Proof of RH-3: For i < j

dirju(a0, . . . , an−1) = rj(u)(a0, . . . , ai−1, 0, ai, . . . , aj , . . . , an−1)

= H(u(a0, . . . , ai−1, 0, ai, . . . , aj , . . . , an−1), a0 + · · ·+ 0 + · · ·+ aj−2)

while

rj−1diu(a0, . . . , an−1) = H(diu(a0, . . . , an−1), a0 + · · ·+ aj−2)

= H(u(a0, . . . , ai−1, 0, ai, . . . , aj , . . . , an−1), a0 + · · ·+ aj−2).

For i ≥ j

dirju(a0, . . . , an−1) = rj(u)(a0, . . . , aj−1, . . . , ai−1, 0, ai, . . . , an−1)

= H(u(a0, . . . , aj−1, . . . , ai−1, 0, ai, . . . , an−1), a0 + · · ·+ aj−1)

while

rjdiu(a0, . . . , an−1) = H(diu(a0, . . . , an−1), a0 + · · ·+ aj−1)

= H(u(a0, . . . , aj−1, . . . , ai−1, 0, ai, . . . , an−1)a0 + · · ·+ aj−1).
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Proof of RH-4: For i < j

sirju(a0, . . . , an+1) = rju(a0, . . . , ai−1, ai + ai+1, . . . , aj+1, . . . , an+1)

= H(u(a0, . . . , ai−1, ai + ai+1, . . . , aj+1, . . . , an+1),

a0 + · · ·+ (ai + ai+1) + · · ·+ aj)
while

rj+1siu(a0, . . . , an+1) = rj+1siu(a0, . . . , ai, . . . , aj . . . , an+1)

= H(siu(a0, . . . , an+1), a0 + · · ·+ aj),

which is clearly the same as sirju. For i ≥ j

sirju(a0, . . . , an+1) = rju(a0, . . . , aj−1, . . . , ai−1, ai + ai+1, . . . , an+1)

= H(u(a0, . . . , aj−1, . . . , ai−1, ai + ai+1, . . . , an+1), a0 + · · ·+ aj−1)
while

rjsiu(a0, . . . , an+1) = rjsiu(a0, . . . , aj , . . . , ai, . . . , an+1)

= H(siu(a0, . . . , an+1), a0 + · · ·+ aj−1)

which is clearly the same as sirju.
It seems worth pointing out that Meyer’s condition is not satisfied. For exam-

ple, recall that hi = ri+1si then:

d1h0u(a0, a1) = h0u(a0, 0, a1) = H(u(a0, a1), a0)
while

h0d0u(a0, a1) = H(d0u(a0 + a1), a0) = H(u(0, a0 + a1), a0).

The result is that, while as shown above, a space homotopic to a point gives
a contractible simplicial complex, Meyer’s construction does not do the job in
this case. �

Proof of Theorem 7.2. First we show that tu is well-defined and continuous.
Since that u(a1/(1− a0), . . . , an+1/(1− a0)) is always defined when a0 6= 1, it
suffices to show that for 1 ≤ i ≤ n + 1 we have 0 ≤ ai/(1− a0) ≤ 1. But this
readily follows as 1− a0 = a1 + · · ·+ an+1 ≥ ai.

As for continuity, it is clear that tu is continuous at every point of ∆n+1 except
possibly when a0 = 1. Let q = (1, 0, . . . , 0) be the only such point in ∆n+1. It
suffices to show that if p1, p2, . . . , pi, . . . is a sequence of points of ∆n+1 that
converges to q, then ∗ is in the closure of the set {tu(pi) : i = 1, 2, . . .}.

Now write pi = (xi
0, x

i
1, . . . , x

i
n+1). Note that we may as well assume that

xi
0 6= 1 for all i as otherwise q ∈ {tu(pi) : i = 1, 2, . . .}. But the sequence

x1
0, x

2
0, . . . , x

i
0, . . . must converge to 1 as the projection from ∆n+1

// [0, 1], which
sends (a0, a1, . . . , an+1) to a0 is continuous.

Now let Y ⊆ X be the image ∆n+1 under u. Note that Y is compact. Define
ϕ(pi) = (u(xi

1/(1− xi
0), . . . , x

i
n+1/(1− xi

0)), 1 − xi
0) ∈ Y × [0, 1]. Since Y × [0, 1]

is compact, the sequence ϕ(p1), . . . , ϕ(pi), . . . must have a cluster point (meaning
a point (y, b) ∈ Y × [0, 1] such that every neighborhood of (y, b) contains infinitely
many members of the sequence). It clearly follows that b = 0.
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Finally, since tu(pi) = H(ϕ(pi)) and since H is continuous, and therefore
preserves cluster points, we see that H(y, b) is a cluster point of, and thus in the
closure of, {tu(pi) : i = 1, 2, . . .}. But as shown above, b = 0 so H(y, b) = ∗.

Next we show that t is a contraction.

d0tu(a0, . . . , an) = tu(0, a0, . . . , an) = 1u(a0, . . . , an) = u(a0, . . . , an)

so that d0t = id. For i > 0

ditu(a0, . . . , an) = tu(a0, . . . , ai−1, 0, ai, . . . , an)

= (1− a0)u
( a1
1− a0

, . . . ,
ai−1

1− a0
, 0,

ai
1− a0

, . . . ,
an

1− a0

)

while

tdi−1u(a0, . . . , an) = (1− a0)d
i−1u

( a1
1− a0

, . . . ,
an

1− a0

)

= (1− a0)u
( a1
1− a0

, . . . ,
ai−1

1− a0
, 0,

ai
1− a0

, . . . ,
an

1− a0

)

.

The argument with the degeneracies is similar. For i > 0

situ(a0, . . . , an+2) = tu(a0, . . . , ai + ai+1, . . . , an)

= (1 − a0)u
( a1
1− a0

, . . . ,
ai + ai+1

1− a0
, . . . ,

an
1− a0

)

while

tsi−1u(a0, . . . , an+2) = (1− a0)s
i−1u

( a1
1− a0

, . . . ,
an+2

1− a0

)

= (1− a0)u
( a1
1− a0

, . . . ,
ai

1− a0
+

ai+1

1− a0
, . . . ,

an+2

1− a0

)

.

Assuming there is a regular contraction on X we will show that the t, as defined
above, is a strong contraction on SS(X). We have that

ttu(a0, . . . ,an+2) = (1− a0)tu
( a1
1− a0

, . . . ,
an+2

1− a0

)

= (1− a0)
(

1−
a1

1− a0

)

u
( a2/(1− a0)

1− a1/(1− a0)
, . . . ,

an+2/(1− a0)

1− a1/(1− a0)

)

= (1− a0)
(1− a0 − a1

1− a0

)

u
( a2
1− a0 − a1

, . . . ,
an+2

1− a0 − a1

)

= (1− a0 − a1)u
( a2
1− a0 − a1

, . . . ,
an+2

1− a0 − a1

)

= tu(a0 + a1, a2, . . . , an+2)

= s0tu(a0, . . . , an+2).

�
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[6] Khalimskǐı E.D., The topologies of generalized segments, Dokl. Akad. Nauk SSSR 189

(1969), 740–743 (Russian).
[7] Linton F.E. J., Applied functorial semantics, II, Sem. on Triples and Categorical Homology
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