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A NOTE ON DISCRIMINATING POISSON PROCESSES
FROM OTHER POINT PROCESSES WITH STATIONARY
INTER ARRIVAL TIMES

Gusztáv Morvai and Benjamin Weiss

We give a universal discrimination procedure for determining if a sample point drawn from
an ergodic and stationary simple point process on the line with finite intensity comes from a
homogeneous Poisson process with an unknown parameter. Presented with the sample on the
interval [0, t] the discrimination procedure gt, which is a function of the finite subsets of [0, t],
will almost surely eventually stabilize on either POISSON or NOTPOISSON with the first
alternative occurring if and only if the process is indeed homogeneous Poisson. The procedure
is based on a universal discrimination procedure for the independence of a discrete time series
based on the observation of a sequence of outputs of this time series.
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1. INTRODUCTION

The simplest point process is undoubtedly the homogeneous Poisson point process on
the real line. It can be described as a random countable discrete subset of R with
the property that the random variables that count the number of points in disjoint
intervals are independent with a Poisson distribution and parameter proportional to the
lengths of the intervals. An alternate description is via the inter arrival process which in
the case of a Poison process consists of independent exponentially distributed random
variables with a fixed parameter. There has been much work done in the statistical
literature concerning tests to determine whether a given data set is best modeled by
such processes. Our discrimination procedure will not be a statistical test in a sense
that our result will be asymptotic, we will not give upper bounds for type I or type II
errors.

We propose to study the identification problem from the point of view of the theory
of universal discrimination procedures which are asymptotically point wise consistent.
In an earlier paper we have given a series of procedures gn(X1, X2, . . . Xn) which when
presented with a sequence coming from a discrete time ergodic process will eventually
almost surely stabilize on IND if the process is independent and NOTIND otherwise. We
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will view a point process as a random discrete subset ω ⊂ R and then provide a sequence
of discrimination procedures gn(ω ∩ [0, n]) which will eventually almost surely stabilize
on POISSON if the process we are sampling is Poisson and on NOTPOISSON otherwise.

Here is a more formal description of the setup that we are considering. The random
discrete subset can be described by random variables . . . , R−1 < 0 ≤ R0 < R1 . . .
defined on a probability space (Ω,Σ,P) where the elements of Ω are discrete subsets of
R and the random variables Ri(ω) are the points of ω. The σ-algebra Σ is generated
by functions that count the number of points in ω ∩ [a, b] for arbitrary intervals [a, b].
There is a natural flow Tt defined on the space Ω that takes the element ω to ω− t and
we will assume that P is invariant and ergodic under this flow. In addition we will only
consider those point processes with the property that the expected number of points in
ω ∩ [−N,N ] is finite for all N . In this case it is well known that a probability space
(Ω0,Σ0,P0) can be defined so that the inter arrival times, defined by Xn = Rn+1−Rn,
form a stationary and ergodic stochastic process with E0(Xn) <∞ and the probability
that Xi = 0 equals zero. Now the σ-algebra Σ0 is generated by the the inter arrival
times and P0 is what is called the Palm distribution in the literature of point processes.

Conversely, starting from any such ergodic stationary process one can define an er-
godic stationary point process by suitably randomizing the position of zero. Essentially
what is done is to take (Ω0,Σ0,P0) and form (Ω,Σ,P) by multiplying it by the unit
interval with the uniform measure on [0, 1]. If U represents the new uniform random
variable then the Ri are defined by setting R0 = UX0 and then defining the rest of the
Rn’s by the inter arrival times. This is carried out in detail for example in ( Thoris-
son [8], Chapter 8 ). In this duality ergodicity of the flow corresponds exactly to the
ergodicity of the discrete stationary process (cf. 8.7 in Thorisson [8]).

As is well known the process is a Poisson point process with parameter λ if and only
if the Xi’s are independent exponential random variables with parameter λ with respect
to the Palm measure. It follows easily from the construction of the Palm measure
that for processes with finite intensity, which are the only ones we are considering,
almost sure results are the same for the two measures. Our estimation scheme will
proceed in two parts. In the the first part we will probe the observed inter arrival
times for independence. Whenever a positive answer is received we will further probe
for the distribution being exponential. This second procedure will rely on the classical
Dvoretzky–Kiefer–Wolfowitz inequality with the tight constant that was obtained by P.
Massart [5]. In the first section we deal with the first part and basically rely on our
earlier work [6]. In the second section, which stands entirely in the classical setting
of determining an unknown distribution from a sequence of independent samples, we
will give our procedure for discriminating the exponential family. There are of course
many papers in the statistical literature which deal with the problem of testing for
an exponential distribution ( see for example Haywood and Khmaladze [2] and the
references listed there). Since our asymptotic point wise setting is rather different we
give a complete discussion of our procedure ab ovo.
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2. DISCRIMINATING INDEPENDENT PROCESSES FROM OTHER
STATIONARY PROCESSES

Let {Xn} be a stationary and ergodic real valued process. When we observe a sample
of the point process in the time interval [0, T ], i. e. when we observe ω ∩ [0, T ], we
will observe a random number of inter arrival times {Xi|0 ≤ i ≤ τT } where τT (ω)
is the greatest index n such that Rn+1 ≤ T . We shall probe this sequence for being
derived from an independent process versus the alternative that this real valued process
is not independent. Even though the sequence of Xi is not stationary with respect to the
underlying sample space of the point process (the interval X0 has a different distribution
even when the inter arrival times are independent - as long as they are not constant) the
Palm measure, with respect to which they do form a stationary process is equivalent to
the probability measure of the process so that the notion of almost sure is the same for
the two measures.

As usual, we will denote the sequence {X1, X2, . . . Xn} by Xn
1 . Let DIIDn(Xn

1 ) be
an arbitrary discrimination procedure such that eventually almost surely

DIIDn(Xn
1 ) =

{
IND if the process is independent
DEP otherwise.

We gave an example of such a discrimination procedure in Morvai and Weiss [6]. (Cf.
Ryabko and Astola [7] also.) We can now define a discrimination procedure DIIDT (A)
where A is a finite subset of [0, T ] with A = {r0 < r1 < . . . rn+1} by

DIIDT (A) = DIIDn(r1 − r0, r2 − r1, . . . , rn+1 − rn).

For a given ω, our procedure for discriminating independence becomes simplyDIIDT (ω∩
[0, T ]).

3. DISCRIMINATING EXPONENTIALLY DISTRIBUTED PROCESSES
FROM OTHER I.I.D. PROCESSES

Let X1, X2, . . . , be independent identically distributed real valued random variables.
Define the empirical distribution Fn(t) as

Fn(t) =
|{1 ≤ i ≤ n : Xi ≤ t}|

n
.

Let Fλ(t) denote the distribution function of the exponential distribution with pa-
rameter λ > 0, that is,

Fλ(t) =

{
1− e−λt if t ≥ 0
0, otherwise.

We would like to compare Fn(t) with Fλ(t) but we do not know the value of λ. It turns
out that given a certain level of error εn that we expect to see we can express the fact
that there exists a positive number λ such that

sup|F (t)− Fλ(t)| < εn
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as a finite number of inequalities. These are obtained in the following way. Let Y1 ≤ Y2 ≤
. . . ,≤ Yn be the ascending rearrangement of X1, X2, . . . , Xn. The empirical distribution
function of the Xi takes the value i/n on the interval [Yi, Yi+1) and since distribution
functions are monotone the maximal deviation between Fλ(t) and F (t) will take place

at the endpoints of these intervals. We will take εn =
√

ln(n)
n and this will give rise to

the following possible intervals for λ:

Ii(X
n
1 ) =

− ln

(
1− i

n +
√

ln(n)
n

)
Yi

,

− ln

(
1− i−1

n −
√

ln(n)
n

)
Yi

 .
Define the intersection of the intervals I1, . . . , In by Jn, that is,

Jn(Xn
1 ) =

n⋂
i=1

Ii(X
n
1 ).

Finally we define the discrimination procedure DEXP (Xn
1 ) as

DEXPn(Xn
1 ) =

{
EXP if for i 6= j : Xi 6= Xj and Jn(Xn

1 ) is not empty
NONEXP otherwise.

Theorem 3.1. Let X1, X2, . . . , be independent identically distributed. Then
DEXPn(Xn

1 ) = EXP eventually almost surely if Xi’s are exponentially distributed for
some parameter λ and NONEXP eventually almost surely otherwise.

P r o o f . The event that for some i 6= j we will see Xi = Xj can happen with positive
probability only if the distribution of the Xi’s has an atom in which case it certainly
can not have a density function not to speak of an exponential density function. If
there is an atom then by ergodicity we will certainly see such events and so we can put
DEXPn(Xn

1 ) = NONEXP whenever . for some i 6= j : Xi = Xj and n > max(i, j).
Thus we may assume that the distribution of the Xi’s is non atomic which implies that
with probability one if i 6= j then Xi 6= Xj . So we may assume that Y1 < Y2 < . . . , < Yn.
Let Y0 = −∞, Yn+1 =∞. Then for −∞ < t <∞,

Fn(t) =
i

n
if Yi ≤ t < Yi+1.

Assume that the Xi’s are exponentially distributed with some parameter λ > 0. By
the tight version of the Dvoretzky–Kiefer–Wolfowitz Inequality due to Massart [5]

P

(
sup
t
|Fn(t)− Fλ(t)| >

√
lnn

n

)
≤ 2e−2 lnn = 2n−2
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which is summable. By the Borel–Cantelli lemma, eventually almost surely,

sup
t
|Fn(t)− Fλ(t)| ≤

√
lnn

n
.

Since Fλ(t) is monotone increasing the maximum deviation of Fn(t) from Fλ(t) is at
the points Yi. Calculating the difference for i = 1, 2, . . . , n∣∣∣∣1− e−λYi − i

n

∣∣∣∣ ≤
√

lnn

n

and ∣∣∣∣1− e−λYi − i− 1

n

∣∣∣∣ ≤
√

lnn

n

eventually almost surely. Thus eventually almost surely, λ ∈ Ii(Xn
1 ) for i = 1, . . . , n and

so λ ∈ Jn(Xn
1 ) that is Jn(Xn

1 ) is not empty and DEXP (Xn
1 ) = EXP eventually almost

surely.

Now assume that the Xi’s are not exponentially distributed and non atomic. Let
G(t) = P (X ≤ t), the true unknown distribution function of the process. We again
apply Massart’s result [5] and conclude that:

P

(
sup
t
|Fn(t)−G(t)| >

√
lnn

n

)
≤ 2e−2 lnn = 2n−2

which is summable. By the Borel–Cantelli lemma almost surely there will be an N , such
that for all n ≥ N ,

sup
t
|Fn(t)−G(t)| ≤

√
lnn

n
. (1)

Since G is nonatomic there must exist a < b such that 0 < G(a) < G(b) < 1. We will
use this to put a priori bounds on the possible values of the parameter λ in case the
discrimination procedure will say EXP which will enable us to get a convergent sequence
and contradict the assumption that G(t) is not exponential.

Now we argue by contradiction. Assume that on a subsequence nj , DEXP (X1, . . .
. . . , Xnj

) = EXP . This means that there exists a sequence of λj such that λj ∈
Jnj

(X1, . . . , Xnj
). In other words, for i = 1, 2, . . . , nj∣∣∣∣1− e−λjYi − i

nj

∣∣∣∣ ≤
√

lnnj
nj

and ∣∣∣∣1− e−λjYi − i− 1

nj

∣∣∣∣ ≤
√

lnnj
nj

.
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Since Fλ(t) is monotone increasing the maximum deviation of Fnj (t) from Fλj (t) is at
the points Yi and the deviations at the points Yi are∣∣∣∣1− e−λjYi − i

nj

∣∣∣∣
and ∣∣∣∣1− e−λjYi − i− 1

nj

∣∣∣∣
thus

sup
t
|Fnj (t)− Fλj (t)| ≤

√
lnnj
nj

. (2)

By (1), (2) and the triangle inequality, for all nj > N ,

sup
t
|G(t)− Fλj (t)| ≤ 2

√
lnnj
nj

. (3)

Since 0 < G(a) < G(b) < 1 implies that for some 0 < L < M < ∞ for all nj > N ,
λj ∈ [L,M ] . Since λj is from a bounded interval [L,M ], it has a convergent subsequence
with some limit λ > 0. Thus

sup
t
|Fλ(t)− Fλj (t)| → 0. (4)

By(3)
sup
t
|G(t)− Fλj (t)| → 0. (5)

But G 6= Fλ. So (4) and (5) can not hold at the same time. This is a contradiction.
The proof of Theorem 3.1 is complete. �

4. DISCRIMINATING POISSON PROCESSES FROM OTHER POINT PROCESSES
WITH STATIONARY INTER ARRIVAL TIMES

Let 0 ≤ R1 < R2 < . . . be the arrival times of the ergodic point process. The inter
arrival times Xn = Rn+1 −Rn form a stationary and ergodic real valued process under
the Palm measure which has the same null sets as the probability measure of our process
This means that we can assume that we are sampling the Xi from a stationary ergodic
process. To simplify the notation we will now write our discrimination procedure in
terms of these inter arrival times rather than in terms of the point process ω. Define

DPOISSON(Xn
1 )

=

{
POISSON if DIIDn(Xn

1 ) = IID and DEXPn(Xn
1 ) = EXP

NONPOISSON otherwise.

Remark 4.1. One has to calculate DEXP (Xn
1 ) only if DIID(Xn

1 ) = IID.
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Theorem 4.2. Assume that the point process {Ri} has stationary and ergodic inter
arrival times {Xn}. Then DPOISSON(Xn

1 ) = POISSON eventually almost surely
if the point process {Ri} is a Poisson process and NONPOISSON eventually almost
surely otherwise.

P r o o f . Since a point process is Poisson if and only if it has inter arrival times which
are independent, identically distributed with exponential distribution for some λ > 0
the proof of Theorem 4.2 is complete. �
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