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SUPERINTEGRABILITY AND TIME-DEPENDENT INTEGRALS

Ondřej Kubů and Libor Šnobl

Abstract. While looking for additional integrals of motion of several mini-
mally superintegrable systems in static electric and magnetic fields, we have
realized that in some cases Lie point symmetries of Euler-Lagrange equa-
tions imply existence of explicitly time-dependent integrals of motion through
Noether’s theorem. These integrals can be combined to get an additional
time-independent integral for some values of the parameters of the considered
systems, thus implying maximal superintegrability. Even for values of the
parameters for which the systems don’t exhibit maximal superintegrability
in the usual sense they allow a completely algebraic determination of the
trajectories (including their time dependence).

1. Introduction

The purpose of this article is to demonstrate an unusual property encountered
during a search for additional integrals of motion of some classical superintegrable
systems with electric and magnetic field: explicitly time-dependent integrals of
motion.

We recall that the standard definition of integrability and superintegrability
assumes both the Hamiltonian and integrals to be functions on the phase space, i.e.
time independent. Namely, a classical Hamiltonian system in n degrees of freedom
is called integrable if it admits n functionally independent integrals of motion in
involution. If it admits n+ k functionally independent integrals of motion (where
k ≤ n− 1), out of which n are in involution, it is called superintegrable.

Thus, one may not expect time-dependent integrals to arise for time-independent
Hamiltonians. However, as we shall see, they do, at least for some systems.

In particular, we shall search for previously unknown integrals of the Hamiltonian
systems constructed in [6] in the following way:

(1) we find Lie point symmetries of the corresponding Euler-Lagrange equations
(we need second or higher order equations to be able to determine symmetry
generators algorithmically; thus, Hamilton’s equations are not suitable for
our purpose – being first order, they possess an infinite dimensional algebra
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of point symmetry generators which solve an underdetermined system of
linear PDEs);

(2) among them we look for the ones preserving not only the Euler-Lagrange
equations but also the Cartan 2-form dθ (defined below equation (7));

(3) we associate with them integrals of motion via geometrical version of
Noether’s Theorem (see Section 3).

We find that for certain systems considered in [6] some of the integrals constructed
using this procedure are time dependent. For some values of the parameters,
pairs of these time-dependent integrals give rise to additional globally defined
time-independent integrals.

The structure of the paper is as follows: In Section 2 we recall the method
for finding point symmetries of ordinary differential equations. In Section 3 we
introduce a geometrical version of Noether’s theorem. In Section 4 we present the
results for one of the systems considered in [6]. We conclude the article with a
summary and two essential questions.

For more detailed introduction to the geometrical formulation of classical me-
chanics and Noether’s theorem, which we review in Section 3, we refer the reader
to [12, 11, 1]. For recent development see [3] and references therein. Although
time-dependent constants of motion in time-independent Hamiltonian systems
appeared also in [9, 2, 13], their implications are not much discussed there.

2. Point symmetries of ordinary differential equations

In this paper, we shall consider point symmetries of ordinary differential equations
(ODE). These are transformations acting on the space J (0) of independent and
dependent variables (t, x1, . . . , xn) such that they transform any graph of a solution
of the given ODE to a graph of a solution.

One-parameter (local) groups of such transformations can be easily characterized
through a linear condition in the following way [10, 4]. Let a vector field

(1) X = ξ(t, x1, . . . , xn) ∂
∂t

+ ηα(t, x1, . . . , xn) ∂

∂xα
∈ X(J (0)),

define through its flow a local 1-parameter group of transformations of J (0).
Through its action on graphs of functions and on their derivatives, it can be
uniquely extended to a vector field pr(k)X on the jet bundle J (k) with coordinates
(t, xα, x′α, . . . , x

(k)
α ). Let a mapping F : J (k) → RN define a system of ordinary

differential equations

(2) Fν

(
t, xα(t), ẋα(t), . . . , dkxα(t)

dtk
)

= 0 , ν = 1, . . . , N .

We denote the solution set of the corresponding system of algebraic equations on
J (k) as

ΣF =
{

(t, xα, x′α, . . . , x(k)
α ) ∈ J (k) | Fν(t, xα, x′α, . . . , x(k)

α ) = 0, ν = 1, . . . , N
}

and assume that rank (dF (v)) = N , for all v ∈ ΣF . The vector field X ∈ X(J (0))
of the form (1) generates a local 1-parameter group of point symmetries of the
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differential equation (2) if and only if

(3)
(
pr(k)X(Fν)

)
(v) = 0 , ∀v ∈ ΣF , ∀ν = 1, . . . , N .

3. Noether’s Theorem

We shall use a geometrical formulation of Lagrangian dynamics on the evolution
space TM ×R (where M is the configuration space of our system). Assuming that
the given Lagrangian L is regular, we encode the dynamics in the dynamical vector
field

(4) Γ = ∂

∂t
+ q̇i

∂

∂qi
+ Λi(qi, q̇i, t) ∂

∂q̇i
,

where

(5) Λi(qi, q̇i, t) =
( ∂2L

∂q̇i∂q̇j

)−1( ∂L
∂qj
− ∂2L

∂q̇j∂qk
q̇k − ∂2L

∂q̇j∂t

)
.

Its integral curves give us solutions of the Euler-Lagrange equations

(6) d
dt

( ∂L
∂q̇i

)
− ∂L

∂qi
= 0

when projected onto the extended configuration space M ×R with the coordinates
[q1, . . . , qn, t].

The key objects in our formalism are the Cartan 1-form

(7) θ = Ldt+ ∂L

∂q̇i
(dqi − q̇i dt) ∈ Ω1(TM × R)

and its exterior derivative dθ, which is called Cartan 2-form. The dynamical vector
field Γ can then be characterized equivalently by the conditions

(8) iΓdθ = 0 , 〈Γ, dt〉 = 1 ,

i.e. Γ is the characteristic vector field of the Cartan 2-form dθ (which by definition
means iΓdθ = 0 and iΓd(dθ) = 0) normalized so that the trajectories (integral
curves of Γ) are parametrized by time.

A vector field Y ∈ X(TM × R) is a (generator of) dynamical symmetry of the
dynamical vector field Γ ∈ X(TM × R) if and only if a function g ∈ C∞(TM × R)
exists such that

(9) [Y,Γ] = g · Γ .

The flow of a dynamical symmetry Y preserves the integral curves of Γ albeit
possibly reparametrized.

A particular subclass of dynamical symmetries consists of dθ-symmetries. A
vector field Y ∈ X(TM × R) is a dθ-symmetry of the dynamical vector field
Γ ∈ X(TM × R) if and only if it satisfies

(10) LY dθ = 0 .

The importance of dθ-symmetries stems from the following version of Noether’s
theorem:
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Theorem 1. Let us consider a Lagrangian system with regular Lagrangian L whose
dynamics is described by the dynamical vector field Γ and the Cartan 1-form θ.
Then

(1) to every dθ-symmetry Y corresponds an integral of motion F of the form
(11) F = f − iY θ , where df = LY θ .

F is defined locally (due to use of Poincaré lemma in its construction) and
is determined up to a constant (choice of f).

(2) To each integral of motion F ∈ C∞(TM × R) corresponds a dθ-symmetry
Y , which is unique up to h · Γ, where h ∈ C∞(TM × R).

(3) To every integral of motion F corresponds a unique dθ-symmetry X such
that 〈X, dt〉 = 0. It implies [X,Γ] = 0, i.e. the symmetry X does not
change parametrization of integral curves of Γ, which are parametrized by
time.

(4) Integral of motion F is an invariant of the dθ-symmetry Y , i.e. Y (F ) = 0.

For proof see [12, 1].
In comparison to the traditional Noether’s theorem, this version has a wider

domain of applicability as the symmetries are functions on TM × R, i.e. may
depend on q̇, and gives a one-to-one correspondence between the symmetry and
the integral of motion.

Unfortunately, there is no general constructive algorithm for finding all dθ-sym-
metries of the given Lagrangian system. Thus we restrict our search to point
symmetries and determine which of them (more precisely, their prolongations)
are dθ-symmetries. We notice that since not all dθ-symmetries arise from point
symmetries, some integrals of the system may not be found in this way.

4. Example of system with time-dependent integrals

Let us now apply these ideas to the system considered in [6]. We proceed as
follows:

(1) we express the given Hamiltonian system in Lagrangian formulation;
(2) we find generators of point symmetries of its Euler-Lagrange equations;
(3) we extend the generators from J (0) to J (1) via their first prolongation to

get the corresponding dynamical symmetries and establish which of them
are dθ-symmetries;

(4) we associate to the dθ-symmetries the corresponding integrals of motion
via Noether’s Theorem (Theorem 1).

The system under consideration is Case A.2 from [6]. Its Hamiltonian reads

H = 1
2
(
~p+ ~A(~x)

)2 +W (~x)

= 1
2
(
p2
x + p2

y + (pz − Ω1y − Ω2x)2)+ Ω2
2

2κ2

(Ω1κ
2

Ω2
x− y

)2
,(12)
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i.e. describes a particle in a constant magnetic field ~B and an effective potential
W with

~B(~x) = (−Ω1,Ω2, 0), ~A = (0, 0,−Ω2x− Ω1y) ,

W (~x) = Ω2
2

2κ2

(Ω1κ
2

Ω2
x− y

)2
,

Ω1, Ω2 and κ are real constants, the mass is set to 1 and electric charge to −1.
The system (12) is known to be minimally superintegrable (see [6]) and for

(13) κ = m

n
∈ Q , m, n mutually prime

even maximally superintegrable, with an additional integral of order m+ n− 1 (cf.
[7]).

The corresponding Euler-Lagrange equations read

ẍ = Ω2ż − Ω1Ω2

(Ω1κ
2

Ω2
x− y

)
, ÿ = żΩ1 + Ω2

2
κ2

(Ω1κ
2

Ω2
x− y

)
,

z̈ = −Ω1ẏ − Ω2ẋ .(14)
They possess for an arbitrary κ the following eight generators of Lie point symme-
tries

Y1 = ∂

∂t
, Y2 = ∂

∂z
, Y3 = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, Y4 = ∂

∂x
+ Ω1

Ω2
κ2 ∂

∂y
,

Y5 = sin(ωt) ∂
∂x

+ Ω2

ω
cos(ωt) ∂

∂z
, Y6 = cos(ωt) ∂

∂x
− Ω2

ω
sin(ωt) ∂

∂z
,(15)

Y7 = sin
(ω
κ
t
) ∂
∂y

+ Ω1κ

ω
cos
(ω
κ
t
) ∂
∂z

, Y8 = cos
(ω
κ
t
) ∂
∂y
− Ω1κ

ω
sin
(ω
κ
t
) ∂
∂z

,

where ω =
√

Ω2
1κ

2 + Ω2
2, which are enhanced to twelve generators when κ = 1

(16)

Y9 = z
∂

∂x
+ z

Ω1

Ω2

∂

∂y
−
(Ω1

Ω2
y + x

) ∂
∂z

,

Y10 = y
∂

∂x
+
(Ω2

1 − Ω2
2

Ω1Ω2
y + x

) ∂
∂y

+ Ω1

Ω2
z
∂

∂z
,

Y11 =
[(Ω1

Ω2
y + x

)
sin(ωt) + ω

Ω2
z cos(ωt)

] ∂
∂x

+ Ω1

Ω2
2

[
(Ω1y + Ω2x) sin(ωt) + ωz cos(ωt)

] ∂
∂y

+ ω

Ω2
2

[
(Ω1y + Ω2x) cos(ωt)− ω2z sin(ωt)

] ∂
∂z

,

Y12 =
[(Ω1

Ω2
y + x

)
cos(ωt)− ω

Ω2
z sin(ωt)

] ∂
∂x

+ Ω1

Ω2
2

[
(Ω1y + Ω2x) cos(ωt)− ωz sin(ωt)

] ∂
∂y

− ω

Ω2
2

[
(Ω1y + Ω2x) sin(ωt) + ω2z cos(ωt)

] ∂
∂z

.
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The Lie algebras of these vector fields are summarized in Table 1 for both κ 6= 1
and κ = 1. For κ 6= 1 it is a solvable algebra with an Abelian nilradical spanned by
Y2, Y4, Y5, Y6, Y7, Y8 on which adY3 acts as −I and Y1 generates rotation in Y5, Y6
and Y7, Y8 subspaces.

For κ = 1 we have Levi decomposable algebra with sl(2) Levi factor spanned
by Y9, Y11, Y12 and the radical spanned by the elements Y1 + Ω2

2 Y9, Y2, Y3, Y4, Y5,
Y6, Y7, Y8, Y10. The radical is in turn decomposed into an Abelian nilradical spanned
by Y2, Y4, Y5, Y6, Y7, Y8 and an Abelian subalgebra spanned by Y1 + Ω2

2 Y9, Y3, Y10,
which acts on the nilradical in a rather nontrivial way.

Among the generators Y1, . . . , Y8 all except Y3 give rise to dθ-symmetries through
their prolongation. The integrals obtained through Theorem 1 read

E = 1
2 ~̇x

2 + Ω2
2

2κ2

(Ω1

Ω2
κ2x− y

)2
, F2 = −pz = −ż − Ω1y − Ω2x ,

F4 = −Ω1

Ω2
κ2ẏ − ẋ+ ω2

Ω2
z ,

F5 = −Ω2

ω
pz cos (ωt) + ωx cos (ωt)− ẋ sin (ωt) ,

F6 = Ω2

ω
pz sin (ωt)− ωx sin (ωt)− ẋ cos (ωt) ,(17)

F7 = −Ω1κ

ω
pz cos

(ω
κ
t
)

+ ω

κ
y cos

(ω
κ
t
)
− ẏ sin

(ω
κ
t
)
,

F8 = Ω1κ

ω
pz sin

(ω
κ
t
)
− ω

κ
y sin

(ω
κ
t
)
− ẏ cos

(ω
κ
t
)
.

Inspired by [5], we can consider F5 and F6 (F7 and F8, respectively) as real and
imaginary parts of complex integrals

(18) J5 =
(
ωx− Ω2

ω
pz + iẋ

)
eiωt , J7 =

(ω
κ
y − Ω1κ

ω
pz + iẏ

)
eiωκ t .

Two time-independent integrals can be constructed as squares of their norms. After
simplification, they read

F̃5 = ẋ2 +
(

Ω2(ż + Ω1y)− Ω2
1κ

2x

ω

)2

, F̃7 = ẏ2 +
(

Ω1κ
2(ż + Ω2x)− Ω2

2y

κω

)2

,

out of which only one is independent of E, pz and F4 since they are related to the
energy through F̃5 + F̃7 = 2E.

If κ = m
n ∈ Q, we obtain an additional integral. We combine J5 and J7 to get

(19) J57 = Jn5 J̄
m
7 =

(
ωx− Ω2

ω
pz + iẋ

)n(nω
m
y − mΩ1

nω
pz − iẏ

)m
,

where bar means complex conjugation. Its real or imaginary part is the fifth
independent integral, the other four being E, pz, F4 and F̃5 (or F̃7). Explicit
expressions for the real and imaginary part of (19) can be obtained from the
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following formulas

Rewn1 w̄m2 = |w1|n−1|w2|m−1
[
|w1||w2|Tn

(Rew1

|w1|

)
Tm

(Rew2

|w2|

)
+ Imw1 Imw2 Un−1

(Rew1

|w1|

)
Um−1

(Rew2

|w2|

)]
,(20)

Imwn1 w̄
m
2 = |w1|n−1|w2|m−1

[
|w2| Imw1 Un−1

(Rew1

|w1|

)
Tm

(Rew2

|w2|

)
− |w1| Imw2 Tn

(Rew1

|w1|

)
Um−1

(Rew2

|w2|

)]
,

where

(21) w1 = ωx− Ω2

ω
pz + iẋ , w2 = nω

m
y − mΩ1

nω
pz + iẏ

and Tn, Un are Chebyshev polynomials of the first and second type, respectively.
Thus, we have recovered through the point symmetry approach the four known

time-independent integrals which were already found in [6] and imply minimal
superintegrability of our system as well as the fifth integral for rational κ as in [7].
For κ = 1 the only additional dθ-symmetry is Y9. The corresponding integral reads

F9 = ω2z2 + (Ω1y + Ω2x)2 + 2Ω1(yż − ẏz) + 2Ω2(xż − ẋz)
2Ω2

.

[., .] Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Y1 0 0 0 0 ωY6 −ωY5 ω
κ
Y8 −ωκY7 0 0 ωY12 −ωY11

Y2 0 Y2 0 0 0 0 0 Y4
Ω1
Ω2
Y2 ω

Ω1
Ω2

2
Y8 + ω

Ω2
Y6 −ω

Ω1
Ω2

2
Y7− ω

Ω2
Y5

Y3 0 −Y4 −Y5 −Y6 −Y7 −Y8 0 0 0 0

Y4 0 0 0 0 0 −ω
2

Ω2
2
Y2

Ω1
Ω2
Y4 ω2 Ω1

Ω3
2
Y7 + ω2

Ω2
2
Y5 ω

2 Ω1
Ω3

2
Y8 + ω2

Ω2
2
Y6

Y5 0 0 0 0 Ω1
ω
Y8 + Ω2

ω
Y6 Y7 Y4 ω

Ω2
Y2

Y6 0 0 0 −Ω1
ω
Y7−

Ω2
ω
Y5 Y8 ω

Ω2
Y2 Y4

Y7 0 0
Ω2

1
ωΩ2

Y8 + Ω1
ω
Y6 Y5 +( Ω1

Ω2
− Ω2

Ω1
)Y7

Ω1
Ω2
Y4 −ωΩ1

Ω2
2
Y2

Y8 0 −
Ω2

1
ωΩ2
Y7−

Ω1
ω
Y5 Y6 +( Ω1

Ω2
− Ω2

Ω1
)Y8 ω

Ω1
Ω2

2
Y2

Ω1
Ω2
Y4

Y9 0 0 −2 ω
Ω2
Y12 2 ω

Ω2
Y11

Y10 0 0 0

Y11 0 2ω
3

Ω3
2
Y9

Tab. 1: Algebra of symmetries Y1, . . . , Y12 from (15). The genera-
tors Y9, . . . , Y12 are present only for κ = 1.
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It is independent of E, pz, F4 and F̃5, i.e. the system is maximally superintegrable.
However, the integral F9 is linear in velocities, thus in momenta, and was already
known in [6].

It is also worth noting that while dθ-symmetry generators Y1, Y2, Y4, . . . , Y8
form an ideal in the generic algebra of the point symmetries for κ 6= 1, dθ-symmetry
generators for κ = 1 form a subalgebra but not an ideal in the full point symmetry
algebra, cf. Table 1.

We observe that time-dependent integrals F5, . . . , F8 in (17) are useful even for
κ /∈ Q. The integrals (17) involve six independent functions on the 7-dimensional
manifold TM ×R, i.e. their values determined by the initial conditions restrict the
dynamics to a curve in TM × R and allow us to find the trajectories algebraically
as follows:

By eliminating ẋ from F5 and F6 we get

F6 sin (ωt)− F5 cos (ωt) = −ωx+ Ω2

ω
pz ,

from which follows that

(22) x(t) = F5 cos (ωt)− F6 sin (ωt)
ω

+ Ω2

ω2 pz .

The expression for y(t) arising from F8 and F7 in the same way is

(23) y(t) =

[
F7 cos

(
ω
κ t
)
− F8 sin

(
ω
κ t
)]
κ

ω
+ Ω1κ

2

ω2 pz .

The following expression for z(t) is obtained from F4, cf. (17), through substitution
for ẋ and ẏ from F5, F6 and F7, F8, respectively,

(24) z(t)= Ω2F4

ω2 −
Ω1κ

2

ω2

(
F7 sin

(ω
κ
t
)
+F8 cos

(ω
κ
t
))
−Ω2

ω2(F5 sin(ωt)+F6 cos(ωt)) .

As a side note, let us mention that the time-dependent integrals F5, . . . , F8 are
integrated Euler-Lagrange equations for x and y (14) with a suitable integrating
factor, e.g.

d
dtF5 = Ω2pz sin (ωt) + ωẋ cos (ωt)−ω2x sin (ωt)− ẍ sin (ωt)− ωẋ cos (ωt)

= − sin (ωt)
(
ẍ+ ω2x− Ω2pz

)
,

because pz is an integral of motion, i.e. constant.

5. Conclusions

We have considered an approach to the construction of integrals of motion
through the Lie point symmetry analysis of the Euler-Lagrange equations and
Noether’s theorem. For the considered system, the obtained integrals allow algebraic
determination of trajectories and for some values of the system’s parameters also
allow the construction of an additional independent integral, making the system
maximally superintegrable.

The example just presented (and a few others) lead us to two essential questions:
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– Is the presence of time-dependent integrals of time-independent systems just
an indication that the system is in some way trivial?

All the time-dependent integrals found so far were in pairs, involving
trigonometric functions sin and cos of time t and could be combined into one
of the following type of integrals: (ωxj + iẋj)eiωt or (ẋj − iẋk)eiωt for j 6= k
and some constant ω. The first type is connected with harmonic motion in
one degree of freedom, the other with elliptical motion connecting two degrees
of freedom. We have also seen that these integrals are actually once integrated
linear equations of motion. Such triviality of time-dependent integrals was
already encountered in the literature, cf. [8], where it was related to a (gauge)
freedom in the choice of Lagrangian for the given system.

– Does the presence of time-dependent integrals give us some new information
about superintegrability?

The system considered here is known to be maximally superintegrable
for κ = m

n ∈ Q, with an additional integral of order m+ n− 1 in momenta
(or, equivalently, velocities). However, in the Lie point symmetry analysis of
Euler–Lagrange equations, there was no difference in the number or structure
of the symmetries between κ rational and irrational, except for the particular
value κ = 1.

On the other hand, the integrals of the system (12) restrict the motion to
an algebraically computable curve in the extended phase space. For the values
of parameters for which the projection of the curve on the phase space is
closed and the integrals can be combined to an time–independent one we found
an additional integral which makes the system maximally superintegrable.
Since maximal superintegrability implies closed trajectories, time-dependent
integrals and their implications for the shape of the trajectories restrict the
range of parameters for which maximal superintegrability is possible. Moreover,
they hint at maximal superintegrability for the allowed parameters.
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tion (Grant Agency of the Czech Republic), project 17-11805S.
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