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Abstract. We study the anti-disturbance problem of a 1-d wave equation with boundary
control matched disturbance. In earlier literature, the authors always designed the controller
such as the sliding mode control and the active disturbance rejection control to stabilize the
system. However, most of the corresponding closed-loop systems are boundedly stable. In
this paper we show that the linear feedback control also has a property of anti-disturbance,
even if the disturbance includes some information of the system. By choosing suitable
parameters introduced in the proof, we can ensure the solution of the closed-loop system
is bounded in an admissible range. As an application, we discuss the control problem of a
nonlinear system. As a result, it is shown that the bounded estimation of the solution is
suitable.
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1. Introduction

Disturbance widely exists in the boundary control of systems described by par-

tial differential equations (PDEs). In the past two decades, many researchers have

paid more attention to anti-disturbance problems. That is, some effective control

strategies are adopted to reject the unknown disturbances such that the systems are

stable. By now researchers have developed many different approaches to deal with

disturbance issues, for example, the internal model principle for output regulation

([9], [10], [12], [15]); the robust control for systems with uncertainties from both the
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internal and external disturbance; the adaptive control for systems with unknown

parameters ([3], [13]) and so on. Recently, using sliding mode control (SMC) tech-

nology, the authors in [2] designed a distributed feedback controller to stabilize the

one-dimensional wave equation with distributed disturbance, while in [6] they con-

sidered the boundary stabilization of a one-dimensional Schrödinger equation subject

to boundary control matched disturbance. For a general discussion of interior dis-

turbance of conservation systems we refer to [19]. Moreover, based on the Lyapunov

function method, [5] and [11] considered the wave equation and the Euler-Bernoulli

equation with boundary disturbance. And the stabilization of one-dimensional and

multi-dimensional wave equations with boundary control matched disturbance is dis-

cussed in [7], [8], [20], [18] based on the active disturbance rejection control (ADRC).

However, these approaches have drawbacks when dealing with practical systems.

For example, under the sliding mode control, the closed-loop systems become nonlin-

ear. The solvability and stability analysis becomes more difficult, since the input and

output operators are unbounded for boundary control of PDEs. Moreover, these ap-

proaches have an implicit assumption that the disturbance is independent of the sys-

tem state. If the disturbance includes the state information of the system, the results

obtained by these approaches may not hold. But the earlier works always assumed

that the disturbance is independent of the state of the system. Based on the above ob-

servations, on the assumption that the disturbance includes the state information of

the system, we propose a simple method to reject disturbance. Our control objective

is to ensure the uniform boundedness of solution of the closed-loop system. Moreover,

we show that the linear feedback control also has a property of anti-disturbance. This

result in our paper can also be applied to the control problem of nonlinear systems.

For the sake of simplification, in this paper we consider the anti-disturbance prob-

lem for the one-dimensional wave equation with disturbance in the boundary control.

The system is governed by the partial differential equation

(1.1)











wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

w(0, t) = 0, wx(1, t) = u(t) + d(t),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

where u(t) is the control input, d(t) is the unknown disturbance of the system, which

is assumed to be a uniformly bounded function, i.e., |d(t)| 6M for all t > 0; here d(t)

might include information of the system. (w0, w1) is the initial state of the system.

If there is no disturbance, the system (1.1) becomes











wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

w(0, t) = 0, wx(1, t) = u(t),

w(x, 0) = w0(x), wt(x, 0) = w1(x).
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Under the feedback control law u(t) = −kwt(1, t)with k > 0, the system (1.1) with no

disturbance can be stabilized exponentially ([1], [14]). Substituting u(t) = −kwt(1, t)

into the system (1.1), we obtain the closed-loop system

(1.2)











wtt(x, t) = wxx(x, t) x ∈ (0, 1), t > 0,

w(0, t) = 0, wx(1, t) = −kwt(1, t) + d(t),

w(x, 0) = w0(x), wt(x, 0) = w1(x).

In this paper we will discuss the properties of the feedback closed-loop system (1.2).

In particular, we want to know whether or not we can choose the parameter k such

that the bound of the solution to (1.2) is small for any initial data.

Before the discussion, we introduce the energy spaceH = H1
E [0, 1]×L2[0, 1], where

H1
E [0, 1] = {f ∈ H1[0, 1] ; f(0) = 0}, and the inner product

((f, g), (u, v)) =

∫ 1

0

[f ′(x)u′(x) + g(x)v(x)] dx.

Clearly, H is a Hilbert space.
Define an operator A in H by

(1.3) A
(

f

g

)

=

(

g

f ′′

)

with the domain

D(A) = {(f, g) ∈ (H2[0, 1] ∩H1
E [0, 1])×H1[0, 1] ; f ′(1) = −kg(1)}.

And define an operator B: C → H−1 by

(1.4) Bu = (0, δ(x− 1))⊤u, u ∈ C.

With help of these operators, the system (1.2) can be written as an evolutionary

equation in H

(1.5)







dW (t)

dt
= AW (t) + Bd(t),

W (0) =W0.

where W (t) = (w(x, t), wt(x, t))
⊤, W0 = (w0(x), w1(x))

⊤.

The rest is organized as follows. In Section 2, we discuss the well-posedness of

the closed loop system (1.5) by the admissible control theory. In Section 3, we prove

the uniform boundedness of the solution to system (1.5). To estimate exactly the
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bound of the solution, we consider an optimization problem of the parameters k, δ,

and η which are introduced in the proof; the numerical results show that by suitable

choices of parameters, we can ensure that the solution of the closed-loop system

satisfies ‖(w,wt)‖ 6 M(1 + ε), the numerical results are given in Appendix. As an

application of the result of the present paper, in Section 4 we consider the control

problem of a nonlinear system. Finally, in Section 5, we give a conclusion.

2. The well-posedness of the system (1.5)

In this section we discuss the well-posedness of the system (1.5) by the admissible

control theory. Let A and B be defined in (1.5). Then the solvability of system (1.5)
is equivalent to the admissibility of B for A.
First we recall the definition of the admissible control operator [17]. Consider the

control system
{

ż(t) = Az(t) +Bu(t),

z(0) = z0

in the state Hilbert space X and the control Hilbert space U, where A generates a C0

semigroup eAt, t > 0, and B ∈ L(U,X−1). Here X−1 is the completion space of X

under the norm ‖x‖−1 = ‖R(β,A)x‖X for some β ∈ ̺(A).

Definition 2.1. The operator B is called an L2 admissible control operator for A

if the following two conditions are satisfied.

(1) For any κ > 0,

Φκ(u) :=

∫ κ

0

eA(t−s)Bu(s) ds ∈ X ∀u(s) ∈ L2(0, κ).

(2) For some κ0 > 0 there exists a Kκ0
> 0 such that

‖Φκ0
(u)‖2X 6 Kκ0

∫ κ0

0

‖u(s)‖2 ds.

By the duality principle, to prove the admissibility of B for A we only need to
show that B∗ is an L2 admissible observation operator for A∗ (see [17], [4], or [16]).

We have the following result.

Theorem 2.1. Let A and B be defined as (1.3) and (1.4). Then B is an L2

admissible control operator for A.
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P r o o f. A straightforward computation yields

A∗
(

ϕ

ψ

)

= −
(

ψ

ϕ′′

)

,

where D(A∗) = {(ϕ, ψ) ∈ (H2[0, 1] ∩H1
E [0, 1])×H1[0, 1] ; ϕ′(1) = kψ(1)} and

B∗
(

ϕ

ψ

)

=

(

0

ψ(1)

)

.

Then the dual system of system (1.2) or (1.5) is






















w∗
tt(x, t) = w∗

xx(x, t),

w∗(0, t) = 0,

w∗
x(1, t) = −kw∗

t (1, t),

y0(t) = w∗
t (1, t).

Define the energy function

E(t) =
1

2

∫ 1

0

[w∗2
x (x, t) + w∗2

t (x, t)] dx.

Differentiating E(t) with respect to t, we obtain

dE(t)

dt
=

∫ 1

0

w∗
t (x, t)w

∗
tt(x, t) dx+

∫ 1

0

w∗
x(x, t)w

∗
xt(x, t) dx

= w∗
x(x, t)w

∗
t (x, t)

∣

∣

∣

1

0
−
∫ 1

0

w∗
x(x, t)w

∗
xt(x, t) dx+

∫ 1

0

w∗
x(x, t)w

∗
xt(x, t) dx

= w∗
x(1, t)w

∗
t (1, t) = −kw∗2

t (1, t).

Integrating from 0 to T with respect to t in the above equation, we have

E(t)− E(0) + k

∫ T

0

w∗2
t (1, t) dt = 0,

and hence

(2.1)

∫ T

0

w∗2
t (1, t) dt =

1

k
(E(0)− E(t)) 6

1

k
E(0).

On the other hand,

A∗−1

(

ϕ(x)

ψ(x)

)

=

(
∫ x

0

∫ 1

ξ
ψ(y) dy dξ + kϕ(1)x

−ϕ(x)

)

∀ (ϕ, ψ)⊤ ∈ H,

and

B∗A∗−1

(

ϕ(x)

ψ(x)

)

= −ϕ(1).

Therefore B∗A∗−1 is bounded from H to C. This together with (2.1) shows that B∗

is admissible for A∗. Thus, B is admissible for A. �
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Since A generates an exponentially stable C0-semigroup e
At on H, we can suppose

that ‖eAt‖ 6 Le−w0t, where L > 0 and w0 > 0. Then the following result holds.

Theorem 2.2. For any initial value (w0, w1)
⊤ ∈ H and d(t) ∈ L2

loc(0,∞), there

exists a unique mild solution (w,wt)
⊤ ∈ H for system (1.5) which can be written as

(2.2)

(

w(x, t)

wt(x, t)

)

= eAt

(

w0

w1

)

+

∫ t

0

eA(t−s)Bd(s) ds.

R em a r k 2.1. If the disturbance d(t) includes the state information of the sys-

tem, i.e., d(t) = d(t, w, wt), then the system is a nonlinear one, the state of the

closed-loop system is a solution of the integral equation (2.2).

3. Estimation of the uniform boundedness of the solution (1.5)

In this section, we discuss the boundedness of solution of (1.5), which means the

anti-disturbance property of system (1.5) or (1.2). In particular, we shall estimate

the bound of the solution when t is large enough.

We observe that if d(t) includes the state information of the system, i.e., d(t) =

d(t, w, wt), we always suppose that the solution exists uniquely. In this case, we can

decompose the solution into two parts:

(

w(1)(x, t)

w
(1)
t (x, t)

)

= eAt

(

w0

w1

)

,

(

w(2)(x, t)

w
(2)
t (x, t)

)

=

∫ t

0

eA(t−s)Bd(s, w,wt) ds.

Then

(3.1)

(

w(x, t)

wt(x, t)

)

=

(

w(1)(x, t)

w
(1)
t (x, t)

)

+

(

w(2)(x, t)

w
(2)
t (x, t)

)

.

To estimate the solution of (2.2) or (1.2), we only need to estimate the second term

on the right-hand side of (3.1). So without loss of generality we can assume that d(t)

does not depend on the state of the system.

It is easy to see that the second term of (3.1) is a solution of system (1.2) corre-

sponding to the initial value (0, 0)⊤. So we consider the system

(3.2)























wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

w(0, t) = 0,

wx(1, t) = −kwt(1, t) + d(t),

w(x, 0) = 0, wt(x, 0) = 0,
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whose solution is

(3.3)

(

w(x, t)

wt(x, t)

)

=

∫ t

0

eA(t−s)Bd(s) ds.

The following theorem gives a bound for the solution to (3.2).

Theorem 3.1. Let sup
t>0

|d(t)| = M < ∞. If 0 < δ < 1 and η > 0 can be chosen

such that 1−δk > 0 and δk2/2+δ/2−k+(1− δk)/η 6 0 hold, then the solution (3.2)

satisfies the inequality

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)∥

∥

∥

∥

H
6M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
.

P r o o f. Multiplying both sides of the equation in system (3.2) by wt(x, t) and

integrating on [0, 1]× [0, t], we have

(3.4)

∫ t

0

∫ 1

0

wtt(x, t)wt(x, t) dxdt =

∫ t

0

∫ 1

0

wxx(x, t)wt(x, t) dxdt.

Integration by parts yields

∫ t

0

∫ 1

0

wtt(x, t)wt(x, t) dxdt =

∫ t

0

∫ 1

0

wt(x, t) dxdwt(x, t)

=

∫ 1

0

w2
t (x, t) dx

∣

∣

∣

t

0
−
∫ t

0

∫ 1

0

wt(x, t)wtt(x, t) dxdt,

so

(3.5)

∫ t

0

∫ 1

0

wtt(x, t)wt(x, t) dxdt =
1

2

∫ 1

0

w2
t (x, t) dx

∣

∣

∣

t

0
=

1

2

∫ 1

0

w2
t (x, t) dx.

Similarly, we have

(3.6)

∫ t

0

∫ 1

0

wxx(x, t)wt(x, t) dxdt

=

∫ t

0

wt(1, t)wx(1, t) dt−
1

2

∫ 1

0

w2
x(x, t) dx+

1

2

∫ 1

0

w2
x(x, 0) dx

=

∫ t

0

wt(1, t)wx(1, t) dt−
1

2

∫ 1

0

w2
x(x, t) dx.
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From (3.4), (3.5), and (3.6), we obtain

(3.7)
1

2

∫ 1

0

w2
x(x, t) dx+

1

2

∫ 1

0

w2
t (x, t) dx =

∫ t

0

wt(1, t)wx(1, t) dt.

Multiplying the equation in system (3.2) by xwx(x, t) and integrating on [0, 1]×
[0, t], we obtain

(3.8)

∫ t

0

∫ 1

0

xwx(x, t)wtt(x, t) dxdt =

∫ t

0

∫ 1

0

xwx(x, t)wxx(x, t) dxdt.

The left-hand side of the above is

(3.9)

∫ t

0

∫ 1

0

xwx(x, t)wtt(x, t) dxdt

=

∫ 1

0

xwx(x, t)wt(x, t) dx
∣

∣

∣

t

0
−
∫ t

0

∫ 1

0

xwxt(x, t)wt(x, t) dxdt

=

∫ 1

0

xwx(x, t)wt(x, t) dx− 1

2

∫ t

0

w2
t (1, t) dt+

1

2

∫ t

0

∫ 1

0

w2
t (x, t) dxdt.

Since the right-hand side is

∫ t

0

∫ 1

0

xwx(x, t)wxx(x, t) dxdt =

∫ t

0

xw2
x(x, t) dt

∣

∣

∣

1

0
−
∫ t

0

∫ 1

0

w2
x(x, t) dxdt

+

∫ t

0

∫ 1

0

xwxx(x, t)wx(x, t) dxdt,

it can be easily shown that

(3.10)

∫ t

0

∫ 1

0

xwx(x, t)wxx(x, t) dxdt =
1

2

∫ t

0

w2
x(1, t) dt−

1

2

∫ t

0

∫ 1

0

w2
x(x, t) dxdt.

From (3.8), (3.9), and (3.10), we have

(3.11)
1

2

∫ t

0

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dxdt+

∫ 1

0

xwx(x, t)wt(x, t) dx

=
1

2

∫ t

0

w2
x(1, t) dt+

1

2

∫ t

0

w2
t (1, t) dt.

Let δ ∈ (0, 1). Then (3.7) and (3.11) multiplied by δ yields

(3.12)
1

2

∫ 1

0

w2
x(x, t) dx+

1

2

∫ 1

0

w2
t (x, t) dx+ δ

∫ 1

0

xwx(x, t)wt(x, t) dx

+
δ

2

∫ t

0

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dxdt

=

∫ t

0

wt(1, t)wx(1, t) dt+
δ

2

∫ t

0

w2
x(1, t) dt+

δ

2

∫ t

0

w2
t (1, t) dt.
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Let

G(t) =
1

2

∫ 1

0

w2
x(x, t) dx+

1

2

∫ 1

0

w2
t (x, t) dx+ δ

∫ 1

0

xwx(x, t)wt(x, t) dx.

Note that
∣

∣

∣

∣

∫ 1

0

xwx(x, t)wt(x, t) dx

∣

∣

∣

∣

6
1

2

∫ 1

0

w2
x(x, t) dx+

1

2

∫ 1

0

w2
t (x, t) dx.

We have
1− δ

2

[
∫ 1

0

w2
x(x, t) dx+

∫ 1

0

w2
t (x, t) dx

]

6 G(t)

6
1 + δ

2

[
∫ 1

0

w2
x(x, t) dx+

∫ 1

0

w2
t (x, t) dx

]

.

From (3.12) we get

G(t) =
δ

2

∫ t

0

w2
x(1, t) dt+

δ

2

∫ t

0

w2
t (1, t) dt+

∫ t

0

wt(1, t)wx(1, t) dt

− δ

2

∫ t

0

∫ 1

0

[w2
x(x, t) + w2

t (x, t)] dxdt,

hence,

dG

dt
=
δ

2
w2

x(1, t) +
δ

2
w2

t (1, t) + wt(1, t)wx(1, t)−
δ

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx

=
δ

2
(k2w2

t (1, t)− 2kwt(1, t)d(t) + d2(t)) +
( δ

2
− k

)

w2
t (1, t) + wt(1, t)d(t)

− δ

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx

=
(δk2

2
+
δ

2
− k

)

w2
t (1, t) + (1− δk)wt(1, t)d(t) +

δ

2
d2(t)

− δ

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx.

Since the condition 1− δk > 0 holds, for η > 0 we have

dG

dt
6

(δk2

2
+
δ

2
− k

)

w2
t (1, t) +

1− δk

η
w2

t (1, t) + (1− δk)ηd2(t) +
δ

2
d2(t)

− δ

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx

=
(δk2

2
+
δ

2
− k +

1− δk

η

)

w2
t (1, t) +

[δ

2
+ (1− δk)η

]

d2(t)

− δ

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx.
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Using the condition
δk2

2
+
δ

2
− k +

1− δk

η
6 0

and the inequality

1

2

∫ 1

0

[w2
t (x, t) + w2

x(x, t)] dx >
1

1 + δ
G(t),

we have
dG

dt
6

[δ

2
+ (1− δk)η

]

d2(t)− δ

1 + δ
G(t).

From the above we can get

G(t) 6

∫ t

0

e−δ/(1+δ)(t−s)
[δ

2
+ (1− δk)η

]

d2(s) ds 6
1 + δ

δ

[δ

2
+ (1− δk)η

]

M2.

Therefore,

1

2

∫ 1

0

w2
t (x, t) dx+

1

2

∫ 1

0

w2
x(x, t) dx 6

1 + δ

(1− δ)δ

[δ

2
+ (1 − δk)η

]

M2.

So the solution of system (3.2) satisfies the inequality

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)
∥

∥

∥

∥

2

H
=

∫ 1

0

w2
x(x, t) dx+

∫ 1

0

w2
t (x, t) dx 6

1 + δ

(1− δ)δ
[δ + 2(1− δk)η]M2,

or equivalently,

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)∥

∥

∥

∥

H
6M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
.

The proof is completed. �

From (3.3) and Theorem 3.1, we see that

∥

∥

∥

∥

∫ t

0

eA(t−s)Bd(s) ds
∥

∥

∥

∥

H
6M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
∀ t > 0.

The following theorem gives an asymptotic estimation for the solution of (1.2)

or (1.5).

Theorem 3.2. For any initial value (w0, w1)
T ∈ H and sup

t>0
|d(t)| 6 M , the

solution (2.2) of system (1.5) is uniformly bounded and satisfies

lim sup
t→∞

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)∥

∥

∥

∥

H
6M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
.
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P r o o f. By Theorem 2.1, the solution (2.2) of system (1.5) satisfies

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)
∥

∥

∥

∥

H
6

∥

∥

∥

∥

eAt

(

w0(x)

w1(x)

)
∥

∥

∥

∥

H
+

∥

∥

∥

∥

∫ t

0

eA(t−s)Bd(s) ds
∥

∥

∥

∥

H

6 Le−ω0t

∥

∥

∥

∥

(

w0(x)

w1(x)

)∥

∥

∥

∥

H
+

∥

∥

∥

∥

∫ t

0

eA(t−s)Bd(s) ds
∥

∥

∥

∥

H

6 Le−ω0t

∥

∥

∥

∥

(

w0(x)

w1(x)

)∥

∥

∥

∥

H
+M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
,

so it holds that

lim sup
t→∞

∥

∥

∥

∥

(

w(x, t)

wt(x, t)

)∥

∥

∥

∥

H
6M

√

(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
.

The desired result follows. �

4. Optimization problem of parameters

In what follows, we consider an optimization problem of parameters δ, η, and k:

min
(1 + δ)[δ + 2(1− δk)η]

(1− δ)δ
,

where














0 < δ < 1, η > 0, k > 0;

1− δk > 0,

δk2

2
+
δ

2
− k +

1− δk

η
6 0.

Case 1. Here we consider a special case that η = δ.

In this case, the optimization problem becomes

min
(1 + δ)[1 + 2(1− δk)]

1− δ

such that














0 < δ < 1, k > 0;

1− δk > 0,

δk2

2
+
δ

2
− k +

1− δk

δ
< 0.

Let

f(δ) =
(1 + δ)[1 + 2(1− δk)]

1− δ
.
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The constraint condition becomes



























0 < δ < 1, k > 0;

δ 6
1

k
,

0 < δ 6

√

2

1 + k2
.

If k > 1, then 0 < δ 6 1/k, and we only need to consider the optimization problem

in the interval 0 < δ 6 1/k. A simple calculation gives

f ′(δ) =
2

(1− δ)2
+

4− 4δk + 2δ2k − 2k

(1 − δ)2
=

6− 4δk + 2δ2k − 2k

(1 − δ)2
.

Let f ′(δ) = 0, that is 6− 4δk+ 2δ2k − 2k = 0. Then δ and k satisfy the equation

kδ2 − 2kδ + (3 − k) = 0.

We consider the solvability of this equation under the constraint condition 0 <

δ 6 1/k.

(i) If 4k2 − 4k(3 − k) > 0 and 0 < 1 −
√
2k2 − 3k/k 6 1/k, that is (1 +

√
5)/2 6

k 6 3, we have a solution

δ = 1−
√
2k2 − 3k

k
and δ ∈

(

0,
1

k

]

,

and hence

f(δ)|δ=1−
√
2k2−3k/k =

(1 + 1−
√
2k2 − 3k/k)[1 + 2(1− (1−

√
2k2 − 3k/k)k)]

1− 1 +
√
2k2 − 3k/k

=
(2k −

√
2k2 − 3k)(3 − 2k + 2

√
2k2 − 3k)√

2k2 − 3k

= (6k − 3)− 4
√

2k2 − 3k.

Since

f
(1

k

)

=
1 + 1/k

1− 1/k
= 1+

2

k − 1
,

and f(0) = 3, when (1 +
√
5)/2 6 k 6 3, we have



















3 6 f(δ)|δ=1−
√
2k2−3k/k 6 3

√
5− 4

√

3−
√
5

2
,

2 6 f
(1

k

)

6 5.
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Therefore,

fmin(δ) = 2 if k = 3.

(ii) If 4k2 − 4k(3− k) < 0, that is 1 < k < 3
2 , the equation has no real solutions.

In this case, we have f ′(δ) > 0. Clearly,

f
(1

k

)

=
1 + 1/k

1− 1/k
= 1+

2

k − 1
,

and f(0) = 3 and f(1/k) > 5. Thus

fmin(δ) = f(0) = 3.

From the above discussion we see that for η = δ, the optimization problem has a

solution

fmin(δ) = f
(1

k

)

= 2 if k = 3 and δ =
1

k
=

1

3
.

Case 2. The general case.

To minimize the value of

F (η, δ, k) =
(1 + δ)[δ + 2(1− δk)η]

(1 − δ)δ
,

we consider different choices of η, δ, and k.

Tables 1–7 in Appendix are the numerical solutions to the minimizing problem

and separately show that

⊲ Table 1 gives the numerical results of the minimum values about δ with different

values of k for η = 0.2 and η = 0.4 respectively. From Table 1 we see that for the

same k > 2.5, the minimum points δ and the minimum values of F for η = 0.2, 0.4

are the same; the minimum value of F decreases as k is increasing.

⊲ Table 2 gives the numerical results of the minimum values about δ with different

values of k for η = 0.5 and η = 0.8 respectively. From Table 2 we see that for the

same k > 1.8, the minimum points δ and the minimum values of F for η = 0.5, 0.8

are the same; the minimum value of F decreases as k is increasing.

⊲ Table 3 gives the numerical results of the minimum values about δ with different

values of k for η = 1.0 and η = 1.2 respectively. From Table 3 we see that for the

same k > 1.6, the minimum points δ and the minimum values of F for η = 1.0, 1.2

are the same; the minimum value of F decreases as k is increasing.

⊲ Table 4 gives the numerical results of the minimum values about δ with different

values of k for η = 1.2 and η = 1.6 respectively. From Table 4 we see that for the

same k > 1.4, the minimum points δ and the minimum values of F for η = 1.4, 1.6

are the same; the minimum value of F decreases as k is increasing.
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Tables 1–4 show that for η ∈ [0.2, 1.6], when k > 2.5, the minimum points and

the minimum values are the same; and when k = 30, the minimum value approxi-

mates 1.07.

⊲ Tables 5–7 give the numerical results of the minimum value problem for k ∈
[1.2, 2.5] as η = 1.8, 2.0, 2.2, 2.4, 2.6 and 2.8, respectively. From these tables we see

that for k = 1.2, the minimum points and the minimum values become larger with η

increasing until η = 2.4. However, for each k > 1.4 and η ∈ [1.2, 2.8], the minimum

points and the minimum values are the same; and the minimum value decreases

with k increasing.

Thus, for this optimization problem, we give the following numerical results.

From the numerical results, we can see the following facts:

1) When η > 0 is fixed, the minimum value of the optimization problem tends to 1

with k increasing. When k = 30, the minimum value approximates 1.07.

2) For all η ∈ [0.2, 2], there exists k0 such that the minimum value points and the

minimum value are the same for each fixed k > k0.

The above fact shows that we can take η = 1 in the proof of Theorem 3.1. Since

the minimum value of the optimization problem determines the asymptotic bound

of the solution of system (1.5), the bound of the solution of (1.5) is relatively smaller

when k is larger, but the decay of the solution becomes slower; if k is smaller, the

bound of the solution of (1.5) becomes relatively larger, the decay of the solution

becomes faster. Therefore, for any ε > 0 we can choose suitable parameters k and δ

such that the asymptotic bound of the solution is less than M(1 + ε).

5. Application

In this section we consider the nonlinear control problem

(5.1)











wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

w(0, t) = 0, wx(1, t)− f(w) = u(t),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

where

f(w) = sign(wt(1, t))ε0 exp

{

1−
∫ 1

0

[w2
x(x, t) + w2

t (x, t)] dx

}

and ε0 is a positive constant.

If u(t) ≡ 0, then the energy function

E(t) =
1

2

∫ 1

0

[w2
x(x, t) + w2

t (x, t)] dx
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satisfies
dE(t)

dt
= wx(1, t)wt(1, t) = ε0|wt(1, t)| exp{1− 2E(t)} > 0,

so we need to control the system.

We regard the term f(w) as a disturbance of the system, i.e., d(t) = f(w). Then

|d(t)| 6 ε0 exp

{

1−
∫ 1

0

[w2
x(x, t) + w2

t (x, t)] dx

}

6 eε0 =M.

We take feedback control u(t) = −kwt(1, t), then the closed-loop system is

(5.2)











wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

w(0, t) = 0, wx(1, t) = −kwt(1, t) + f(w),

w(x, 0) = w0(x), wt(x, 0) = w1(x).

Applying Theorem 3.2, we have the following result.

Theorem 5.1. The energy function of (5.2) has estimation

lim sup
t→∞

E(t) 6
e2ε20
2

(1 + δ)[δ + 2(1− δk)η]

(1 − δ)δ
.

R em a r k 5.1. When there is a disturbance, the system may have an equilibrium

point. For example, system (5.2) has an equilibrium point w(x) = γx, where γ is

the solution of the function equation

γeγ
2/2 = βε0e, β ∈ [−1, 1].

Obviously, for any β ∈ [−1, 1] with β 6= 0, the function equation has a unique nonzero

solution γ 6= 0. So the equation (5.2) has an equilibrium point. In this case, we have

E =
γ2

2
=
β2ε20
2

exp(2− γ2).

So the solution of the closed-loop system is only bounded.
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6. Conclusion

In this paper, we consider the anti-disturbance property of a closed-loop system

of 1-d wave equation with boundary control matched disturbance. Under the linear

feedback control law we discussed the asymptotic bound of the solution of the closed-

loop system. The earlier works on the stabilization problem always assumed that

the disturbance is independent of the state of the system. Different from the earlier

works, in our research we remove this assumption. For |d(t)| 6 M we obtained the

asymptotic bound of the solution of the closed-loop system by choosing the suitable

parameters k and δ:

lim sup
t→∞

‖(w,wt)‖H 6M(1 + ε).

Indeed, if we take lim sup
t→∞

|d(t)| = M , we can get a similar result. As shown in

Section 4, our result can be applied to asymptotic estimation of the solution to the

nonlinear system, in which we regard the nonlinear part as a disturbance.

Appendix

η k δ minimum value η k δ minimum value

0.2 1.2 0.7949791 8.957852 0.4 1.2 0.7303371 7.285389

1.4 0.6521739 5.003333 1.4 0.5445545 4.575178

1.6 0.5466238 3.724389 1.6 0.4672514 3.944281

1.8 0.4651163 3.122609 1.8 0.5131670 3.477893

2.0 0.4000000 2.800000 2.0 0.5000000 3.000000

2.2 0.3827822 2.609961 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

2.7 0.3703704 2.176471 2.7 0.3703704 2.176471

2.9 0.3448276 2.052632 2.9 0.3448276 2.052632

3 0.3333333 2.000000 3 0.3333333 2.000000
3.2 0.3125000 1.909091 3.2 0.3125000 1.909091

3.5 0.2857143 1.800000 3.5 0.2857143 1.800000

4.5 0.2222222 1.571429 4.5 0.2222222 1.571429

5 0.2000000 1.500000 5 0.2000000 1.500000

5.5 0.1818182 1.444444 5.5 0.1818182 1.444444

6 0.1666667 1.400000 6 0.1666667 1.400000

7 0.1428571 1.333333 7 0.1428571 1.333333

10 0.1000000 1.222222 10 0.1000000 1.222222

20 0.5000000E−01 1.105263 20 0.5000000E−01 1.105263

30 0.3333333E−01 1.068966 30 0.3333333E−01 1.068966

300 0.3333333E−02 1.006689 300 0.3333333E−02 1.006689

Table 1. The minimum points and minimum values for η = 0.2, 0.4 and different values
of k.
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η k δ minimum value η k δ minimum value

0.5 1.2 0.6779661 6.643421 0.8 1.2 0.5203037 6.830254

1.4 0.4772256 4.790890 1.4 0.5985084 5.706625

1.6 0.5278640 4.188854 1.6 0.6250000 4.333333

1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

2.7 0.3703704 2.176471 2.7 0.3703704 2.176471

2.9 0.3448276 2.052632 2.9 0.3448276 2.052632

3 0.3333333 2.000000 3 0.3333333 2.000000

3.2 0.3125000 1.909091 3.2 0.3125000 1.909091

3.5 0.2857143 1.800000 3.5 0.2857143 1.800000
4.5 0.2222222 1.571429 4.5 0.2222222 1.571429

5 0.2000000 1.500000 5 0.2000000 1.500000

5.5 0.1818182 1.444444 5.5 0.1818182 1.444444

6 0.1666667 1.400000 6 0.1666667 1.400000

7 0.1428571 1.333333 7 0.1428571 1.333333

10 0.1000000 1.222222 10 0.1000000 1.222222

20 0.5000000E−01 1.105263 20 0.5000000E−01 1.105263

30 0.3333333E−01 1.068966 30 0.3333333E−01 1.068966

300 0.3333333E−02 1.006689 300 0.3333333E−02 1.006689

Table 2. The minimum points and minimum values for η = 0.5, 0.8 and different values
of k.

η k δ minimum value η k δ minimum value

1.0 1.2 0.5635083 7.698387 1.2 1.2 0.6030343 8.479747

1.4 0.6909830 5.988854 1.4 0.7142857 6.000000

1.6 0.6250000 4.333333 1.6 0.6250000 4.333333

1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

2.7 0.3703704 2.176471 2.7 0.3703704 2.176471

2.9 0.3448276 2.052632 2.9 0.3448276 2.052632

3 0.3333333 2.000000 3 0.3333333 2.000000

3.2 0.3125000 1.909091 3.2 0.3125000 1.909091
3.5 0.2857143 1.800000 3.5 0.2857143 1.800000

4.5 0.2222222 1.571429 4.5 0.2222222 1.571429

5 0.2000000 1.500000 5 0.2000000 1.500000

5.5 0.1818182 1.444444 5.5 0.1818182 1.444444

6 0.1666667 1.400000 6 0.1666667 1.400000

7 0.1428571 1.333333 7 0.1428571 1.333333

10 0.1000000 1.222222 10 0.1000000 1.222222

20 0.5000000E−01 1.105263 20 0.5000000E−01 1.105263

30 0.3333333E−01 1.068966 30 0.3333333E−01 1.068966

300 0.3333333E−02 1.006689 300 0.3333333E−02 1.006689

Table 3. The minimum points and minimum values for η = 1.0, 1.2 and different values
of k.
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η k δ minimum value η k δ minimum value

1.4 1.2 0.6407743 9.179427 1.6 1.2 0.6782688 9.795789

1.4 0.7142857 6.000000 1.4 0.7142857 6.000000

1.6 0.6250000 4.333333 1.6 0.6250000 4.333333

1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

2.7 0.3703704 2.176471 2.7 0.3703704 2.176471

2.9 0.3448276 2.052632 2.9 0.3448276 2.052632

3 0.3333333 2.000000 3 0.3333333 2.000000

3.2 0.3125000 1.909091 3.2 0.3125000 1.909091

3.5 0.2857143 1.800000 3.5 0.2857143 1.800000
4.5 0.2222222 1.571429 4.5 0.2222222 1.571429

5 0.2000000 1.500000 5 0.2000000 1.500000

5.5 0.1818182 1.444444 5.5 0.1818182 1.444444

6 0.1666667 1.400000 6 0.1666667 1.400000

7 0.1428571 1.333333 7 0.1428571 1.333333

10 0.1000000 1.222222 10 0.1000000 1.222222

20 0.5000000E−01 1.105263 20 0.5000000E−01 1.105263

30 0.3333333E−01 1.068966 30 0.3333333E−01 1.068966

300 0.3333333E−02 1.006689 300 0.3333333E−02 1.006689

Table 4. The minimum points and minimum values for η = 1.4, 1.6 and different values
of k.

η k δ minimum value η k δ minimum value

1.8 1.2 0.7171516 10.31972 2.0 1.2 0.7597469 10.72982

1.4 0.7142857 6.000000 1.4 0.7142857 6.000000

1.6 0.6250000 4.333333 1.6 0.6250000 4.333333

1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

Table 5. The minimum points and minimum values for η = 1.8, 2.0 and different values
of k.

η k δ minimum value η k δ minimum value

2.2 1.2 0.8106686 10.97524 2.4 1.2 0.8333333 11.00000

1.4 0.7142857 6.000000 1.4 0.7142857 6.000000

1.6 0.6250000 4.333333 1.6 0.6250000 4.333333
1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

Table 6. The minimum points and minimum values for η = 2.2, 2.4 and different values
of k.
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η k δ minimum value η k δ minimum value

2.6 1.2 0.8333333 11.00000 2.8 1.2 0.8333333 11.00000

1.4 0.7142857 6.000000 1.4 0.7142857 6.000000

1.6 0.6250000 4.333333 1.6 0.6250000 4.333333

1.8 0.5555556 3.500000 1.8 0.5555556 3.500000

2.0 0.5000000 3.000000 2.0 0.5000000 3.000000

2.2 0.4545455 2.666667 2.2 0.4545455 2.666667

2.5 0.4000000 2.333333 2.5 0.4000000 2.333333

Table 7. The minimum points and minimum values for η = 2.6, 2.8 and different values
of k.
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