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Abstract. This paper concerns improving Prodi-Serrin-Ladyzhenskaya type regularity
criteria for the Navier-Stokes system, in the sense of multiplying certain negative powers of
scaling invariant norms.

Keywords: regularity criteria; Navier-Stokes equations

MSC 2010: 35B65, 35Q30, 76D03

1. INTRODUCTION

We continue our study (see [18]) of regularity criteria for the incompressible Navier-
Stokes equations (NSE) in R3:
ou+ (u-V)u—Au+ Vr =0,
(1.1) V-u=0,
u(0) = wuo,
where u = (u1,u2,u3) and 7 denote the unknown velocity field and scalar pressure

of the fluid, respectively, and wg is the prescribed initial data satisfying V - ug = 0.
Here and in what follows, we shall use the following notations:

ou 0 2 5
oy 5 17) 95, (u-V) ;Zl u;0;, ;Zl 0;
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The existence of a weak solution
(1.2) w € L>=(0,T; L*(R*) N L?(0,T; H*(R?))

of (1.1) has been established in the pioneer works of Leray (see [7]) and Hopf (see [5])
(for the case of bounded domains). However, the issue of regularity and uniqueness of
such a weak solution remains an open problem up to now. The classical Prodi-Serrin
conditions (see [3], [8], [11]) state that if

2 3
(1.3) we LP(0,T; LYR3)), =4+Z=1,3<¢< o0,
poq

then the solution is smooth on (0, T7.
From the scaling point of view, the above condition (1.3) is important in the sense
that for solution u of (1.1),

(1.4) luxllLro,7:Lare)) = l|wllLr0.x27;L9(R3)),

where

+ =1, ur(z,t) = u(dz,\*t), A>0.

=N
Q| w

Regularity criterion (1.3) was later extended by Beirao da Veiga (see [1]) to

~

(1.5) Vu (or w =V x u) € LP(0,T; LY(R?)), +-=2, - <q¢g< .

N
| w
| o

Interested readers can also locate in [17] a refined version of (1.3) and (1.5) in the
homogeneous Besov spaces.

Recently, Tran-Yu in [13] and [14] established a series of regularity criteria involv-
ing the ratio of some physical quantities. Among others, Tran-Yu in [13], Corollary 2
established the regularity condition

T 4
(1.6) / Meo@lze o o,
o L+ u()lLs

which was improved in [14], Theorem 1 to

b llw()lza

We remark that in [13], [14], there is no 1 in the denominator; however, checking
the proof shows that regularity criteria (1.6) and (1.7) are both correct. We do state
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the result in the above manner to be consistent with recent progress as (1.9)—(1.11).
Similar consideration applies to (1.8) below.
Further extension as

3 15
e < ==
o 3, 5 <85S 3
T S S—
s . 2(3 - 15
(1.8) /”wwﬁdr<oo with f(s) = g, — <s5<2,
0 14 [lu(r)zs 283_3 8
= 2<
25 — 3’ §< 00

can then be found in [18]. Notice that in (1.8), f(s) is not continuous at s = 2. This
is because different estimation techniques are invoked below and above 2. On the
other hand, Tran-Yu in [15] treated many aspects, and showed the following three
regularity conditions:

ag [l

2s/(s—3) 2, 3<s<5,
Le dr < oo with k = 4

1+ (T, A scscon
T 2s/(s—3) 3, 3 <s<h,
(1.10) /Mdr<oo with = 6
o T+ u(lL b scic
3 9
e < Z
i | 3, 2<s\47
T 2s5/(2s—3
. ) 2 9
(1.11) /Mdr<oo with kK = 5 , T <8< 3,
o L4 [lu(n)]fs 2s—3" 4
6
2 s>3
23 °

These results are very interesting. Firstly, in the numerator, the physical quantities
are in the Serrin’s class. Secondly, in the denominator, the velocity has its critical
norm.

The aim of this paper is two-fold. First, some other ratio improvement of Prodi-
Serrin-Ladyzhenskaya type regularity criteria is considered, see Theorem 1.1 and
Theorem 1.2. Second, motivated by [2], [16], [21], [20], we shall also consider the
regularity criterion for (1.1) via w/|u|” (or equivalently Vu/|u|Y) for suitable -, see
Theorem 1.3. Notice that when v = 1, Vu/|u| is the gradient estimate, whose bound
is crucial in geometric analysis, see [10].

Before stating the main result, let us recall the weak solution of (1.1) in the sense
of Leray and Hopf, see [9], Definitions 3.3 and 4.9 for instance.

Definition 1.1. Let ug € L*(R?) with V- ug = 0, T > 0. A measurable
R3-valued function w defined in [0,7] x R is said to be a weak solution to (1.1) if

the following three conditions hold,
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(1) w € L>(0,T; L*(R?) N L*(0, T; H'(R?));
(2) (1.1); and (1.1), hold in the sense of distributions, i.e.

t T
// u-[8t<p+(u-V)go]da:ds+/ 'u,o-cp(O)dx:/ Vu : Vedrdt
0JR3 R3 0 JR3

3
for each o € C°([0,T) x R3) with V- = 0, where A : B = > aijby; for 3x 3
matrices A = (a"ij)7 B = (b”% and i,j=1

T
// u-Vipdrdt =0
0 JR3

for each ¢ € C(R? x [0,T));
(3) the strong energy inequality, that is,

t
(1.12) w12 + 2/ IVa(r)lfz dr < u(s)|f. Vs<t<T,

for s = 0 and almost all times s € (0, 7).

Now, our main results read:

Theorem 1.1. Assume ug € L?(R?). Let u be a weak solution of (1.1) in the
sense of Leray and Hopf. If

3 9

T 25/(25—3) 2, - <s< -,

(1.13) / % dr < oo with k = 2 1
o T+, 39,

25 —3" 4 =

then the solution is smooth on (0,T].

Remark 1.1. By (1.9) and Sobolev imbedding theorems, we have the regularity
criterion

/( ) 2 3 < s < 15
T 2s/(25—3 5 = X 5y
(1.14) / IOl ™7 4 ¢ oo with k= 2 8
o L+ Tu(ml. 1B=s) 1 _
3(2s —3)’ 8

Thus (1.13) is better than (1.14) for 15/8 < s < 3. Moreover, we can treat the
limiting case s = 3 of the Sobolev inequality.
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Theorem 1.2. Assume uy € L*(R3). Let u be a weak solution of (1.1) in the
sense of Leray and Hopf. If

9

25/3(s—1) 3, 1<s< o,

(1.15) /T [Va(DlL: : dr < oo with k = 9 7
o 1+ u@l 5 s

then the solution is smooth on (0,T].

Remark 1.2. By (1.11) and Sobolev imbeddding theorem, we have the regularity

criterion:
3, 1<s< g,
T 25/3(s—1)
[V (7)1 . 2s 9 3
1.16 dr < oo with kK = , = <s< -,
( ) /0 1T+ [Ju(r)|fs 355—1% 7 2
2(3—s 3
= 3.
35-1) 2°°°

Thus (1.15) is better than (1.16) for 3/2 < s < 3. Moreover, we provide a simple
proof under our strategy.

Theorem 1.3. Assume uy € L*(R3?). Let u be a weak solution of (1.1) in the
sense of Leray and Hopf. If
3

=2—7v, — <f <3, 0<y<],
2—v

w

a7 "

(1.17) e LY(0,T; LP(R?)),

SRR

| w

then the solution is smooth on (0,T].

Remark 1.3. In a bounded domain, regularity criteria in terms of 7/(1 + |u|®)
or Vrr/(1+ |ul®) are established by the third author in [19)].

2. PROOF OF THEOREM 1.1

For any ¢ € (0,T), since Vu € L?(0,T; L*(R?)) and (1.12) holds for almost all
times s € (0,7), we may find a § € (0,¢) such that

w(0) = u(-,0) € L*(R%), Vu(d) € L}(R®) = u(d) € HY/?(R®) N L3(R?),
as well as
t
lw(t)]|2: + 2/ [Va(r)||2: dr < ||u(d)|2: Vé<t<T.
§
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Take this w(0) as initial data, there exists @ € C([8, I'*), H/?(R?) N L3(R3)), where

[0, I"*) is the life span of the unique strong solution, see [4], [6] for the local unique

solvability. Moreover, by the margin case of (1.3) in [3], @ € C™(R? x (§,I™)).
According to the uniqueness result in [12], @ = w on [§, ['*).

(1) If I'* > T, we have already that u € C°°(R? x (0,7]) due to the arbitrariness
of e € (0,T).

(2) In the case I'* < T, our strategy is to show that ||u(t)|/;s (or a strong norm
[lw(t)|| r1/2) remains uniform bounded as ¢t , I'*. Standard continuation argu-
ment based on [6] then yields that I'* is not the maximal existence time of .
The contradiction shows that this case is impossible.

Multiplying (1.1); by Au with the operator A being defined through the Fourier
transform as

AF(€) = €I£(€),

and then integrating over R3, we obtain

1d

(2.1) qw

SelZe + e = — / [ V)u) Audz =1

If 3/2 < s < 9/4, invoking the fact that for any 1 < p < oo there exist positive
constants ¢(p), C(p) > 0 such that
(2.2) —Af=AAf = —Ad;f = 0;AAf

= 0;f = %Af =R Af (Ri is the Riesz transformation: @(f) =

= [IVFlizr < eI Af ] Lr;

& ¢

o (©))

3 3
—Af ==Y "00if = —AAf == A0;0if

i=1 ., 3 =1
= Af ==Y Zz&f =—> Ridif
i=1 i=1

= [[Afllzr < COIV e,

we bound I as

(2.3) I < C)u||pss/i—9
(by Holder’s inequality and classical elliptic estimates)

25—3)/2(3—: 9—4s5)/2(3—s)12
< O||Vul| [[|Vul| 5272079 || 0 1)/26379)]

(by Sobolev and Gagliardo-Nirenberg inequalities)

3 9 4
< O] u ||§w; )

VU|‘%65/(4573)

L

2s5/(2s—3
<C” | /( )

H s
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Plugging (2.3) into (2.1), absorbing the last term, we find

29/(29 3)

2€/(2€ 3) |

1+ H ull%,

d
T (U lullF) < Cllwl

(L + lluliF,»)-

Applying the Gronwall inequality, we deduce that

2s/(25—3)
]

-
1 D2, .) < ., C/ lw(T)IZ-
5 (1 [u@lE.) < (14 @)oo [ 10l

HH1/2

2s/(2s—3
LGl
L+ [lu(m))1%,)

< (1+ [[u(d)]Fn,2) exp {C/O

dT] < 00,

as desired. We complete the proof of Theorem 1.1 for 3/2 < s < 9/4.

If, however, 9/4 < s < 3, we may dominate I in the following manner:

(2.4) I < Cllul|psc-o||Vul|2. (by Holder’s inequality and (2.2))
45—9)/(2s—3
< Cllulli 7 |V 3
2s/(25—3) 45—9)/(2s—3
< OVl 7/ fu G,
Putting (2.4) into (2.1) yields
i” H3/(23—3) 2s/(2s 3) _ 28/ (25-3) (1+] ”3/(23—3))
Wil g1/2 3/(2€—3) Ul gz )
1+ H ||H1/2
Applying the Gronwall inequality, we deduce
3/(25—3)
sup (1+ Ju(t) 77 ")
ost<I™ T 25/(25—3)
\Y S
<@ e |0 [ B 4] < o,
0 14 |lwm)l),

as desired. We finish the proof of Theorem 1.1 for 9/4 < s < 3.
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3. PrROOF OF THEOREM 1.2

As in Section 1, it suffices to show that ||w(¢)||1s is uniformly bounded as t & I'*.

First, let us recall a well-known representation of 7 via u as

(3.1) taking divergence of(1.1),

= -Ar=V-[(u-V)u]

= —A(Vr) =VV - [(u-V)u]
L < Cfl(u-V)

= [Vl 1<s<oo.

Multiplying (1.1), by |u|u and integrating over R3, we get (see [16], page 50)

1d

(3.2) 3 dt'

ullfs + —||V(|U|3/2)||L + [[ul'/? - |Vul||72 = —/RS V- lufudr = J.
If 1 <s<9/7, we dominate J as

(33) J < / |vﬂ_|2s/(9755)|V7T|(977s)/(9755) . |u|2 dx
3

2 9-5 9—T: 9—-5
<[22/ O o] O 7 O3 2,

< OVl 2/ Ol - [Vl |57 ul|2e (by (3.1))

< 25“9 a2l 2 - (T[22 O 3

< C||Vr ||25/<9 2T O [ V2 W] | O 3
< OVl 7 O a2 T

9— 75 9—-5s 4/3
x a2 - [ |57 O B2 7

e (T P [ ] P

<

X

s/3(s— 2 : 1
2T IV (P e + 5l V7.

Putting (3.3) into (3.2), we find

25/3 s—1)

707 1+ |lu3s).
1+|| ||L3 ( || ||L3)

1d 25/3(s—1
(B4 ggllulis < e

Applying Gronwall inequality, we obtain

T ||V7T( ) 25/3(5 1)

1+ IIU( Mz

dr| < oo,

sup (1 + [Ju(t)[|7s) < (1 + [[u(9)[|73) exp [C/O

Ot
as desired. We complete the proof of Theorem 1.2 for 1 < s < 9/7.
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If, however, 9/7 < s < 3, we bound J in a different manner:

k 4/3
W) 2osomny < V7l e [l 252 sy

(3.5) J < ||V s
75 9)/4s 3(3—s)/4s
< OVl e [l 504 |0 (Juaf2/2) |35/ 40)473
7s—9)/2s i 3—s)/s
< C||Vall el ]| ™02 9 (22|

25/3(s—1 75-9)/3(s—1) | 2 :
< YVl OVl P 1 SV (ul ) .

Putting (3.5) into (3.2), we find

1d 25/3(5 1)|| H(?s 9)/3(s=1)

(36) Srlulds <

or equivalently,

25/3(5 1)

2s/3(s—1
(14 [Ja] 252070,

] 22/306=D —

H 75 C——t—s
1 a3/ @Y

Applying Gronwall inequality, we obtain
2s/3(s—1
sup (14 [[u(t)|77*7Y)

S<t< I T o
< O exp [ [ LTI
0 14 |lu(r)

23/3(3—1)

||2S/3 S— 1

as desired. We complete the proof of Theorem 1.2 for 9/7 < s < 3.

4. PROOF OF THEOREM 1.3

For clarity, we split the proof into two cases.
Case 1: 3/(2—7) < B < 3. By the Sobolev inequality and Holder’s inequality,
we obtain

3 3
ullLe < a:—1+;, <s<3,1<qg<o0
w 1 1 v
el <l 2-3+2
v = Ol . < Cllpplpldlze 5=5+7
Consequently,
T
_ w @
41 -y H—‘ :>/ (a ”"dtgc/ H—t
(4.1) [[wll s w14 | |u|7() .
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It follows from 3/¢ = —1+3/s and 1/s = 1/5 + v/q that

3 3 3 3y 31-4) 3 3 3 1
4.2 =222 2 2 S .
(4.2) q s B q q B qg (I—-9)pB -y

This together with the assumption 2/« + 3/8 = 2 — v implies that

S 2 ° =1
+ R +

2 3 1 (2 3>_ 3 3 2-9 1
1-ma q¢ 11—y 1-=%8 q¢ 1-v 11—y

Moreover, (4.2) and the assumption 3/(2 — ) < 8 < 3 yield

3(1-9)8

W S (3, OO)

q =
This together with (4.1) verifies regularity criterion (1.3), which concludes the proof
of Theorem in this case.
Case 2: $=3/(2— ). In this case, ¢ = 3, and we should invoke the margin case
of (1.3): uw € L>(0,T; L3(R?)) to finish the proof.
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