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Abstract. We consider the problem of reconstructing an n×n cell matrixD(~x) constructed
from a vector ~x = (x1, x2, . . . , xn) of positive real numbers, from a given set of spectral data.
In addition, we show that the spectra of cell matrices D(~x) and D(π(~x)) are the same for
every permutation π ∈ Sn.
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1. Introduction

An inverse eigenvalue problem (IEP) concerns the reconstruction of a matrix from

given spectral data (see [2]). Usually, there are some specific applications of IEP such

as system and control theory, system identification, seismic tomography, principal

component analysis, exploration and remote sensing, antenna array processing, geo-

physics, molecular spectroscopy, particle physics, structure analysis, circuit theory,

mechanical system simulation, etc. (see [1]). The objective of an inverse eigenvalue

problem is to construct matrices that maintain the specific structure as well as the

given spectral property (see [2]). There are many investigations about the inverse

eigenvalue problem of matrices. For instance, an inverse eigenvalue problem for

symmetric and normal matrices was studied by Radwan in [7]. An inverse eigen-

value problem for Jacobi matrices was studied by Wang and Zhong in [10]. Also

a solution of the inverse eigenvalue problem of certain singular Hermitian matrices

was studied by Gyamfi in [3]. Recently, in 2014 Nazari and Mahdinasab worked on

the inverse eigenvalue problem of distance matrices by using the orthogonal matri-

ces technique and they constructed Euclidean distance matrices with the eigenvalue

list (see [6]). They provided a new method for construction of distance matrices

and also added some conditions so that they could get regular spherical matrices
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having the given eigenvalues. They even considered providing a new algorithm for

reconstructing distance matrices which are regular spherical matrices, however, they

did not consider providing an algorithm for reconstructing cell matrices yet. Since

the structure of cell matrices is much simpler than that of Euclidean distance ma-

trices, it is theoretically interesting to find the inverse eigenvalue problem on cell

matrices.

Cell matrices were first introduced by Jacklic and Modic in 2010 (see [4]), they are

a special case of Euclidean distance matrices. In 2014, Tarazaga and Kurata studied

the set of cell matrices and its relationship with the cone of positive semidefinite

diagonal matrices (see [9]). Recently in 2015, Kurata and Tarazaga considered the

problem of finding cell matrices that are closest to given Euclidean distance matrices

with respect to the Frobenius norm (see [5]). They also discussed the majorization

ordering of the eigenvalues of cell matrices.

In this study, we deal with the inverse eigenvalue problem on cell matrices for

some lists of spectra in which we use elementary matrices to find the spectra of

matrices. We consider the reconstruction of n×n cell matrices with the given set of

at most 2k distinct eigenvalues in which we are free to choose k distinct eigenvalues.

We also show that the spectra of cell matrices D(π(~x)) have the same spectra as cell

matrices D(~x) for any π ∈ Sn.

2. Preliminary

An n×nmatrixD = (dij) is said to be a Euclidean distance matrix (EDM) if there

exist x1, x2, . . . , xn in some Euclidean space R
r (r 6 n), such that dij = ‖xi − xj‖22

for all i, j = 1, 2, . . . , n, where ‖·‖ is the Euclidean norm. The following properties
immediately hold according to the definition of EDM:

(1) D is a nonnegative matrix: dij > 0 for all i, j = 1, 2, . . . , n,

(2) D is a symmetric matrix: dij = dji for all i, j = 1, . . . , n,

(3) all diagonal elements are zero: dii = 0 for all i = 1, . . . , n.

These matrices were introduced by Menger in 1928, later they were studied by

Schoenberg (see [8]), when studying positive definite functions, and have received

considerable attention. They are used in applications in geodesy, economics, genetics,

psychology, biochemistry, engineering etc. (see [6]). A Euclidean distance matrix D

is said to be spherical if the construction points of D lie on a hypersphere, otherwise,

it is said to be non-spherical. Moreover, a spherical Euclidean distance matrix D is

regular if the constructive points for D lie on a hypersphere whose center coincides

with the centroid of those points.
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Let ~x = (xi), i = 1, 2, . . . , n be a vector of real numbers and ~x > 0. A cell matrix

D ∈ R
n×n associated with ~x, denoted by D(~x), is defined as

(D(~x))ij =

{
0 if i = j,

xi + xj if i 6= j.

It is well known that cell matrices are Euclidean distance matrices (see [9]). Fur-

thermore, they are spherical EDM but need not be regular spherical EDM. According

to [4] the determinants of principal sub-matrices of cell matrices D(~x) have the fol-

lowing form:

detD(i) = (−1)i−12i−2

(
4(i− 1) +

i∑

j=1

j−1∑

l=1

(xj − xl)
2

xjxl

) i∏

k=1

xk,

where D(i) := D(1 : i, 1 : i), i = 1, 2, . . . , n, are principal sub-matrices of a cell

matrix. Also, each cell matrix has exactly one positive eigenvalue, the rest of the

eigenvalues are negative (see [4]).

We denote the spectrum of a square matrix A by σ(A) which is the set of all

eigenvalues of A. To determine the spectra of matrices, we can use elementary

matrices to simplify it. Throughout this investigation, we use two types of elementary

matrices E:

(1) E = Wij , the row swapping (Ri ↔ Rj) matrix (so W
−1
ij = Wij),

(2) E = Sij(λ), the row sum (Ri → Ri + λRj) matrix (so S
−1
ij (λ) = Sij(−λ)).

It is well known that

σ(D(~x)) = σ(ED(~x)E−1)

for any elementary matrix E. Also, for the case of block matrices having the form

A =

(
X Y

O Z

)
,

where X , Z are square matrices and O is the zero matrix, we have σ(A) =

σ(X) ∪ σ(Z). In particular, if we can express the ED(~x)E−1 as the upper or

lower triangular matrix then the entries on the main diagonal are the eigenvalues of

the matrix.
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3. A construction of cell matrices with k distinct variables

We first consider the inverse eigenvalue problem for 3×3 cell matrices. To do this,

it is necessary to concentrate only on the list of spectra with zero sum since their

traces are all zero.

Proposition 3.1. Let σ = {λ1, λ2, λ3} ⊆ R with λ1 > 0 > λ3 > λ2 and λ1 +

λ2 + λ3 = 0. Then σ is the spectrum of the cell matrix, D(~a), constructed by

~a =
(√

1
2 |λ1λ2| − 1

2 |λ3|, 1
2 |λ3|, 1

2 |λ3|
)
.

P r o o f. Let ~a = (a1, a2, a3), where ai are positive real numbers. The explicit

form of the cell matrix D(~a) is given by

D(~a) =




0 a1 + a2 a1 + a3

a1 + a2 0 a2 + a3
a1 + a3 a2 + a3 0


 .

So, its characteristic polynomial is

∆x(D(~a)) = x3 − (α2 + β2 + γ2)x− 2αβγ,

where α = a1 + a2, β = a1 + a3 and γ = a2 + a3. If we require σ to be the spectrum

of D(~a), then

∆x(D(~a)) = x3 − (λ1 + λ2 + λ3)x
2 + (λ1λ2 + λ1λ3 + λ2λ3)x − λ1λ2λ3.

By comparing the coefficients of the polynomial ∆x(D(~a)) and by using the assump-

tion that λ1 + λ2 + λ3 = 0, we conclude that

α2 + β2 + γ2 = λ2
1 − λ2λ3 and 2αβγ = λ1λ2λ3.

Now, we choose γ = |λ3|, so γ > 0. Then

2αβ =
λ1λ2λ3

γ
=

λ1λ2λ3

|λ3|
= −λ1λ2,

and thus

α2 + β2 = λ2
1 − λ2λ3 − γ2 = λ2

1 − λ2λ3 − λ2
3 = (λ1 − λ3)(λ1 + λ3)− λ2λ3

= (λ1 − λ3)(−λ2)− λ2λ3 = −λ1λ2 = 2αβ.
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This implies that α = β, which means a1 + a2 = a1 + a3 and hence a2 = a3. This

also implies that 2α2 = −λ1λ2 and hence α =
√

1
2 |λ1λ2| = β. Then

a1 =

√
|λ1λ2|

2
− a2 and a2 =

2a2
2

=
a2 + a3

2
=

γ

2
=

|λ3|
2

> 0.

Since |λ3| = min{|λ1|, |λ2|, |λ3|},

a1 =

√
|λ1λ2|

2
− |λ3|

2
> 0.

Therefore the cell matrix D(~a) constructed from ~a = (a1, a2, a2) has the spectrum σ.

�

For example, if σ = {−1,−2, 3}, then

D(~a) =




0
√
3

√
3√

3 0 1√
3 1 0




is a cell matrix with the given spectrum σ. It seems complicated to investigate the

inverse eigenvalue problem in this way, even for 4 × 4 matrices. However, we have

some observations on the reduction of the problem on cell matrices having a block

form.

Here, we present a sufficient condition for the reconstruction of n×n cell matrices

with the given set of at most 2k distinct eigenvalues in which we are free to choose k

distinct eigenvalues.

Theorem 3.2. Let S = {λ1, λ2, . . . , λk, λk+1, . . . , λk+1, . . . , λ2k, . . . , λ2k} be
a subset of real numbers in which λk+1, . . . , λ2k have multiplicities l1 − 1, . . . , lk − 1,

respectively, where l1 + . . . + lk = n and li > 1 for i = 1, 2, . . . , k. If elements of S

satisfy

(1) λ1 > 0 and λ2, λ3, . . . , λk, . . . , λ2k < 0,

(2) λ1, λ2, . . . , λk are the roots of the characteristic polynomial of the k× k matrix

D(k)(~x) with

(D(k)(~x))ij =

{
(lk−j+1 − 1)(2xk−j+1) if i = j,

lk−j+1(xk−j+1 + xk−i+1) if i 6= j,

where xi := − 1
2λk+i for i = 1, 2, . . . , k then there is a cell matrix D(~x) such

that σ(D(~x)) = S. Explicitly, D(~x) can be reconstructed from the vector

~x =
(
−λk+1

2
, . . . ,−λk+1

2︸ ︷︷ ︸
l1

,−λk+2

2
, . . . ,−λk+2

2︸ ︷︷ ︸
l2

, . . . ,−λ2k

2
, . . . ,−λ2k

2︸ ︷︷ ︸
lk

)
.
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P r o o f. We construct D(~x) from the vector ~x given in the theorem. Denote

by 1m×n the m × n matrix whose entries are all 1 and xi := − 1
2λk+i for each

i = 1, 2, . . . , k. Then, D(~x) is a block matrix whose (s, t) block is given by ls × lt
matrix

Dst =

{
(xs + xt)1ls×lt if s 6= t,

2xs(1ls×lt − Ils) if s = t

for 1 6 s, t 6 k.

For the first step, we use row sums and column sums on the rows n, n − 1, . . . ,

n− lk + 2 by the row n− lk + 1 := jk; namely, we calculate

Sn−lk+2,jk(−1) . . . Sn−1,jk(−1)Sn,jk(−1)D(~x)

S−1
n,jk

(−1)S−1
n−1,jk

(−1) . . . S−1
n−lk+2,jk

(−1).

Then

D(~x) ∼
[
D1(~x) ∗

0 D(λ2k)

]
,

where D(λ2k) = diag(λ2k, . . . , λ2k︸ ︷︷ ︸
lk−1

) and

D1(~x) =




D11 D12 . . . D1(k−1) ~v1k
D12 D22 . . . D2(k−1) ~v2k
...

...
. . .

...
...

D1(k−1) D2(k−1) . . . D(k−1)(k−1) ~v(k−1)k

~wT
1k ~wT

2k . . . ~wT
(k−1)(k) (lk − 1)(2xk)




in which ~vik = (lk(xi + xk), . . . , lk(xi + xk)︸ ︷︷ ︸
li

)T and ~wik = (xi + xk, . . . , xi + xk︸ ︷︷ ︸
li

)T.

Next, we swap the row jk with the row n− lk − lk−1 + 1 := jk−1 of D
1(~x); namely,

we calculate

Wjk ,jk−1
D1(~x)Wjk ,jk−1

.

Then D1(~x) ∼ D11(~x), where

D11(~x) =




D11 D12 . . . D1(k−2) ~v1k D1(k−1)

D21 D22 . . . D2(k−2) ~v2k D2(k−1)

...
...

. . .
...

...
...

D1(k−2) D2(k−2) . . . D(k−2)(k−2) ~v(k−2)k D(k−2)(k−1)

~wT
1k ~wT

2k . . . ~wT
(k−2)k (lk − 1)(2xk) ~wT

(k−1)k

D1(k−1) D2(k−1) . . . D(k−2)(k−1) ~v(k−1)k D(k−1)(k−1)




.
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For the second step, we use row sums and column sums on the row jk, jk − 1, . . . ,

jk−1 + 3, jk−1 + 2 by the row jk−1 + 1 on the matrix D11(~x), namely, we calculate

Sjk−1+2,jk−1+1(−1)Sjk−1+3,jk−1+1(−1) . . . Sjk−1,jk−1+1(−1)Sjk,jk−1+1(−1)D11(~x)

S−1
jk,jk−1+1(−1)S−1

jk−1,jk−1+1(−1) . . . S−1
jk−1+3,jk−1+1(−1)S−1

jk−1+2,jk−1+1(−1).

Then

D11(~x) ∼
[
D2(~x) ∗

0 D(λ2k−1)

]
,

where D(λ2k−1) = diag(λ2k−1, . . . , λ2k−1︸ ︷︷ ︸
lk−1−1

) and

D2(~x) =




D11 D12 . . . D1(k−2) ~v1k ~v1(k−1)

D12 D22 . . . D2(k−2) ~v2k ~v2(k−1)

...
...

. . .
...

...
...

D1(k−2) D2(k−2) . . . D(k−2)(k−2) ~v(k−2)k ~v(k−2)(k−1)

~wT
1k ~wT

2k . . . ~wT
(k−2)k (lk − 1)(2xk) lk−1(xk−1 + xk)

~wT
1(k−1) ~wT

2(k−1) . . . ~wT
(k−2)(k−1) lk(xk−1 + xk) (lk−1 − 1)(2xk−1)




in which

~vi(k−1) = (lk−1(xi + xk−1), . . . , lk−1(xi + xk−1)︸ ︷︷ ︸
li

)T

and

~wi(k−1) = (xi + xk−1, . . . , xi + xk−1︸ ︷︷ ︸
li

)T.

Next, we swap the row l1 + . . . + lk−3 + 1 = jk−2 with the row jk−1 and swap the

row jk−2 + 1 with the row jk−1 + 1; namely, we calculate

Wjk−2+1,jk−1+1Wjk−2,jk−1
D2(~x)Wjk−2,jk−1

Wjk−2+1,jk−1+1.

Then D2(~x) ∼ D22(~x), where D22(~x) is the matrix




D11 D12 . . . D1(k−3) ~v1k ~v1(k−1) D1(k−2)

D12 D22 . . . D2(k−3) ~v2k ~v2(k−1) D2(k−2)

...
...

. . .
...

...
...

...

D1(k−3) D2(k−3) . . . D(k−3)(k−3) ~v(k−3)k ~v(k−3)(k−1) D(k−3)(k−3)

~wT
1k ~wT

2k . . . ~wT
(k−3)k (lk − 1)(2xk) lk−1(xk−1 + xk) ~wT

(k−2)k

~wT
1(k−1) ~wT

2(k−1) . . . ~wT
(k−3)(k−1) lk(xk−1 + xk) (lk−1 − 1)(2xk−1) ~wT

(k−2)(k−1)

D1(k−2) D2(k−2) . . . D(k−3)(k−3) ~v(k−2)k ~v(k−2)(k−1) D(k−2)(k−2)



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We continue the same process until the kth step, where we use row sums and

column sums on the row l1, l1 − 1, . . . , 3, 2 by the row 1 on the matrix Dk−1 :=

D((k−1)(k−1))(~x), namely, we calculate

S2,1(−1)S3,1(−1) . . . Sl1−1,1(−1)Sl1,1(−1)D(k−1)

S−1
l1,1

(−1)S−1
l1−1,1(−1) . . . S−1

3,1(−1)S−1
2,1(−1).

Then

Dk−1 ∼
[
Dk(~x) ∗

0 D(λk+1)

]
,

where D(λk+1) = diag(λk+1, . . . , λk+1︸ ︷︷ ︸
l1−1

) and

Dk(~x) =




(lk − 1)(2xk) lk−1(xk−1 + xk) . . . l2(x2 + xk) l1(x1 + xk)

lk(xk−1 + xk) (lk−1 − 1)(2xk−1) . . . l2(x2 + xk−1) l1(x1 + xk−1)

lk(xk−2 + xk) lk−1(xk−2 + xk−1) . . . l2(x2 + xk−2) l1(x1 + xk−2)
...

...
. . .

...
...

lk(x2 + xk) lk−1(x2 + xk−1) . . . (l2 − 1)(2x2) l1(x1 + x2)

lk(x1 + xk) lk−1(x1 + xk−1) . . . l2(x1 + x2) (l1 − 1)(2x1)




k×k.

If λ1, λ2, . . . , λk are the roots of the characteristic polynomial of the matrix

D(k)(~x), then D(~x) is a cell matrix with the given spectrum S. �

By this theorem, we can select a set of eigenvalues which is the spectrum of a cell

matrix as follows. First, we are free to pick any distinct k negative real numbers,

say, λk+1, . . . , λ2k, with multiplicities l1 − 1, . . . , lk − 1, respectively, where li > 2 for

each i = 1, . . . , k. Next, we calculate the eigenvalues (say λ1, . . . , λk) of the k × k

matrix D(k)(~x) defined in the theorem. Then the set

S = {λ1, . . . , λk, λk+1, . . . , λk+1︸ ︷︷ ︸
l1−1

, . . . , λ2k, . . . , λ2k︸ ︷︷ ︸
lk−1

}

will be the spectrum of the cell matrix D(~x) of size n = l1 + . . .+ lk which is bigger

than or equal to 2k.

In particular, when k = 1, we have:

Corollary 3.3. Let n be a positive integer and λ a positive real number. If

S = {(n− 1)λ,−λ,−λ, . . . ,−λ︸ ︷︷ ︸
n−1

},
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then there is an n × n cell matrix D(~x) with σ(D(~x)) = S. Precisely, D(~x) is

constructed from the vector ~x = (12λ,
1
2λ, . . . ,

1
2λ)︸ ︷︷ ︸

n

, which is the distance matrix with

constant values λ for every off diagonal entry.

Also, when k = 2 we have:

Corollary 3.4. If S = {λ1, λ2, λ3, λ3, . . . , λ3︸ ︷︷ ︸
l1−1

, λ4, λ4, . . . , λ4︸ ︷︷ ︸
l2−1

} with l1 + l2 = n and

l1, l2 > 0 satisfies:

(1) λ1 > 0 and λ2, λ3, λ4 < 0,

(2)

λ1 = [(l1 − 1)(− 1
2λ3) + (l2 − 1)(− 1

2λ4)]

+
√
(l1(n− 2) + 1)(− 1

2λ3)2 +
1
2 (n− 1)λ3λ4 + (n2 − n(l1 + 2) + 2l1 + 1)(− 1

2λ4)2,

(3)

λ2 = [(l1 − 1)(− 1
2λ3) + (l2 − 1)(− 1

2λ4)]

−
√
(l1(n− 2) + 1)(− 1

2λ3)2 +
1
2 (n− 1)λ3λ4 + (n2 − n(l1 + 2) + 2l1 + 1)(− 1

2λ4)2,

then there is a cell matrix D(~x) such that σ(D(~x)) = S. Explicitly, D(~x) can be

reconstructed from the vector

~x =
(
−λ3

2
,−λ3

2
, . . . ,−λ3

2︸ ︷︷ ︸
l1

,−λ4

2
,−λ4

2
, . . . ,−λ4

2︸ ︷︷ ︸
l2

)
.

P r o o f. By Theorem 3.2, for the case k = 2, we have

D2(~x) =

[ −(l2 − 1)λ4 − 1
2 l1(λ3 + λ4)

− 1
2 l2(λ3 + λ4) −(l1 − 1)λ3

]
.

So, σ(D2(~x)) = {λ1, λ2}. �

For example, if we choose λ3 = −2, λ4 = −4 and l1 = 5, l2 = 6, then we compute

by Corollary 3.4 that λ1 = 14 +
√
306 and λ2 = 14−

√
306. Then,

σ =
{
14 +

√
306, 14−

√
306,−2,−2,−2,−2,−4,−4,−4,−4,−4

}

is the spectrum of the 11× 11 cell matrix constructed from the vector

~x = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2).
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Precisely,

D(~x) =




0 2 2 2 2 3 3 3 3 3 3

2 0 2 2 2 3 3 3 3 3 3

2 2 0 2 2 3 3 3 3 3 3

2 2 2 0 2 3 3 3 3 3 3

2 2 2 2 0 3 3 3 3 3 3

3 3 3 3 3 0 4 4 4 4 4

3 3 3 3 3 4 0 4 4 4 4

3 3 3 3 3 4 4 0 4 4 4

3 3 3 3 3 4 4 4 0 4 4

3 3 3 3 3 4 4 4 4 0 4

3 3 3 3 3 4 4 4 4 4 0




(11×11)

is a cell matrix with the spectrum σ.

Example 3.5. We construct a cell matrix of order 13 by using Theorem 3.2.

Here, we choose λ4 = −2, λ5 = −3, λ6 = −5 and choose l1 = 4, l2 = 4, l3 = 5. Then

the eigenvalues of D(3)(~x) are 20 +
√
511, 20−

√
511 and −5. So

σ =
{
20 +

√
511, 20−

√
511,−5,−2,−2,−2,−3,−3,−3,−5,−5,−5,−5

}

satisfies the conditions of Theorem 3.2. Thus we may construct the cell matrix from

the vector

~x =
(
1, 1, 1, 1, 32 ,

3
2 ,

3
2 ,

3
2 ,

5
2 ,

5
2 ,

5
2 ,

5
2 ,

5
2

)
.

In fact,

D(~x) =




0 2 2 2 5
2

5
2

5
2

5
2

7
2

7
2

7
2

7
2

7
2

2 0 2 2 5
2

5
2

5
2

5
2

7
2

7
2

7
2

7
2

7
2

2 2 0 2 5
2

5
2

5
2

5
2

7
2

7
2

7
2

7
2

7
2

2 2 2 0 5
2

5
2

5
2

5
2

7
2

7
2

7
2

7
2

7
2

5
2

5
2

5
2

5
2 0 3 3 3 4 4 4 4 4

5
2

5
2

5
2

5
2 3 0 3 3 4 4 4 4 4

5
2

5
2

5
2

5
2 3 3 0 3 4 4 4 4 4

5
2

5
2

5
2

5
2 3 3 3 0 4 4 4 4 4

7
2

7
2

7
2

7
2 4 4 4 4 0 5 5 5 5

7
2

7
2

7
2

7
2 4 4 4 4 5 0 5 5 5

7
2

7
2

7
2

7
2 4 4 4 4 5 5 0 5 5

7
2

7
2

7
2

7
2 4 4 4 4 5 5 5 0 5

7
2

7
2

7
2

7
2 4 4 4 4 5 5 5 5 0




(13×13)

is a cell matrix with the spectrum σ.
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Note that the k× k matrix D(k)(~x) in Theorem 3.2 is a positive real matrix which

may not be symmetric matrix depending on li’s and λk+i’s. However, since its

spectrum is {λ1, . . . , λk} which is a subset of the spectrum of the cell matrix D(~x)

with λ1 > 0, it always holds that the spectrum of D(k)(~x) must be a subset of real

numbers with only one positive eigenvalue λ1 satisfying λ1 > |λ2|+ . . .+ |λk|.

4. Invariance of the spectrum

For a vector ~x = (x1, x2, . . . , xn) ∈ R
n and a permutation π ∈ Sn, we denote

by π(~x) the vector (xπ(1), xπ(2), . . . , xπ(n)).

Lemma 4.1. Let D(~x) be the cell matrix constructed from ~x = (x1, x2, . . . , xn).

Let π1 = (l, k) for some distinct l, k ∈ {1, 2, . . . , n}, be a transposition in Sn. If P is

the permutation matrix corresponding to π1, then PD(π1(~x))P = D(~x).

P r o o f. Since π1 is a transposition (l, k),

(π1(~x))i =





xi if i 6= l, k,

xl if i = k,

xk if i = l.

Note also that PD(π1(~x))P is the matrix obtained from D(π1(~x)) by swapping the

lth row with the kth row and the lth column with the kth column. Then, we can

list the entries of D(~x), D(π1(~x)) and P (D(π1(~x)))P as in the table below:

(i, j) Dij = (D(~x))ij D̃ij = (D(π1(~x)))ij (PD̃P )ij

i = j 0 0 0

i = l, j = k xl + xk xk + xl D̃kl = xl + xk

i = k, j = l xk + xl xl + xk D̃lk = xk + xl

i /∈ {l, k}, j = k xi + xk xi + xl D̃il = xi + xk

i /∈ {l, k}, j = l xi + xl xi + xk D̃ik = xi + xl

i = l, j /∈ {l, k} xl + xj xk + xj D̃kj = xl + xj

i = k, j /∈ {l, k} xk + xj xl + xj D̃lj = xk + xj

i, j /∈ {l, k} xi + xj xi + xj D̃ij = xi + xj

Hence PD(π1(~x))P = D(~x). �

Theorem 4.2. Let D(~x) be an n × n cell matrix with ~x = (x1, x2, . . . , xn). If

π ∈ Sn then D(~x) and D(π(~x)) have the same spectrum.
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P r o o f. Let π ∈ Sn. Note that π can be written as a composition of transposi-

tions in Sn, say,

π = πm ◦ πm−1 ◦ . . . ◦ π1,

where πi is a transposition in Sn for each i = 1, 2, . . . ,m. We denote ~xi = πi(~xi−1)

for i = 1, 2, . . . ,m, and ~x0 = ~x. So, ~xm = π(~x). Let Pi be the permutation matrix

corresponding to the transposition πi. By Lemma 4.1, we have

Pi(D(πi(~xi−1)))Pi = D(~xi−1).

Since P−1
i = Pi, we have that D(πi(~xi−1)) is similar to D(~xi−1). Hence

σ(D(πi(~xi−1))) = σ(D(~xi−1))

for each i = 1, 2, . . . ,m. Therefore

σ(D(π(~x))) = σ(D(~xm)) = σ(D(~xm−1)) = . . . = σ(D(~x0)) = σ(D(~x)).

Hence σ(D(π(~x))) = σ(D(~x)). �

It is well known that a permutation of rows or columns of a matrix does effect the

spectrum of the matrix, e.g., σ(A) ∩ σ(B) = ∅, where

A =

(
1 2

3 4

)
and B =

(
2 1

4 3

)
.

However, by Theorem 4.2, some permutations of elements in the cell matrix D(~x)

based on any swapping of elements in ~x do not effect the spectrum of D(~x). For

example, if ~x = (1, 2, 3, 4, 5, 6, 7) and π = (1 4)(2 5)(3 7 6) ∈ S7, then π(~x) =

(4, 5, 7, 1, 2, 3, 6). Hence, the cell matricesD(~x) andD(π(~x)) have the same spectrum

D(~x) =




0 3 4 5 6 7 8

3 0 5 6 7 8 9

4 5 0 7 8 9 10

5 6 7 0 9 10 11

6 7 8 9 0 11 12

7 8 9 10 11 0 13

8 9 10 11 12 13 0




,

D(π(~x)) =




0 9 11 5 6 7 10

9 0 12 6 7 8 11

11 12 0 8 9 10 13

5 6 8 0 3 4 7

6 7 9 3 0 5 8

7 8 10 4 5 0 9

10 11 13 7 8 9 0




.
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