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Abstract. A graph G = (V,E) is called improperly (d1, . . . , dk)-colorable if the vertex
set V can be partitioned into subsets V1, . . . , Vk such that the graph G[Vi] induced by the
vertices of Vi has maximum degree at most di for all 1 6 i 6 k. In this paper, we mainly
study the improper coloring of 1-planar graphs and show that 1-planar graphs with girth
at least 7 are (2, 0, 0, 0)-colorable.
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1. Introduction

Throughout this paper, we only consider simple and undirected graphs. Let G

be a finite graph with vertex set V (G) and edge set E(G). For a vertex v in G,

a neighbor of v is a vertex adjacent to v and the set of neighbors of v is denoted

by NG(v), and the degree of v, denoted by dG(v), is the number of neighbors of v.

The minimal degree of the vertices of G is denoted by δ(G). The length of a cycle is

the number of its edges, and the girth g(G) of a graph G is the length of the shortest

cycle. For notations and terminology not given, see e.g., Bondy and Murty in [2].

Let d1, . . . , dk be k nonnegative integers. A graph G = (V,E) is called improp-

erly (d1, . . . , dk)-colorable, or just (d1, . . . , dk)-colorable, if the vertex set V can be

partitioned into subsets V1, . . . , Vk such that the graph G[Vi] induced by the vertices

of Vi has maximum degree at most di for all 1 6 i 6 k. This notion general-

izes the notion of proper k-coloring in which case d1 = . . . = dk = 0. The Four

Color Theorem (saying that every planar graph is (0, 0, 0, 0)-colorable) was proved
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by Appel and Haken (see [1]) using a computer. In 1976, Steinberg proposed that

every planar graph without cycles of length 4 or 5 is (0, 0, 0)-colorable. Recently,

Cohen-Addad et al. in [11] disproved the conjecture by constructing a planar graph

with no cycles of length four and five that is not 3-colorable. Several results about

improper coloring of planar graphs without 4-cycles and 5-cycles can be seen in [8]

and [10]. Borodin et al. in [7] proved that every planar graph with maximum average

degree at most 14
5 is (1, 1)-colorable, it follows that every planar graph with girth at

least 7 is (1, 1)-colorable. Similarly, it was shown that every planar graph with girth

at least 7 is (0, 4)-colorable (see [5]).

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed

by at most one other edge. The notion of 1-planar graphs was introduced by Ringel

(see [15]). His conjecture that each 1-planar graph is 6-colorable was confirmed by

Borodin (see [3] and [4]), Borodin gave a new simpler proof. The bound 6 is sharp,

see the 1-planar drawing of K6. Borodin also showed that each 1-planar graph is

(list) acyclically 20-colorable (see [6]). Zhang et al. in [18], [19], [20], [21] proved

several results on edge colorings of 1-planar graphs. On the other hand, the local

structure and properties of 1-planar graphs were studied extensively. The further

results can be found in [12], [13], [14], [17]. In [13], it was also conjectured that any

1-planar graph of girth at least 6 would be of minimum degree at most 3, hence, it

would be (0, 0, 0, 0)-colourable. Chen et al. in [9] proved that it is NP -complete to

decide whether a given 1-planar graph is (0, 0, 0, 0)-colorable.

In this paper, we present the following theorem.

Theorem 1.1. 1-planar graphs with girth at least 7 are (2, 0, 0, 0)-colorable.

2. Preliminaries

In this section, we start with some basic concepts and definitions. Then we will

list some lemmas, which will be used in the following sections.

Let G be a graph and v a vertex of G. Call v a k-vertex, a k+-vertex or a k−-vertex

if d(v) = k, d(v) > k or d(v) 6 k, respectively. A graph G is 1-planar if it can be

drawn on the plane so that each edge is crossed by at most one other edge. The

associated plane graph G∗ of a 1-planar graphG (in the sequel, we will assume that G

is already drawn in the plane in 1-plane way) is the plane graph obtained from G

by turning each crossing of G into a new 4-vertex, called a crosser. One can easily

observe that if v is not a crosser (call v an original vertex ), then dG∗(v) = dG(v).

Therefore in the following, we do not distinguish the two notations dG∗(v) and dG(v)

when v is an original vertex, in which case we only use the brief notation d(v) to

represent both dG∗(v) and dG(v).
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Let F (G∗) denote the face set of G∗. For a face f ∈ F (G∗), the number of edges

of f , denoted by d(f), is called the degree of f . The k-face and k+-face can be

defined similarly. For two original vertices u and v, we say u is true adjacent to v

in G∗, or u is a true neighbor of v if u is adjacent to v in G. An original k-vertex v is

called a ki-vertex if it is incident with i 3-faces. We say that a 42-vertex v is special

if v is incident with one 4-face and one k+-face (k > 6). And a 41-vertex u is special

if u is incident with two 4-faces and one k+-face (k > 5).

Now, we discuss some properties of a 1-planar graph G and its associated plane

graph G∗, which can be found in [16] and [18].

Lemma 2.1 ([16]). Let G be a triangle-free 1-planar graph and G∗ be its asso-

ciated plane graph. Then for every vertex v ∈ V (G) if d(v) > 4, then v is incident

with at most
⌊

2
3dG(v)

⌋

3-faces in G∗.

Lemma 2.2 ([18]). Let G be a 1-planar graph and G∗ be the associated plane

graph of G. Then for any two crossers u and v in G∗, uv /∈ E(G∗).

3. Structural properties of the minimal counterexample

and its associated plane graph

Let C = {1, 2, 3, 4} denote the color set with four colors. Suppose G is a minimal

1-planar graph with girth at least 7 which is not (2, 0, 0, 0)-colorable. Thus, G is

connected. Moreover, every subgraph G′ of G has a (2, 0, 0, 0)-coloring using color

set C. In other words, V (G′) is partitioned into four subsets V1, V2, V3 and V4 such

that ∆(G[V1]) 6 2, ∆(G[Vi]) = 0 (i = 2, 3, 4). To properly color a vertex v means to

color v with a color which has not been assigned to any neighbor of v. Now suppose

that the vertices in G[Vi] are colored with i, where i = 1, 2, 3, 4. Let G∗ be the

associated plane graph of G. We will give some properties of G and G∗ as follows.

Property 3.1. δ(G∗) > 4.

P r o o f. Suppose to the contrary that G contains a 3−-vertex v such that

v1, . . . , vk (1 6 k 6 3) are neighbors of v. Let G′ = G − v. By the minimality

of G, G′ has a (2, 0, 0, 0)-coloring ϕ using color set C. We may color v with a color

in C \ {ϕ(vi), i = 1, 2, . . . , k}. This contradicts the choice of G, so the property

holds. �

Property 3.2. Every 5−-vertex in G is adjacent to at least one 6+-vertex.
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P r o o f. Since the proof for 4-vertex is similar to the proof of 5-vertex, we only

prove that every 5-vertex in G is adjacent to at least one 6+-vertex.

Let u1, u2, u3, u4 and u5 be the five neighbors of a 5-vertex u. Suppose that all of

u1, u2, u3, u4 and u5 are 5
−-vertices. Let G′ = G− u. By the minimality of G, G′

has a (2, 0, 0, 0)-coloring ϕ using color set C.

Case 1 : If {ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4), ϕ(u5)} 6= C, then we may color u with

a color in C \ {ϕ(ui), i = 1, 2, 3, 4, 5}, a contradiction.

Case 2 : If {ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4), ϕ(u5)} = C, then we may assume that u1

and u2 are colored with 1, ui is colored with i− 1, where i = 3, 4, 5. Then u1 and u2

have at most one neighbor colored by 1, otherwise we can properly recolor u1 and u2,

back to Case 1. So we can extend the coloring to G by coloring u with 1, a contra-

diction.

The property holds. �

4. Proof of Theorem 1.1

In this section, we will use discharging method to complete the proof of Theo-

rem 1.1. We firstly define the discharging rules, and then discuss the final charge of

all vertices and faces in G∗.

To begin with, we define an initial charge µ on V (G∗) ∪ F (G∗) by setting µ(x) =

d(x) − 4 for every x ∈ V (G∗) ∪ F (G∗). By Euler’s formula |V (G∗)| − |E(G∗)| +

|F (G∗)| = 2 and
∑

v∈V (G∗)

d(v) =
∑

f∈F (G∗)

d(f) = 2|E(G∗)|, we can easily deduce that

∑

v∈V (G∗)

(d(v) − 4) +
∑

f∈F (G∗)

(d(f)− 4) = −8.

Next, we define our discharging rules as follows:

(R1) Every original vertex sends 1
2 to every incident 3-face.

(R2) Every 6+-vertex sends 1
8 to every true adjacent 5

−-vertex.

(R3) Every special 42-vertex gets 7
8 from every incident 6

+-face.

(R4) Suppose v is a non-special 42-vertex.

(R4.1) Vertex v gets 9
16 from every incident 7

+-face with one crossing vertex

or every incident 5+-face with at least two crossers.

(R4.2) Vertex v gets 5
16 from every incident 5-face or 6-face with one crosser.

(R4.3) Vertex v gets 3
8 from every incident 7

+-face with no crosser.

(R5) Every special 41-vertex gets 3
8 from every incident 5

+-face.

(R6) Every non-special 41-vertex gets 3
16 from every incident 5

+-face.

(R7) Every 53-vertex gets 3
8 from every incident 6

+-face.
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(R8) Every 64-vertex gets 3
8 from every incident 6

+-face.

(R9) Every 63-vertex gets 1
8 from every incident 5

+-face.

Since any discharging procedure preserves the total charge of G∗, the above defined

discharging rules transform the initial charge µ to the final charge µ∗ for every

x ∈ V (G∗) ∪ F (G∗) such that

−8 =
∑

x∈V (G∗)∪F (G∗)

µ(x) =
∑

x∈V (G∗)∪F (G∗)

µ∗(x) > 0.

This will be a contradiction.

Now, we prove that µ∗(x) > 0 for all x ∈ V (G∗) ∪ F (G∗) in the above defined

discharging rules in the following two ways.

We first consider the discharge of the vertices in V (G∗). Throughout the paper,

the white vertices represent crossers.

Case 1 : d(v) = 4. If v is a crosser, then µ∗(v) = µ(v) = 0. If v is an original

vertex, then it is incident with at most two 3-faces by Lemma 2.1.

Subcase 1.1 : Vertex v is incident with two 3-faces. If v is a special 42-vertex, see

Figure 1, then by (R1), (R2), (R3) and Property 3.2,

µ∗(v) > µ(v)− 2×
1

2
+

1

8
+

7

8
= 0.

v
v

f f

Figure 1. Two cases of the special 42-vertex.

If v is not a special 42-vertex, then there exist three cases, see Figure 2. In

Figure 2 (a), since g(G) > 7, face f1 is a 6-face with three crossers, or a 7
+-face with

at least two crossers and f2 is a 5
+-face with at least one crossers. In Figure 2 (b),

v v v

f1

f2

f1 f2 f1

f2

(a) (b)

Figure 2. Three cases of the non-special 42-vertex.
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both f1 and f2 are 5
+-faces with at least two crossers, or 7+-faces with one crosser.

According to (R1), (R2), (R4.1), (R4.2) and Property 3.2,

µ∗(v) > µ(v)− 2×
1

2
+

1

8
+

5

16
+

9

16
= 0.

Subcase 1.2 : Vertex v is incident with one 3-face. If v is a special 41-vertex, see

Figure 3, then by (R1), (R2), (R5) and Property 3.2,

µ∗(v) > µ(v)−
1

2
+

1

8
+

3

8
= 0.

v v v v v

f f f f f

Figure 3. Five cases of the special 41-vertex.

If v is not a special 41-vertex, see Figure 4, then at least two of f1, f2 and f3 are

5+-faces. In fact, since g(G) > 7, face f3 must be a 5
+-face and then v is incident

with at most one 4-face. According to (R1), (R2), (R6) and Property 3.2,

µ∗(v) > µ(v) −
1

2
+

1

8
+ 2×

3

16
= 0.

v

f1

f2

f3

Figure 4. Non-special 41-vertex.

Subcase 1.3 : Vertex v is not incident with any 3-face. Then by (R2) and Prop-

erty 3.2, µ∗(v) > µ(v) + 1
8 > 0.

Case 2 : d(v) = 5. According to Lemma 2.1, vertex v is incident with at most

three 3-faces.

Subcase 2.1 : Vertex v is incident with three 3-faces. In Figure 5, since g(G) > 7,

face f1 is a 6
+-face. Thus, by (R1), (R2), (R7) and Property 3.2,

µ∗(v) > µ(v)− 3×
1

2
+

1

8
+

3

8
= 0.
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v
f1

f2

Figure 5. 53-vertex.

Subcase 2.2 : Vertex v is incident with at most two 3-faces. Then by (R1), (R2)

and Property 3.2,

µ∗(v) > µ(v) − 2×
1

2
+

1

8
=

1

8
> 0.

Case 3 : d(v) = 6. According to Lemma 2.1, vertex v is incident with at most four

3-faces.

Subcase 3.1 : Vertex v is incident with four 3-faces, see Figure 6. Since g(G) > 7,

both f1 and f2 are 6
+-faces. Thus, by (R1), (R2) and (R8),

µ∗(v) > µ(v)− 4×
1

2
− 6×

1

8
+ 2×

3

8
= 0.

vf1 f2

Figure 6. 64-vertex.

Subcase 3.2 : Vertex v is incident with three 3-faces. Since g(G) > 7, vertex v is

incident with at least two 5+-faces, see Figure 7, both f1 and f2 are 5
+-faces. Thus,

by (R1), (R2) and (R9),

µ∗(v) > µ(v)− 3×
1

2
− 6×

1

8
+ 2×

1

8
= 0.

vf1 f2

f3

v

f1

f2

f3

v
f1

f2

f3 v f1

f2

f3

Figure 7. Four cases of the 63-vertex.
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Subcase 3.3 : Vertex v is incident with at most two 3-faces. Then by (R1) and (R2),

µ∗(v) > µ(v)− 2×
1

2
− 6×

1

8
=

1

4
> 0.

Case 4 : d(v) = 7. According to Lemma 2.1, vertex v is incident with at most four

3-faces. Thus, by (R1) and (R2),

µ∗(v) > µ(v)− 4×
1

2
− 7×

1

8
=

1

8
> 0.

Case 5 : d(v) > 8. According to Lemma 2.1, vertex v is incident with at most
⌊

2
3d(v)

⌋

3-faces. Thus, according to (R1) and (R2),

µ∗(v) > µ(v)− d(v)×
1

8
−

1

2
×

⌊

2d(v)

3

⌋

> d(v)−
d(v)

8
−

d(v)

3
− 4 =

13d(v)

24
− 4 > 0.

Next, we consider the discharge of the faces in G∗.

Case 1 : d(f) = 3. According to Lemma 2.2, face f is incident with one crosser,

furthermore, by (R1), we have µ∗(f) = µ(f) + 2× 1
2 = 0.

Case 2 : d(f) = 4. Since the discharging procedure does not involve 4-faces,

µ∗(f) = d(f)− 4 = 0.

Case 3 : d(f) = 5. Since special 42-vertices, 53-vertices and 64-vertices receive no

charge from f by (R3), (R7) and (R8), we do not need to consider them. According

to Lemma 2.2, face f is incident with at most two crossers.

Subcase 3.1 : Face f is incident with two crossers. In this case, we firstly prove

that the existence of some original vertices that f is incident with, and then we will

discuss the specific classification depicted in Figure 8.

u

v

w

u

vw

u

v
w u

v

w

(a) (b) (c) (d)

Figure 8. 5-face with two crossers.

Let u and v be the adjacent original incident vertices and w be the other original

incident vertex of f . Then w is not a special 41-vertex. In fact, suppose w is a special
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41-vertex. There are two ways to place the 3-face and 4-face incident with w, but

in any way it is easy to see that the face of G∗ \ w whose interior contains w will

correspond to a cycle of length at most 6 in G, a contradiction. Hence, assume that u

is a special 41-vertex. Then none of v and w is a 42-vertex. Otherwise, the face of

G∗ \ u whose interior contains u will correspond to a cycle of length at most 5 in G,

a contradiction. Thus, a 42-vertex and a special 41-vertex can not exist on f at the

same time.

In Figure 8 (a), both u and v are special 41-vertices. Since g(G) > 7, w can only

be a 41-vertex, a 63-vertex or other vertex which receive no charge from f . Thus,

by (R5), (R6) and (R9),

µ∗(f) > µ(f)− 2×
3

8
−

3

16
=

1

16
> 0.

In Figures 8 (b)–(d), u is a 42-vertex, v and w can only be 41-vertices, 63-vertices

or other vertices which receive no charge from f . Thus, by (R4.1), (R6) and (R9),

µ∗(f) > µ(f)−
9

16
− 2×

3

16
=

1

16
> 0.

Subcase 3.2 : Face f is incident with one crosser. There is no special 41-vertex.

In fact, let u, v, x and y be the four consecutive original incident vertices of f . We

can assume that u is a special 41-vertex. Then in any way to place the 3-face and

4-face incident with u will contradict g(G) > 7. So u is not a special 41-vertex. By

a similar argument, v, x and y are not special 41-vertices. Moreover, u and y are

not 42-vertices. Thus, there are at most two 42-vertices. According to (R4.2), (R6)

and (R9), the worst case is that v and x are 42-vertices, u and y are 41-vertices, see

Figure 9. Thus,

µ∗(f) > µ(f)− 2×
5

16
− 2×

3

16
= 0.

u

vx

y

Figure 9. 5-face with one crosser.

Case 4 : d(f) = 6. According to Lemma 2.2, face f is incident with at most three

crossers.

Subcase 4.1 : Face f is incident with three crossers. If f is incident with one

special 42-vertex, then the other two original incident vertices of f can only be
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41-vertices, 63-vertices or other vertices which receive no charge from f . Otherwise,

it will contradict g(G) > 7. According to (R3), (R6) and (R9), the worst case is

that v is a special 42-vertex, u and w are 41-vertices, see Figures 10 (a)–(b). Thus,

µ∗(f) = µ(f)−
7

8
− 2×

3

16
=

3

4
> 0.

u

v

w u

v

w

u

v

w

Figure 10. 6-face with three crossers.

If there is no special 42-vertex, then f is incident with at most two 42-vertices.

Otherwise, it will contradict g(G) > 7. According to (R4.1), (R6) and (R9), in the

worst case, v and w are 42-vertices, u is a 41-vertex, see Figure 10 (c). Thus,

µ∗(f) = µ(f)− 2×
9

16
−

3

16
=

11

16
> 0.

Subcase 4.2 : Face f is incident with two crossers. Since g(G) > 7, face f is not

incident with any special 42-vertex. Furthermore, there exist at most two 42-vertices,

see Figure 11. According to (R4)–(R9), in the worst case, see Figures 11 (a)–(b),

u and v are 42-vertices, x and y are 41-vertices. Thus,

µ∗(f) = µ(f)− 2×
9

16
− 2×

3

16
=

1

2
> 0.

u

v

x y
u

v

x

y

u

vx

y

(a) (b) (c)

Figure 11. 6-face with two crossers.

Subcase 4.3 : Face f is incident with one crosser. Since g(G) > 7, f is not incident

with any special 42-vertex, 53-vertex and 64-vertex. Furthermore, there is at most

one special 41-vertex.
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If f is incident with one special 41-vertex, then there are at most two incident

42-vertices. According to (R4.2), (R5), (R6) and (R9), in the worst case, see Fig-

ure 12 (a), v is a special 41-vertex, u and w are 42-vertices, x and y are 41-vertices.

Thus,

µ∗(f) = µ(f)−
3

8
− 2×

5

16
− 2×

3

16
=

5

8
> 0.

If there is no special 41-vertex, then f is incident with at most three 42-vertices.

According to R4.2, R6 and R9, in the worst case, see Figure 12 (b), u, v and w are

42-vertices, x and y are 41-vertices. Thus,

µ∗(f) = µ(f)− 3×
5

16
− 2×

3

16
=

11

16
> 0.

u

v

w

x

y u

v

w

x

y

(a) (b)

Figure 12. 6-face with one crosser.

Case 5 : d(f) > 7.

Subcase 5.1 : Face f is not incident with any crosser. Since g(G) > 7, there is no

special 42-vertex on f . According to (R4)–(R9), in the worst case, see Figure 13, all

incident vertices of f are 42-vertices. Thus,

µ∗(f) = µ(f)− d(f)×
3

8
=

5d(f)

8
− 4 > 0.

v1

v2

v3

v4

v5

vd

Figure 13. 7+-face without any crosser.

Subcase 5.2 : Face f is incident with one crosser. Since g(G) > 7, there is no

special 42-vertex on f . Furthermore, f is incident with at most (d(f)−2) 42-vertices.
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According to (R4)–(R9), in the worst case, see Figure 14, v1, . . . , vd−2 are 4
2-vertices,

u is a 41-vertex. Thus,

µ∗(f) = µ(f)− (d(f)− 2)×
9

16
−

3

16
=

7d(f)− 49

16
> 0.

u

v1

v2

v3

vd−2

Figure 14. 7+-face with one crosser.

Subcase 5.3 : Face f is incident with two crossers. Since g(G) > 7, face f is

incident with at most one special 42-vertex.

v

v1

v2

vd−5

xy

v1

v2

v3
vd−3

y
v1

v2

vd−3

y

(a) (b) (c)

Figure 15. 7+-face with two crossers.

If f is incident with one special 42-vertex, then there exist at most (d(f) − 5)

incident 42-vertices. According to (R4)–(R9), in the worst case, see Figure 15 (a),

v is a special 42-vertex, v1, . . . , vd−5 are 4
2-vertices, x is a special 41-vertex, y is

a 41-vertex. Thus,

µ∗(f) = µ(f)−
7

8
− (d(f)− 5)×

9

16
−

3

8
−

3

16
=

7d(f)− 42

16
> 0.

If there is no special 42-vertex, f is incident with at most (d(f) − 3) 42-vertices.

According to (R4)–(R9), in the worst case, see Figures 15 (b)–(c), v1, . . . , vd−3 are

42-vertices, y is a 41-vertex. Thus,

µ∗(f) = µ(f)− (d(f)− 3)×
9

16
−

3

16
=

7d(f)− 40

16
> 0.

Subcase 5.4 : Face f is incident with at least three crossers. Before discussing the

case, we give a definition as follows. Let v1, . . . , vk be the k incident vertices of f ,
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with edges vivi+1 (i mod k), where k > 7. We call a vertex vi−1 is a false 2-distance

vertex of vi+1, if vi−1 and vi+1 are original vertices and vi is a crosser.

Assume that v is an incident special 42-vertex of f . Then at least one false

2-distance vertex of v is a 41-vertex, 63-vertex or other vertices which receive no

charge from f , since the girth ofG is at least 7. According to (R4)–(R9), we can easily

see that the worst case is that all of original incident vertices of f are 42-vertices.

Thus,

µ∗(f) > µ(f)− (d(f)− 3)×
9

16
=

7d(f)− 37

16
> 0.

The proof of Theorem 1.1 is completed. �
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