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Abstract. We find all the left-invariant harmonic unit vector fields on the oscillator
groups. Besides, we determine the associated harmonic maps from the oscillator group
into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we
investigate the stability and instability of harmonic unit vector fields on compact quotients
of four dimensional oscillator group G1(1).

Keywords: harmonic vector field; harmonic map; oscillator group

MSC 2010 : 53C25, 53C43

1. Introduction

Recall that a unit vector field V on a Riemannian manifold (M, g) determines

a map from (M, g) to its unit tangent bundle (T1M, gS) equipped with the Sasaki

metric gS. When M is closed and orientable, the energy of V is the energy of the

corresponding map. V is said to be a harmonic vector field if it determines a critical

point for the energy functional. This kind of vector fields have also been studied in [8],

where similar notions are introduced whenM is non-compact and non-orientable. It

should be noted that harmonic vector fields do not necessarily yield harmonic maps.

Several examples related to the harmonicity of a unit vector field and of the cor-

responding map are provided in [1], [2], [10] and [16]. In addition, in [17], Vanhecke

and González-Dávila have studied the existence and classification of invariant har-

monic unit vector fields on some Lie groups equipped with left invariant metrics.

They proved that every unimodular Lie group admits a left invariant harmonic unit
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vector field, and this is also true for any odd-dimensional Lie group. However, it has

been an open problem whether the above assertion holds for an even-dimensional

non-unimodular Lie group. Furthermore, they showed that every harmonic left in-

variant unit vector field determines a harmonic map into its unit tangent bundle on

a Lie group with bi-invariant metric. They also proved that on the Damek-Ricci

spaces there does not exist any invariant unit vector field such that the correspond-

ing map into the unit tangent bundle is harmonic, although harmonic invariant unit

vector fields always exist. Besides, all left invariant unit vector fields determine

a harmonic map of (G, g = −B) into its unit tangent bundle (T1G, gS) on a com-

pact and semisimple Lie group G with Killing form B (also see [17]). And, they

have investigated the stability and instability of harmonic unit vector fields for the

energy functional on compact quotients of three dimensional unimodular Lie groups

(see [11]).

On the other hand, the study of oscillator groups have many applications both in

geometry and physics. For instance, in [13], Medina proved that oscillator groups

are, except for direct extensions with Euclidean groups, the only non-commutative

simple connected solvable Lie groups which admit a bi-invariant Lorentzian metric.

Moreover, the reductive pairs determined by the homogeneous Lorentzian structures

on the four-dimensional oscillator group equipped with a bi-invariant Lorentzian

metric provide four solutions to the Einstein-Yang-Mills equations (see [6], [12]). Re-

cently, Boucetta and Medina determined the solutions of the generalized classical

Yang-Baxter equation and the classical Yang-Baxter equation on a generic class of

oscillator Lie algebras (see [4]). In [7], Gadea and Oubiña obtained all the homoge-

neous pseudo-Riemannian structures on the oscillator groups equipped with a family

of left invariant Lorentzian metrics. They also determined all the corresponding re-

ductive decompositions and groups of isometries in the 4-dimensional case. More

recently, Onda has surveyed the main results about algebraic Ricci solitons on these

groups endowed with left invariant pseudeo-Riemannian metrics (see [15]).

The oscillator group Gn(λ) = G(λ1, . . . , λn) is the connected simply connected

solvable non-nilpotent Lie group whose Lie algebra gn(λ) is the oscillator algebra

gn(λ) = g(λ1, . . . , λn) which is linearly spanned by (2n+ 2)-elements

P,X1, . . . , Xn, Y1, . . . , Yn, Q

with the following non-vanishing Lie brackets:

(1.1) [Xi, Yj ] = δijP, [Q,Xj ] = λjYj , [Q, Yj ] = −λjXj, 1 6 i, j 6 n.

The aim of this paper is to give a complete description of the set of left-invariant

harmonic unit vector fields on oscillator groups. We will also determine all the left-

invariant vector fields such that the corresponding maps into the tangent bundle are
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harmonic. Moreover, we study the stability and instability of harmonic unit vector

fields on compact quotients of four dimensional oscillator group G1(1). The main

results of this article are the following:

Theorem 1.1. Let Gn(λ) = G(λ1, . . . , λn) be the oscillator group equipped with

a left invariant Riemannian metric and let {P,X1, . . . , Xn, Y1, . . . , Yn, Q} be an or-

thonormal basis of Lie algebra satisfying (1.1). Then the set of left-invariant har-

monic unit vector fields on the oscillator group Gn(λ) = G(λ1, . . . , λn) is given by

{±Q} ∪

(
S ∩

{ n∑

j=1

(ajXj + an+jYj)

})
∪

(
S ∩

{ n∑

j∈A

(ajXj + an+jYj) + a2n+1P

})
,

where for λ2
i 6= λ2

j , (a
2
i + a2n+i)(a

2
j + a2n+j) = 0, aj , an+j , a2n+1 ∈ R, 1 6 i, j 6 n,

A = {j ∈ B : n − 1 − 2λ2
j = 0}, B = {1, 2, . . . , n}, S is the unit sphere of the Lie

algebra gn(λ) of the Lie group Gn(λ).

In particular, if λ1 = λ2 = . . . = λn = λ, n − 1 − 2λ 6= 0, then the set of left

invariant harmonic unit vector fields on the oscillator group Gn(λ) = G(λ1, . . . , λn)

is given by

{±P} ∪ {±Q} ∪

(
S ∩

{ n∑

j=1

(ajXj + an+jYj)

})
.

Theorem 1.2. Keep the above assumptions and notations. Then the set of left-

invariant unit vector fields on the oscillator group Gn(λ) = G(λ1, . . . , λn), such that

the corresponding maps into the unit tangent bundles are harmonic, is given by

{±P} ∪ {±Q} ∪

(
S ∩

{ n∑

j=1

(ajXj + an+jYj)

})
,

where for λ2
i 6= λ2

j , (a
2
i + a2n+i)(a

2
j + a2n+j) = 0.

Theorem 1.3. Let G1(1) be the four dimensional oscillator Lie group equipped

with a left invariant Riemannian metric and let {P,X, Y,Q} be an orthonormal

basis of Lie algebra g1(1). Let Γ be a discrete subgroup such that Γ \ G1(1) is

compact. Then

(i) the vector fields ±Q are stable critical points for the energy on Γ \G1(1),

(ii) the vector fields ±P are unstable critical points for the energy on Γ\G1(1) with

index at least 1;

(iii) each vector field V ∈ S ∩ {X,Y }R is an unstable critical point for the energy

on Γ \G1(1) with index at least 2.
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Remark 1.4. In Theorem 1.3, we denote left invariant vector fields on G1(1) and

their corresponding projections on M = Γ\G1(1) by the same letter (see Section 5).

In Section 2, we give some basic notions and facts on harmonic unit vector

fields. The definition and fundamental properties of the oscillator group Gn(λ) =

G(λ1, . . . , λn) in the above theorems will be given in Section 3. Theorems 1.1, 1.2

and 1.3 are proved in Sections 3, 4 and 5, respectively.

2. Left-invariant harmonic unit vector fields on Lie groups

Let (M, g) be an n-dimensional connected Riemannian manifold and (T1M, gS) be

its unit tangent bundle sphere equipped with the associated Sasaki metric gS (see [5]).

Denote by ∇ the Levi-Civita connection and by R the corresponding Riemannian

curvature tensor which is defined as RXY = ∇[X,Y ]− [∇X ,∇Y ] for all smooth vector

fields X , Y . Moreover, we assume that the set X1(M) of the unit vector fields on M

is non-empty. We put AV = −∇V for V ∈ X1(M). Given a smooth vector field V

onM , the energy of a smooth vector field V : (M, g) → (TM, gS) onM is defined by

(2.1) E(V ) =
n

2
vol(M, g) +

1

2

∫

M

‖AV ‖
2 dv.

Here, dv denotes the volume form on (M, g), B(V ) =
∫
M

‖AV ‖
2 dv is the total

bending of the vector field V (see [18]). We put

b(V ) =
1

2
‖AV ‖

2 =
1

2
tr(At

V AV ).

From [17], we know that the unit vector field V is a critical point for the energy

functional E if and only if the 1-form νV defined by

νV (X) = tr(Z 7→ (∇ZA
t
V )X)

vanishes on the distribution HV , which is the space of the vector fields orthogonal

to V .

Definition 2.1. A unit vector field V on a Riemannian manifold (M, g) is called

harmonic if νV (X) = 0 for all X ∈ HV .

A unit Killing vector field V is harmonic if and only if it is an eigenvector of the

Ricci operator (see [8]). Moreover, the map V : (M, g) → (TM, gS) is a harmonic

map if and only if V is a harmonic unit vector field such that the one form ν̃V ,

defined by

(2.2) ν̃V (X) = tr(Z 7→ R(AV Z, V )X)),

vanishes for all vectors X (see [8]).
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A vector field V ∈ X1(M) is called normal if g(R(X,Y )Z, V ) = 0 for all

X,Y, Z ∈ HV . We say that V ∈ X1(M) is a strongly normal vector field if

g((∇XAV )Y, Z) = 0 for all X,Y, Z ∈ HV . Because of the equation

RXY V = (∇XAV )Y − (∇Y AV )X,

it is easy to see that each strongly normal vector field is also normal. Furthermore,

a unit Killing vector field V is strongly normal if and only if it is normal, and we

can see that V is harmonic and determines a harmonic map in this case (see [17]).

From [9] we know that a unit vector field on a 3-dimensional Riemannian manifold

is normal if and only if it is an eigenvector of the Ricci operator. Recall that every

unit killing vector field V is a geodesic vector field. We have the following result.

Proposition 2.2 ([17]). Every strongly normal geodesic vector field V ∈ X1(M)

is harmonic. Moreover, the corresponding map is harmonic if and only if ν̃V (V ) = 0.

For V ∈ X1(M) harmonic, the Hessian form for the energy at V is the quadratic

form (HessE)V on TV X
1(M) given by

(HessE)V (X) =
d2

dt2

∣∣∣∣
t=0

B(γ(t)), X ∈ TV X
1(M) = HV ,

where γ : I → X1(M), t 7→ γ(t), is a smooth curve in X1(M), I an open interval

of R such that 0 ∈ I and γ(0) = V , γ′(0) = X .

On a closed and oriented Riemannian manifold M , the Hessian form (HessE)V
at a unit harmonic vector field V ∈ X1(M) can be expressed as [18]

(2.3) (HessE)V (X) =

∫

M

(‖∇X‖2 − ‖X‖2‖AV ‖
2) dv,

where X ∈ HV .

We say a unit harmonic vector field V is stable if (HessE)V (X) > 0 for allX ∈ HV

or, equivalently, the associated bilinear symmetric map, that is the Hessian of E at V ,

is positive semidefinite. The index (or nullity) of V is the index (nullity) of this bilin-

ear map. Note that if (HessE)V is semidefinite, then {X ∈ HV : (HessE)V (X) = 0}

is the subspace {X ∈ HV : (HessE)V (X,W ) = 0 ∀W ∈ HV } and its dimension co-

incides with the nullity of V .

Now we consider left-invariant harmonic unit vector fields on a Lie group G

equipped with a left invariant metric g. The left invariant metric g determines

an associated inner product 〈, 〉 on the Lie algebra g. Then by the invariance with

respect to the left translation, the function b defined above can be viewed as a func-

tion on the unit sphere S of the Lie algebra g. For V ∈ S, the distribution HV can
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be identified with the orthogonal complement V ⊥ of V in g. V ⊥ can be naturally

identified with the tangent space TV S of S at V . Thus, it is easy to see that a left

invariant unit vector field V is harmonic if and only if the 1-form νV on g vanishes

on V ⊥ ∼= TV S. In [17], it is shown that

νV (X) = dbV (X)− tr(adAt
V
X), X ∈ TV S.

So, V is harmonic if and only if dbV (X) = tr(adAt
V
X) for all X ∈ TV S. Recall that

a Lie group G is called unimodular if tr(adX) = 0 for all X ∈ g (see [14]). We have

the following:

Proposition 2.3 ([17]). A left invariant unit vector field V on a unimodular Lie

group G is harmonic if and only if V is a critical point of the function b on S.

For a non-unimodular Lie group G, we consider its unimodular kernel U defined by

U = {X ∈ g : tr(adX) = 0}.

Since tr(adX) is a linear functional, U is an ideal of codimension 1. For a unit

vector H orthogonal to U , it is obvious that the linear transformation adH , which is

restricted to U , is a derivation of U . And, we have the following:

Proposition 2.4 ([17]). A left invariant unit vector field V on a non-unimodular

Lie group is harmonic if and only if

dbV (X) = tr(adH)〈AV H,X〉

for all X ∈ TV S. Moreover, if adH|U is a symmetrical endomorphism of U with

respect to 〈, 〉, then V is harmonic if and only if it is a critical point of the function b

on S.

3. Harmonic vector fields on the oscillator group Gn(λ)

Oscillator algebra gn(λ) = g(λ1, . . . , λn) is linearly spanned by (2n+ 2)-elements

P,X1, . . . , Xn, Y1, . . . , Yn, Q

with the following non-vanishing Lie brackets:

(3.1) [Xi, Yj ] = δijP, [Q,Xj ] = λjYj , [Q, Yj ] = −λjXj, 1 6 i, j 6 n.
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From the definition, it is easily seen that gn(λ) is the semidirect product of

the Heisenberg algebra hn generated by (P,X1, . . . , Xn, Y1, . . . , Yn), and a one-

dimensional abelian Lie subalgebra spanned by Q, under the homomorphism

ad|hn
: 〈Q〉 → Der(hn). And the corresponding connected simply connected Lie

group is called oscillator group Gn(λ) = G(λ1, . . . , λn).

On the oscillator group Gn(λ) = G(λ1, . . . , λn), we consider the left invariant

Riemannian metric for which the (2n + 2)-elements {P,X1, . . . , Xn, Y1, . . . , Yn, Q}

form an orthonormal basis at each point. By (3.1), it is easy to see that Gn(λ) =

G(λ1, . . . , λn) is a unimodular Lie group. We shall use Proposition 2.3 to find

all the left invariant harmonic unit vector fields on the oscillator group Gn(λ) =

G(λ1, . . . , λn).

Denote by δjk the Kronecker symbol, 1 6 j, k 6 n, using (3.1) and the well-

known Koszul formula, one can determine the Levi-Civita connection on Gn(λ) =

G(λ1, . . . , λn) as follows:

∇PP = 0, ∇PQ = 0, ∇PXj = − 1
2Yj , ∇PYj =

1
2Xj,(3.2)

∇QP = 0, ∇QQ = 0, ∇QXj = λjYj , ∇QYj = −λjXj,

∇Xj
P = − 1

2Yj , ∇Xj
Q = 0, ∇Xj

Xk = 0, ∇Xj
Yk = 1

2δjkP,

∇Yj
P = 1

2Xj , ∇Yj
Q = 0, ∇Yj

Xk = − 1
2δjkP, ∇Yj

Yk = 0.

For a left invariant vector field V =
n∑

i=1

(aiXi+an+iYi)+a2n+1P +a2n+2Q on Gn(λ)

we have

(3.3) ∇Xj
V =

1

2
an+jP −

1

2
a2n+1Yj , j = 1, 2, . . . , n

∇Yj
V = −

1

2
ajP +

1

2
a2n+1Xj , j = 1, 2, . . . , n

∇PV =
1

2

n∑

i=1

(an+iXi − aiYi),

∇QV =

n∑

i=1

λi(aiYi − an+iXi).

Thus

∇V =
1

2

n∑

i=1

{(an+iP − a2n+1Yi)⊗ αi + (a2n+1Xi − aiP )⊗ βi

+ (an+iXi − aiYi)⊗ γ + 2λi(aiYi − an+iXi)⊗ τ},
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where {αi, βi, γ, τ} is the dual coframe field of {Xi, Yi, P,Q}, 1 6 i 6 n. Then the

matrix form of ∇V is given by

∇V =




0 1
2a2n+1In A C

− 1
2a2n+1In 0 B D

At Bt 0 0

0 0 0 0


 ,

where

A =
(1
2
an+1,

1

2
an+2, . . . ,

1

2
a2n

)t
,

B =
(
−
1

2
a1,−

1

2
a2, . . . ,−

1

2
an

)t
,

C = (−an+1λ1,−an+2λ2, . . . ,−a2nλn)
t,

D = (a1λ1, a2λ2, . . . , anλn)
t.

The symbol At denotes the transposition of matrix A. From the matrix expression

of ∇V , we have the following result.

Proposition 3.1. A left invariant vector field V on oscillator group Gn(λ) is

a Killing vector field if and only if V = k1P +k2Q, k1, k2 ∈ R; a left invariant vector

field V on Gn(λ) is a parallel vector field if and only if V = l1Q, l1 ∈ R.

By some calculations, we obtain

b(V ) =
1

2
tr(∇V t∇V ) =

n

4
a22n+1 +

1

4

n∑

i=1

(1 + 2λ2
i )(a

2
i + a2n+i).

Now we can give the proof of the main result of this paper.

P r o o f of Theorem 1.1. Applying Proposition 2.3 to the unimodular Lie group

Gn(λ) = G(λ1, . . . , λn), we see that if a left invariant unit vector field

V =

n∑

i=1

(aiXi + an+iYi) + a2n+1P + a2n+2Q

is harmonic, then it is a critical point of the function b on S. On the other hand, it

is proved in [17] that dbV (X) = −tr(At
V ∇X), X ∈ TV S. So

V =

n∑

i=1

(aiXi + an+iYi) + a2n+1P + a2n+2Q
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is harmonic if and only if tr(At
V ∇X) = 0, X ∈ TV S. Since TV S ∼= V ⊥ forms

a (2n + 1)-dimensional vector space, we only need to consider the following vector

fields:

− a2n+1Q + a2n+2P, − a2n+1Xj + ajP, − a2n+1Yj + an+jP, 1 6 j 6 n,

− a2n+2Xj + ajQ, − a2n+2Yj + an+jQ, − an+jXk + akYj , 1 6 j, k 6 n,

− akXj + ajXk, − an+kYj + an+jYk, 1 6 j 6= k 6 n.

On the other hand, we also have

(3.4) AV Xi = −
1

2
an+iP +

1

2
a2n+1Yi, i = 1, 2, . . . , n,

AV Yi =
1

2
aiP −

1

2
a2n+1Xi, i = 1, 2, . . . , n,

AV P =
1

2

n∑

i=1

(−an+iXi + aiYi),

AV Q =
n∑

i=1

λi(−aiYi + an+iXi).

Now, we only need to consider the following cases:

Case I : X = −a2n+1Q+ a2n+2P . Then we have

AXXi =
1

2
a2n+2Yi, AXYi = −

1

2
a2n+2Xi, 1 6 i 6 n, AXP = AXQ = 0.

Thus

dbV (X) = −

n∑

i=1

〈∇Xi
X,AV Xi〉 −

n∑

i=1

〈∇Yi
X,AV Yi〉 − 〈∇PX,AV P 〉 − 〈∇QX,AV Q〉

=

n∑

i=1

〈AXXi, AV Xi〉+

n∑

i=1

〈AXYi, AV Yi〉+ 〈AXP,AV P 〉+ 〈AXQ,AV Q〉

=
n

4
a2n+1a2n+2 +

n

4
a2n+1a2n+2 =

n

2
a2n+1a2n+2.

Case II : X = −a2n+1Xj + ajP , 1 6 j 6 n. Then we have

AXXi =
1

2
ajYi, 1 6 i 6 n, AXYi = −

1

2
ajXi −

1

2
δija2n+1P, 1 6 i 6 n,

AXP = −
1

2
a2n+1Yj , AXQ = a2n+1λjYj .
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Thus

dbV (X) =
n∑

i=1

〈1
2
a2n+1Yi −

1

2
an+iP,

1

2
ajYi

〉

+
〈
−
1

2
a2n+1Xj +

1

2
ajP,−

1

2
ajXj −

1

2
a2n+1P

〉

+

n∑

i6=j

〈
−
1

2
a2n+1Xi +

1

2
aiP,−

1

2
ajXi

〉

+

〈
−
1

2

n∑

i=1

an+iXi +
1

2

n∑

i=1

aiYi,−
1

2
a2n+1Yj

〉

+

〈 n∑

i=1

an+iλiXi −

n∑

i=1

aiλiYi, a2n+1λjYj

〉
=

1

2
(n− 1− 2λ2

j)aja2n+1.

Case III : X = −a2n+1Yj + an+jP , 1 6 j 6 n. In this case we have

AXXi =
1

2
an+jYi +

1

2
δija2n+1P, 1 6 i 6 n, AXYi = −

1

2
an+jXi, 1 6 i 6 n,

AXP =
1

2
a2n+1Xj , AXQ = −a2n+1λjXj .

Similarly as above, we obtain

dbV (X) =
1

2
(n− 1− 2λ2

j)an+ja2n+1.

Case IV : X = −a2n+2Xj + ajQ, 1 6 j 6 n. Then we have

AXXi = 0, AXYi = −
1

2
δija2n+2P, 1 6 i 6 n,

AXP = −
1

2
a2n+2Yj , AXQ = a2n+2λjYj .

Thus

dbV (X) = −a2n+2aj

(1
2
+ λ2

j

)
.

Case V : X = −a2n+2Yj + an+jQ, 1 6 j 6 n. Then we have

AXXi =
1

2
δija2n+2P, 1 6 i 6 n, AXYi = 0,

AXP =
1

2
a2n+2Xj , AXQ = −a2n+2λjXj .

Thus

dbV (X) = −a2n+2an+j

(1
2
+ λ2

j

)
.
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Case VI : X = −an+jXk + akYj , 1 6 j, k 6 n. Then we have

AXXi = −
1

2
δijakP, 1 6 i 6 n, AXYi = −

1

2
δikan+jP, 1 6 i 6 n,

AXP = −
1

2

n∑

i=1

(δijakXi + δikan+jYi), AXQ =

n∑

i=1

λi(δikan+jYi + δijakXi)

and

dbV (X) = an+jak(λ
2
j − λ2

k).

Case VII : X = −akXj + ajXk, 1 6 j 6= k 6 n. Then we have

AXXi = 0, 1 6 i 6 n, AXYi =
1

2
(−δijak + δikaj)P, 1 6 i 6 n,

AXP =
1

2

n∑

i=1

(−δijak + δikaj)Yi, AXQ = −

n∑

i=1

λi(−δijak + δikaj)Yi.

Thus

dbV (X) = ajak(λ
2
k − λ2

j ).

Case VIII : X = −an+kYj + an+jYk, 1 6 j 6= k 6 n. Then we have

AXXi = −
1

2
(−δijan+k + δikan+j)P, 1 6 i 6 n, AXYi = 0, 1 6 i 6 n,

AXP = −
1

2

n∑

i=1

(−δijan+k + δikan+j)Xi, AXQ =

n∑

i=1

λi(−δijan+k + δikan+j)Xi

and

dbV (X) = an+jan+k(λ
2
k − λ2

j ).

From the above arguments, we conclude that V is a harmonic unit vector field if

and only if the following system of equations holds:





a2n+1a2n+2 = 0,

(n− 1− 2λ2
j)aja2n+1 = 0, 1 6 j 6 n,

(n− 1− 2λ2
j)an+ja2n+1 = 0, 1 6 j 6 n,

−a2n+2aj(λ
2
j +

1
2 ) = 0, 1 6 j 6 n,

−a2n+2an+j(λ
2
j +

1
2 ) = 0, 1 6 j 6 n,

an+jak(λ
2
j − λ2

k) = 0, 1 6 j, k 6 n,

ajak(λ
2
k − λ2

j ) = 0, 1 6 j, k 6 n,

an+jan+k(λ
2
k − λ2

j ) = 0, 1 6 j, k 6 n.
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Now we return to the proof of the theorem. Firstly, if a2n+2 6= 0, then a2n+1 = aj =

an+j = 0, 1 6 j 6 n, hence ±Q is a harmonic unit vector field.

Secondly, if a2n+2 = 0, and a2n+1 6= 0 then from the second and the third equations

we have

(n− 1− 2λ2
j)aj = 0, (n− 1− 2λ2

j)an+j = 0.

Denote B = {1, 2, . . . , n} and A = {j ∈ B : n − 1 − 2λ2
j = 0}. If j does not belong

to the set A, then we have aj = an+j = 0.

Thirdly, if a2n+2 = 0 and a2n+1 = 0, then the first five equations always hold.

Finally, if λ2
i 6= λ2

j , 1 6 i, j 6 n, then by the last three equations we have

ai = an+i = 0 or aj = an+j = 0, i.e., (a2i + a2n+i)(a
2
j + a2n+j) = 0. This completes

the proof. �

4. Harmonic maps determined by invariant vector fields

on the oscillator group Gn(λ)

Using (3.2) and the Riemannian curvature formula RXY = ∇[X,Y ]− [∇X ,∇Y ], we

can obtain the non-vanishing components of the curvature tensor field as follows:

R(Xi, Yj)Xs = −
1

2
δijYs −

1

4
δjsYi, R(Xi, Yj)Ys =

1

2
δijXs +

1

4
δisXj ,(4.1)

R(Xi, Xj)Ys =
1

4
(δjsYi − δisYj), R(Yi, Yj)Xs =

1

4
(δjsXi − δisXj),

R(Xi, P )Xj =
1

4
δijP, R(Xi, P )P = −

1

4
Xi,

R(Yi, P )Yj =
1

4
δijP, R(Yi, P )P = −

1

4
Yi,

where 1 6 i, j, s 6 n.

P r o o f of Theorem 1.2. If a left-invariant unit vector field V defines a harmonic

map, then it is a harmonic vector field and satisfies the condition ν̃V (X) = tr(Z 7→

R(AV Z, V )X) = 0 for all X ∈ S. Assume V =
n∑

s=1
(asXs + an+sYs) + a2n+1P +

a2n+2Q. Then by the equations (3.4), (4.1) and the orthogonality of generators

{X1, . . . , Xn, Y1, . . . , Yn, P,Q}, we have the following:

Case 1 : Set X = Xj , 1 6 j 6 n. Then we have

n∑

i=1

〈Xi, R(AV Xi, V )Xj〉 =

n∑

i=1

〈
Xi, R

(
−
1

2
an+iP +

1

2
a2n+1Yi, V

)
Xj

〉

=

n∑

i=1

〈
Xi, R

(1
2
a2n+1Yi,

n∑

s=1

an+sYs

)
Xj

〉
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=

n∑

i=1

〈
Xi,

1

2
a2n+1

n∑

s=1

an+s

(1
4
δsjXi −

1

4
δijXs

)〉

=
n− 1

8
a2n+1an+j ,

n∑

i=1

〈Yi, R(AV Yi, V )Xj〉 =
n∑

i=1

〈
Yi, R

(1
2
aiP −

1

2
a2n+1Xi, V

)
Xj

〉

=

n∑

i=1

〈
Yi, R

(
−
1

2
a2n+1Xi,

n∑

s=1

an+sYs

)
Xj

〉

=

n∑

i=1

〈
Yi,

1

2
a2n+1

n∑

s=1

an+s

(1
2
δisYj +

1

4
δsjYi

)〉

=
n+ 2

8
a2n+1an+j

and

〈P,R(AV P, V )Xj〉 =

〈
P,R

(
1

2

n∑

i=1

(−an+iXi + aiYi), V

)
Xj

〉

=

〈
P,R

(
−
1

2

n∑

i=1

an+iXi, a2n+1P

)
Xj

〉

=

〈
P,−

1

8
a2n+1

n∑

i=1

an+iδijP

〉
= −

1

8
a2n+1an+j .

It is easy to see that 〈Q,R(AV Q, V )Xj〉 = 0. So we have

ν̃V (Xj) = tr(Z 7→ R(AV Z, V )Xj)

=

n∑

i=1

〈Xi, R(AV Xi, V )Xj〉+

n∑

i=1

〈Yi, R(AV Yi, V )Xj〉

+ 〈P,R(AV P, V )Xj〉+ 〈Q,R(AV Q, V )Xj〉 =
n

4
a2n+1an+j .

Case 2 : Set X = Yj , 1 6 j 6 n. Then we have

n∑

i=1

〈Xi, R(AV Xi, V )Yj〉 =

n∑

i=1

〈Xi, R
(
−
1

2
an+iP +

1

2
a2n+1Yi, V

)
Yj〉

=

n∑

i=1

〈
Xi, R

(
1

2
a2n+1Yi,

n∑

s=1

asXs

)
Yj

〉

=
n∑

i=1

〈
Xi,−

1

2
a2n+1

n∑

s=1

as

(1
2
δsiXj +

1

4
δsjXi

)〉

= −
n+ 2

8
a2n+1aj ,
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n∑

i=1

〈Yi, R(AV Yi, V )Yj〉 =

n∑

i=1

〈
Yi, R

(
1

2
aiP −

1

2
a2n+1Xi, V

)
Yj

〉

=

n∑

i=1

〈
Yi, R

(
−
1

2
a2n+1Xi,

n∑

s=1

asXs

)
Yj

〉

=

n∑

i=1

〈
Yi,−

1

8
a2n+1

n∑

s=1

as(δsjYi − δijYs)

〉

= −
n− 1

8
a2n+1aj

and

〈P,R(AV P, V )Xj〉 =

〈
P,R

(
1

2

n∑

i=1

(−an+iXi + aiYi), V

)
Yj

〉

=

〈
P,R

(
1

2

n∑

i=1

aiYi, a2n+1P

)
Yj

〉

=

〈
P,

1

8
a2n+1

n∑

i=1

aiδijP

〉
=

1

8
a2n+1aj .

On the other hand, we also have 〈Q,R(AV Q, V )Yj〉 = 0. Thus

ν̃V (Yj) = −
n

4
a2n+1aj .

Case 3 : Set X = P . We get

n∑

i=1

〈Xi, R(AV Xi, V )P 〉 =

n∑

i=1

〈
Xi, R

(
−
1

2
an+iP +

1

2
a2n+1Yi, V

)
P
〉

=
n∑

i=1

〈
Xi, R

(
−
1

2
an+iP,

n∑

s=1

asXs

)
P

〉

=

n∑

i=1

〈
Xi,−

1

8
an+i

n∑

s=1

asXs

〉
= −

1

8

n∑

i=1

an+iai

and

n∑

i=1

〈Yi, R(AV Yi, V )P 〉 =

n∑

i=1

〈
Yi, R

(1
2
aiP −

1

2
a2n+1Xi, V

)
P
〉

=

n∑

i=1

〈
Yi, R

(
1

2
aiP,

n∑

s=1

an+sYs

)
P

〉

=

n∑

i=1

〈
Yi,

1

8
ai

n∑

s=1

an+sYs

〉
=

1

8

n∑

i=1

an+iai.
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Moreover, 〈P,R(AV P, V )P 〉 = 0 and 〈Q,R(AV Q, V )P 〉 = 0. So we have

ν̃V (P ) = 0.

Case 4 : Set X = Q. Then it is easily seen that ν̃V (Q) = 0. Thus, we have

ν̃V =
1

4

n∑

j=1

na2n+1(an+j ⊗ αj − aj ⊗ βj).

On the other hand, it is easy to check that the vector field

V =

n∑

s=1

(asXs + an+sYs) + a2n+1P + a2n+2Q

defines a harmonic map from (Gn(λ), g) into its unit tangent bundle (T1Gn(λ), gS)

if and only if V is a harmonic vector field satisfying the following equations:

n

4
a2n+1an+j = 0, −

n

4
a2n+1aj = 0, j = 1, . . . , n.

Consequently, if λ2
i 6= λ2

j , then

V ∈ {±P} ∪ {±Q} ∪

(
S ∩

{ n∑

j=1

(ajXj + an+jYj)

})

with (a2i + a2n+i)(a
2
j + a2n+j) = 0. This completes the proof. �

5. Energy on compact quotients of four dimensional

oscillator group G1(1)

Since the action of any discrete subgroup Γ of a Lie group G by left transla-

tions is free and properly discontinuous, the set of orbits, namely the space of right

cosets Γ \ G, is a C∞ manifold and the natural projection π : G → Γ \ G is a C∞

mapping (see [3]).

Furthermore, each left invariant vector field on G descends to Γ \G, namely if X

is left invariant, then π∗Xba = π∗Xa for all a ∈ G, b ∈ Γ (see [11]). Similarly,

each left invariant metric on G and all its left invariant tensors field can descend to

the quotient space. And the projections of left invariant unit vector fields preserve

the properties to be Killing, harmonic and to determine harmonic maps into the

corresponding unit tangent bundles.
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In Section 3, set i = j = n = λj = 1, X1 = X , Y1 = Y , we get a four dimen-

sional oscillator group G1(1). It is a one dimensional solvable extension of three

dimensional Heisenberg group H , and H admits a discrete subgroup Γ1 such that

Γ1 \ H is compact. Then there exists a discrete subgroup Γ of G1(1) such that

M = Γ \G1(1) is compact. We shall denote left invariant vector fields on G1(1) and

their corresponding projections on M = Γ \G1(1) by the same letter.

Now we calculate the energy of a smooth vector field V : (M, g) → (TM, gs) on

M = Γ \G1(1).

Proposition 5.1. Let V = a1X + a2Y + a3P + a4Q be a smooth left invariant

vector field on M = Γ \G1(1). Then the energy of V is

E(V ) =
(
2 +

3

4
‖V ‖2 −

1

2
a23 −

3

4
a24

)
vol(M).

P r o o f. By (3.3), we have

∇XV =
1

2
a2P −

1

2
a3Y, ∇Y V = −

1

2
a1P +

1

2
a3X,

∇PV =
1

2
(a2X − a1Y ), ∇QV = a1Y − a2X.

Set X = e1, Y = e2, P = e3, Q = e4, then

‖∇V ‖2 =

4∑

i=1

g(∇eiV,∇eiV ) =
3

2
a21 +

3

2
a22 +

1

2
a23.

Considering ‖V ‖2 = a21 + a22 + a23 + a24 in (2.1), we complete the proof. �

Let G1(1) be the four dimensional oscillator Lie group equipped with a left in-

variant Riemannian metric for which the generators {P,X, Y,Q} of oscillator alge-

bra g1(1) are orthonormal, and let Γ be a discrete subgroup such that Γ \G1(1) is

compact. By Theorem 1.1, we know V is a harmonic unit vector field on Γ \G1(1)

if and only if V = ±P or V = ±Q or V = a1X + a2Y (a21 + a22 = 1).

P r o o f of Theorem 1.3. If V = ±Q, by Proposition 3.1, we know V is a parallel

vector field. From (2.3), it is easy to see that V is stable. We have case (i) of

Theorem 1.3.

If V = ±P , let X = l1X + l2Y + l3Q ∈ HV . Then by (3.2), we have

‖AV ‖
2 = ‖∇P‖2 =

1

2
.
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From this and (3.3) we obtain

‖∇X‖2 − ‖AV ‖
2‖X‖2 = l21 + l22 −

1

2
l23.

So (HessE)V is negative on the subspace generated by Q. And we have case (ii) of

Theorem 1.3.

If V = a1X + a2Y (a21 + a22 = 1), let X = a2X − a1Y + a3P + a4Q ∈ HV . Then

by (3.3), we have

‖AV ‖
2 =

3

2
(a21 + a22) =

3

2
, ‖∇X‖2 =

3

2
+

1

2
a23.

So, we obtain

‖∇X‖2 − ‖AV ‖
2‖X‖2 = −

1

2
a23 −

3

2
a24.

So (HessE)V is negative on the subspace generated by {P,Q}. And we have case (iii)

of Theorem 1.3.

This completes the proof. �
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