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A GENERALIZED BIVARIATE LIFETIME DISTRIBUTION
BASED ON PARALLEL-SERIES STRUCTURES

Vahideh Mohtashami-Borzadaran, Mohammad Amini and Jafar Ahmadi

In this paper, a generalized bivariate lifetime distribution is introduced. This new model
is constructed based on a dependent model consisting of two parallel-series systems which
have a random number of parallel subsystems with fixed components connected in series. The
probability that one system fails before the other one is measured by using competing risks.
Using the extreme-value copulas, the dependence structure of the proposed model is studied.
Kendall’s tau, Spearman’s rho and tail dependences are investigated for some special cases.
Simulation results are given to examine the effectiveness of the proposed model.

Keywords: copula, extreme-value copula, dependence measures, distortion, competing
risks

Classification: 60E05, 62N05, 62H20

1. INTRODUCTION

Constructing flexible families of lifetime distributions is interesting for researchers who
work in distribution theory, applied probability and reliability theory. In the literature
several methods have been presented to construct such models. Marshall and Olkin [18]
introduced a method to expand the family of bivariate distributions. Their model was
constructed by considering the component-wise maximum (minimum) of N independent
and identical bivariate random vectors, when N has a geometric distribution. Kundu
and Gupta [15] studied this model when the bivariate random vectors have a bivariate
Weibull distribution. Furthermore, Zhang et al. [29] used this method to construct a new
class of dependent models involving geometric distribution. Roozegar and Nadarajah
[26] used a similar method for the component-wise maximum (minimum) of the first
component and the component-wise minimum (maximum) for the second component of
N independent and identical bivariate random vectors by taking N as a power series
random variable. Another method was introduced by Durrleman et al. [8] who apply
a distortion function to a bivariate distribution. Genest and Rivest [9] explored how
the Kendall distribution is affected by this transformation. Some other references for
this model are Morillas [21], Crane and Hoek [2] and Dolati et al. [5]. In addition, the
dependence properties of the new model was investigated by Durante et al. [7]. Recently,
Popović and Genç [24] introduced bivariate Student-t distribution of the Marshall–Olkin
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type and studied the distribution properties and moments of minimum and maximum
of a bivariate random variable from bivariate Marshall–Olkin Student-t distribution.

In these decades, modeling dependence is one of the most popular topics in applied
probability which is developing by copula theory. Because copulas are useful tools for
characterizing the dependence between the lifetime distributions. Let X and Y be con-
tinuous random variables with the joint distribution (survival) function F (·, ·) (F̄ (·, ·))
and marginal cumulative distribution functions (cdf) F1 and F2, respectively. According
to Sklar [28] the joint distribution function of the pair (X,Y ) can be characterized by
the relation

F (x, y) = P (X ≤ x, Y ≤ y) = D(F1(x), F2(y)), (x, y) ∈ R2,

and

F̄ (x, y) = P (X > x, Y > y) = D̂ ¯(F1(x), F̄2(y)), (x, y) ∈ R2,

where D(·, ·) and D̂(·, ·) are unique copula and survival copula, respectively, that ex-
presses the dependence between X and Y . See for example, Nelsen [22] for more details
on copula theory.

Since in some cases the lifetime distributions are of great importance in extreme
events and in such situations the corresponding dependent models are related to the
extreme value copulas. So, it would be required to know the properties of these copulas.
It is said that D(·, ·) is an extreme value copula if it satisfies D(u, v) = Dt(u1/t, v1/t)
for t > 0. For more details, we refer the reader to Pikhands [23], Kotz and Nadarajah
[13] and Goudendorf and Segers [11]. Also, a useful way of formulating properties of a
dependent model is to know the form of its stochastic dependence. In the literature,
there are several notions of dependence, and measures of association and concordance.
We recall briefly some of them which will be used in the sequel:

(i) It is said thatX and Y are positively quadrant dependent (denoted by PQD(X,Y ))
if and only if D(u, v) ≥ uv for all u, v ∈ (0, 1).

(ii) The random variable Y is said to be left tail decreasing (denoted by LTD(Y | X))
when D(u, v)/u is non-increasing in u for all v ∈ (0, 1).

(iii) The random vector (X,Y ) is said to be totally positive of order two (TP2), if
its joint pdf f(x, y) is TP2 that is, f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1), for all
x1 ≤ x2 and y1 ≤ y2.

(v) The random vector (X,Y ) is said to be right corner set increasing (denoted by
RCSI(X,Y )) if P (X > x, Y > y | X > x′, Y > y′) is non-decreasing in x′ and in
y′ for all x and y.

See for example, Nelsen [22], for dependence concepts. It is known that the Kendall’s tau
τ and Spearman’s rho ρ measure the strength of association between random variables.
For the pair (X,Y ) they are given by

τ = 4

∫ 1

0

∫ 1

0

D(u, v) dD(u, v)− 1
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= 1− 4

∫ 1

0

∫ 1

0

∂

∂u
D(u, v)

∂

∂v
D(u, v) dudv, (1)

and

ρ = 12

∫ 1

0

∫ 1

0

D(u, v) dudv − 3

= 12

∫ 1

0

∫ 1

0

uv dD(u, v)− 3, (2)

respectively. Tail dependences are used to measure the dependence of extreme values.

The upper and the lower tail dependences are defined as λL = limu→0+
D(u, u)

u
and

λU = 2− limu→1−
1−D(u, u)

1− u , respectively. For further information about the structure

and measure of dependence, we refer the reader to Joe [12] and Nelsen [22].
Asgharzadeh et al. [1] constructed a family of continuous lifetime distributions based

on min{X1, . . . , XN} where Xi’s are iid from a continuous distribution function G and N
is a zero-truncated Poission–Lindley random variable independent of the Xi’s. Goldoust
et al. [10] considered a system with parallel subsystems consisting of a random num-
ber of series components and modeled the lifetime of the system by compounding the
exponential, geometric and power series distributions. In this paper, by extending the
model proposed in Goldoust et al. [10], we intend to construct a new bivariate lifetime
distribution based on the two dependent parallel-series systems with random number of
sub-systems so that the number of components in each subsystem are fixed. It may be
noted that some reliability properties of the parallel (series) systems that have statistical
dependent lifetimes were studied by Li and Li [16].

The rest of this paper are organized as follows. The general form of the proposed
model is discussed in Section 2. In Section 3, the probability that one system fails before
the other one is stated. The dependence structure of the model is studied in special cases
in Section 4. Simulation studies are provided in Section 5.

2. MODEL DESCRIPTION

It is known that a system is a collection of components that are arranged for a specific
purpose. In systems with parallel structure at least one of the components have to
succeed for the system to succeed and in systems with series structure the failure of any
component results in the failure of the system. A parallel-series system is composed
of a fixed number of series sub-systems connected in parallel. There have been several
models proposed to explain parallel-series systems. We are going to present a model for
two dependent systems with parallel-series sub-systems. First, let us fix the assumptions
and notations.

Assumptions: Let Z
(1)
i,j and Z

(2)
i,j be the random lifetimes of the jth component of

the ith sub-system corresponding to system (I) and system (II), respectively, for j =
1, . . . ,m, i = 1, . . . , N , where N is a positive integer-valued random variable independent

of (Z
(1)
i,j , Z

(2)
i,j ). Suppose that Xi = min{Z(1)

i,1 , . . . , Z
(1)
i,m} and Yi = min{Z(2)

i,1 , . . . , Z
(2)
i,m}

for i = 1, . . . , N are the random lifetimes of the ith sub-system of system (I) and system
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(II), respectively. Also, let us take T1 = max{X1, . . . , XN} and T2 = max{Y1, . . . , YN}
as the random lifetimes of system (I) and system (II), respectively. Moreover, we suppose

that Z
(1)
i,j for i = 1, . . . , N and j = 1, . . . ,m are iid with common marginal cdf F1 and

Z
(2)
l,j for l = 1, . . . , N and j = 1, . . . ,m are iid with common marginal cdf F2. In addition

the random vector (Z
(1)
i,j , Z

(2)
i,j ) has a bivariate cdf F (·, ·). Furthermore, let g(·) be the

probability generating function (pgf) of N .
Then, by assumptions the cdf of (T1, T2) is given by

HT1,T2
(x, y) = P (T1 ≤ x, T2 ≤ y)

=

∞∑
n=1

P (T1 ≤ x, T2 ≤ y | N = n)P (N = n)

=

∞∑
n=1

P (max{X1, . . . , XN} ≤ x,max{Y1, . . . , YN} ≤ y | N = n)P (N = n).

Since by assumption the random vectors (Z
(1)
i,j , Z

(2)
i,j ) for j = 1, . . . ,m and i = 1 . . . , N are

independent of N , then the random vectors (Xi, Yi), for i = 1, . . . , N , are independent
of N , too. Consequently, HT1,T2

(·, ·) can be reexpressed as

HT1,T2
(x, y) =

∞∑
n=1

P (X1 ≤ x, . . . ,Xn ≤ x, Y1 ≤ y, . . . , Yn ≤ y)P (N = n)

=

∞∑
n=1

n∏
i=1

P (Xi ≤ x, Yi ≤ y)P (N = n)

=

∞∑
n=1

n∏
i=1

P (min{Z(1)
i1 , . . . , Z

(1)
im } ≤ x,min{Z(2)

i1 , . . . , Z
(2)
im } ≤ y)P (N = n).

(3)

Also, by assumption Z
(1)
i,j for i = 1, . . . , N and j = 1, . . . ,m are iid, and Z

(2)
l,j for

l = 1, . . . , N and j = 1, . . . ,m are iid. Accordingly, we have

n∏
i=1

P (min{Z(1)
i1 , . . . , Z

(1)
im }≤x,min{Z(2)

i1 , . . . , Z
(2)
im }≤y)=[1−F̄1

m
(x)−F̄2

m
(y)+F̄m(x, y)]n.

So, by substituting in (3), we have an expression for the cdf of (T1, T2) in terms of the
pgf of N as follows

HT1,T2(x, y) = g(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)), (4)

where F̄ (·, ·) is the corresponding survival function of (Z
(1)
i,j , Z

(2)
i,j ). Also, the marginal

cdf of T1 and T2 in terms of the pgf of N are given by H1(x) = g(1 − F̄1
m

(x)) and
H2(x) = g(1 − F̄2

m
(x)), respectively. It is clear that this new bivariate distribution

function, namely HT1,T2
(·, ·), is exchangeable if F (·, ·) is exchangeable and F1(·) = F2(·).
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Durante [6] proposed a method for constructing non-exchangeable bivariate distribution
functions.

To fix the concept, let us first consider N as a discrete random variable having a power
series distribution (truncated at zero) with the following probability mass function

P (N = n) =
anθ

n

A(θ)
, n = 1, 2, ..., θ > 0, an > 0, (5)

where A(θ) =
∑∞
n=1 anθ

n < ∞. Then, it is easy to show that the pgf of N is g(z) =
A(θz)

A(θ)
. So, in this case by (4), HT1,T2(x, y) can be written as

HT1,T2
(x, y) = A(θ[1− F̄1

m
(x)− F̄2

m
(y) + F̄m(x, y)])/A(θ). (6)

It should be mentioned that for the special case m = 1, the expression in (6) reduced
to Equation (2.3) in Roozegar and Jafari [25], where the authors called it as bivariate
generalized linear failure rate-power series model.

Now, let us consider N as a random variable with two values 1 and 2 with probability
1−θ and θ, respectively, where 0 ≤ θ ≤ 1. Then, the pgf of N is g(t) = t(1−θ(1−t)), 0 ≤
t ≤ 1. If F (x, y) = F1(x)F2(y),∀x, y ∈ R, then from (4) we have

HT1,T2
(x, y) = (1− F̄1

m
(x))(1− F̄2

m
(y))[1− θ(1− (1− F̄1

m
(x))(1− F̄2

m
(y)))], (7)

and
H̄T1,T2

(x, y) = F̄1
m

(x)F̄2
m

(y)[1− θ(1− (2− F̄1
m

(x))(2− F̄2
m

(y)))]. (8)

It should be noted that (7) is a member of the model proposed by Mirhosseini et al. [20].
Moreover, the distorted distribution F̃i(x) = g(Fi(x)) = Fi(x)(1− θF̄i(x)), i = 1, 2 and
a bivariate distribution mixtured by F̃i(x) was introduced by Mirhosseini et al. [19].

By simple calculations, from (8) we obtain

∂2

∂x∂y
ln H̄T1,T2

(x, y) =
m2θ(1− θ)f1(x)f2(y)F̄1

m−1
(x)F̄2

m−1
(y)(

1− θ + θ(2− F̄1
m

(x))(2− F̄2
m

(y))
)2 ≥ 0.

This proves that H̄T1,T2
(·, ·) is TP2, so we have the following result.

Proposition 2.1. Suppose that the random vector (T1, T2) is modeled as (8), then
RCSI(T1, T2).

Now, let us take F̄i(x) = e−αix, x > 0 for i = 1, 2, then by (7) and (8), we have

HT1,T2
(x, y) = (1−e−mα1x)(1−e−mα2y)[1−θ(1−(1−e−mα1x)(1−e−mα2y))], x > 0, y > 0

and

H̄T1,T2
(x, y) = e−m(α1x+α2y)[1− θ(1− (2− e−mα1x)(2− e−mα2y))], x > 0, y > 0. (9)

By exploiting the definition of the conditional concepts and some mathematical compu-
tations, from (9) we obtain the next result.
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Proposition 2.2. Let (T1, T2) be modeled as (9). Then for i, j = 1, 2, i 6= j,

i) P (Tj > y | Ti > x) =
1− θ + θ(2− e−βix)(2− e−βjy)

1 + θ − θe−βix
e−βjy, x ≥ 0, y ≥ 0,

ii) E(Tj | Ti > x) =
2 + 4θ − 3θe−βix

2βj(1 + θ − 2θe−βix)
, x ≥ 0,

iii) E(Tj | Ti = x) =
1 + 2θ − 3θe−βix

βj(1 + θ − 2θe−βix)
, x ≥ 0,

where βi = mαi and βj = mαj for i, j = 1, 2 and i 6= j.

Figure 1 displays the attitude of the conditional tail expectation E(T2 | T1 > x) and
the regression function E(T2 | T1 = x) in Proposition 2.2.

Fig. 1. Plots of E(T2 | T2 > x) and E(T2 | T1 = x) in Proposition 2.2.

From Figure 1, we observe that in the first row by considering β1 = 15 and β2 = 30,
the conditional concepts increase by increasing θ and in the second row by fixing θ = 1/2
and β1 = 15, both conditional expectations decrease by increasing β2. Also, in the last
row, it is observed that for θ = 1/2 and β2 = 30, these conditional concepts increase as
β1 increases.
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3. COMPETING RISKS MEASURES

It is known that competing risks are events that prevent an event of interest from
occurring, or modify the chance of its occurrence. We refer the reader to Crowder
[3], Shih and Emura [27] and Lu [17] for more details on competing risks models. In
this section, we deal with measures related to sub-distribution functions which plays
an important role in competing risks models. Let T1 and T2 be two dependent failure
times (latent failure times), also T = min{T1, T2} be the first occurring failure time
with the corresponding failure cause C = 1 if T1 ≤ T2 and C = 2 if T1 > T2. Then, the
sub-distribution function of the failure cause i, (i = 1, 2) is given by

H(i, t) = P (C = i, T ≤ t)

=

∫ t

0

h(i, z) dz, (10)

where h(i, t) = − ∂

∂xi
H̄T1,T2

(xi, xj) |xi=xj=t for i, j = 1, 2 (i 6= j) are the sub-density

functions and H̄T1,T2
(x, y) = 1 −H1(x) −H2(y) + HT1,T2

(x, y), where H1(·) and H2(·)
are the marginal cdfs of T1 and T2, respectively.

The corresponding sub-distribution functions of failure causes 1 (C = 1) and 2
(C = 2) of model (4) are expressed in the next proposition.

Proposition 3.1. Suppose that (T1, T2) have the bivariate distribution function as
given in (4), then

H(1, t) = g(1− F̄1
m

(t))−
∫ t

0

(mf1(x)F̄1
m−1

(x) +m
∂

∂x
F̄ (x, y)F̄m−1(x, y))

× g′(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)) |x=y=z dz (11)

and

H(2, t) = g(1− F̄2
m

(t))−
∫ t

0

(mf2(y)F̄2
m−1

(y) +m
∂

∂y
F̄ (x, y)F̄m−1(x, y))

× g′(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)) |x=y=z dz, (12)

where g′(t) =
d

dt
g(t).

P r o o f . By (4), we have the following expression for the sub-density function of failure
cause C = 1

h(1, z) = mf1(x)F̄1
m−1

(x)g′(1− F̄1
m

(x))− (mf1(x)F̄1
m−1

(x) +m
∂

∂x
F̄ (x, y)F̄m−1(x, y))

× g′(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)) |x=y=z .

Similarly, the sub-density function of failure cause C = 2 is given by

h(2, z) = mf2(y)F̄2
m−1

(y)g′(1− F̄2
m

(y))− (mf2(y)F̄2
m−1

(y) +m
∂

∂y
F̄ (x, y)F̄m−1(x, y))

× g′(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)) |x=y=z .
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The expressions in (11) and (12) are readily obtained upon substituting the above equa-
tions in (10). �

It should be mentioned that P (T2 < T1) = limt→∞H(2, t), so by putting t → ∞ in
(12) the probability that system (II) failed before system (I) is given by

P (T2 < T1) = 1−
∫ ∞

0

(mf2(y)F̄2
m−1

(y) +m
∂F̄ (x, y)

∂y
F̄m−1(x, y))

× g′(1− F̄1
m

(x)− F̄2
m

(y) + F̄m(x, y)) |x=y=z dz. (13)

If F̄ (x, y) = F̄1(x)F̄2(y), then

P (T2 < T1) = 1−
∫ ∞

0

mf2(z)F̄2
m−1

(z)(1− F̄1
m

(z))g′((1− F̄1
m

(z))(1− F̄2
m

(z))) dz.

It should be noted that the expression P (T2 < T1) = limt→∞H(2, t) coincides with the
stress-strength reliability measure. See, Kotz et al. [14] for a comprehensive treatment
of stress-strength models up to 2003.

Example 3.2. Let g(t) =
θt

1− (1− θ)t
, i. e., the random variable N has a geometric

distribution, then from (13) we have

P (T2 < T1) = 1−
∫ ∞

0

θmf2(z)F̄2
m−1

(z)(1− F̄1
m

(z))

(1− (1− θ)(1− F̄1
m

(z))(1− F̄2
m

(z)))2
dz.

Moreover, if F̄1(z) = F̄2(z) = e−z then

P (T2 < T1) = 1−
∫ ∞

0

mθe−mz(1− e−mz)
(1− (1− θ)(1− e−mz))2

dz. (14)

By setting u = 1− e−mz in (14) the formula simplifies as

P (T2 < T1) = 1−
∫ 1

0

θu

(1− (1− θ)u)2
du

=
θ

(1− θ)2
(θ − 1− ln(θ)), (15)

which depends on θ. It can be easily shown that P (T2 < T1) in (15) is an increasing
function of θ and limθ→1 P (T2 < T1) = 1

2 .

Example 3.3. Let g(t) =
eθt − 1

eθ − 1
, i. e., N has a truncated Poisson distribution, then

from (13) we have

P (T2 < T1) = 1− θ

eθ − 1

∫ ∞
0

mf2(z)F̄2
m−1

(z)(1− F̄1
m

(z))eθ(1−F̄1
m(z))(1−F̄2

m(z)) dz.

(16)
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Furthermore, substituting F̄1(z) = F̄2(z) = e−z implies

P (T2 < T1) = 1− θ

eθ − 1

∫ ∞
0

me−ze−(m−1)z(1− e−mz)eθ(1−e
−mz)2 dz.

By setting v = (1− e−mz)2 in (16) the simplified formula is

P (T2 < T1) = 1− θ

eθ − 1

∫ 1

0

eθv dv = 1/2.

Example 3.4. Let g(t) = t− θ(1− t)t, i. e., N is a random variable with two values 1
and 2 with probabilities 1− θ and θ, respectively, when 0 ≤ θ ≤ 1. Then

P (T2 < T1) = 1−
∫ +∞

0

mf2(z)F̄2
m−1

(z)(1−F̄1
m

(z))[1−θ+2θ(1−F̄1
m

(z))(1−F̄2
m

(z))] dz.

In addition, if F̄i(z) = e−αiz for i = 1, 2 then

P (T2 < T1)=1−
∫ +∞

0

mα2e
−mα2z(1−e−mα1z)[1−θ+2θ(1−e−mα1z)(1−e−mα2z)] dz

=
(4θ + 1)α2

α1 + α2
− 4θα2

2α2 + α1
− 2θα2

2α1 + α2
.

(17)

If α1 = α2 = 1, then (17) simplifies to P (T2 < T1) = 1
2 .

4. RESULTS BASED ON EXTREME-VALUE COPULAS

In this section, the corresponding copula function of (4) will be represented. The depen-
dence structure of the proposed model will be investigated in detail for an extreme-value
copula. Let D̂(·, ·) be the survival copula corresponding to F̄ (·, ·) and let Cg(D)(·, ·) be
the corresponding copula of HT1,T2(·, ·) in (4), then by using Sklar’s Theorem and some
algebraic calculations, we can write

Cg(D)(u, v) = HT1,T2(H−1
1 (u), H−1

2 (v))

= g(g−1(u) + g−1(v)− 1 + D̂m((1− g−1(u))1/m, (1− g−1(v))1/m). (18)

In the special case, if D̂(·, ·) is an extreme-value copula, then (18) simplifies to

Cg(D)(u, v) = g(D(g−1(u), g−1(v))). (19)

If g(·) satisfies the relation gm(t1/m) = g(t) for some m ≥ 1, then the model (19)
preserves dependence structure of extreme-value copulas.
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4.1. Dependence structure

In modeling dependence, it is important to know the dependence structure of the model
which shows the attitude of two random variables relative to each other. The next
proposition provides conditions that the model (19) is PQD and LTD.

Proposition 4.1. Let (T1, T2) be a random vector distributed as (19). Then

i) PQD(T1, T2) if and only if g(D(t1, t2)) ≥ g(t1)g(t2);∀t1, t2 ∈ [0, 1],

ii) LTD(T2 | T1) if and only if
g(D(t1, t2))

g(t1)
is decreasing in t1.

Example 4.2. Let g(·) be as in Example 3.2. By applying Proposition 4.1 we have

i) PQD(T1, T2) if and only if D(t1, t2) ≥ θt1t2
θ + (1− θ)(1− t1)(1− t2)

,

ii) LTD(T2 | T1) if and only if D1(t1, t2) ≤ 1− (1− θ)D(t1, t2)

t1 − (1− θ)t21
D(t1, t2),

where D1(t1, t2) =
∂

∂t1
D(t1, t2).

Example 4.3. Let g(·) be as in Example 3.3. Then by exploiting Proposition 4.1 we
have

i) PQD(T1, T2) if and only if D(t1, t2) ≥ 1

θ
ln

(
1 +

(eθt1 − 1)(eθt2 − 1)

eθ − 1

)
,

ii) LTD(T2 | T1) if and only if D1(t1, t2) ≤ eθt1(eθD(t1,t2) − 1)

eθD(t1,t2)(eθt1 − 1)
.

The following proposition expresses conditions such that the random vector (T1, T2)
is TP2.

Proposition 4.4. The copula Cg(D)(·, ·) defined by (19) is TP2 if D(·, ·) is a TP2

copula.

P r o o f . Since g(·) is one-to-one, it is an isomorphism. Moreover, g(et) is log-convex
on (−∞, 0]→ [0, 1] so, by Theorem 3.1 of Durante et al. [7] the proof is completed. �

It may be noted that the model (19) preserves dependence structure of M(u, v) =
min{u, v}.

Proposition 4.5. Suppose that D(u, v) = M(u, v), then CM (u, v) = M(u, v).

P r o o f . The proof is straightforward since g(·) is an increasing function, we take

CM (u, v) = g(M(g−1(u), g−1(v))) = M(u, v).

�
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4.2. Measures of dependence

It is known that measures of dependence quantify the strength of dependence between
two random variables. Kendall’s tau (τ) and Spearman’s rho (ρ) are the most popular
dependence measures which are free from the marginal distributions. Shih and Emura
[27] studied the properties of some common bivariate dependence measures. The next
proposition represents a formula for Kendall’s tau and Spearman’s rho of the proposed
model.

Proposition 4.6. Let (T1, T2) be a random vector distributed as (19). Then

i) If D(·, ·) and g(·) are twice differentiable, then

τCg(D) = 1− 4

∫ 1

0

∫ 1

0

(g′(D(x, y)))2D1(x, y)D2(x, y) dxdy, (20)

where D2(x, y) =
∂

∂y
D(x, y).

ii) If g(·) is differentiable, then

ρCg(D) = 12

∫ 1

0

∫ 1

0

g′(x)g′(y)g(D(x, y)) dxdy − 3. (21)

P r o o f .

i) By using formula (1), we have

τCg(D) = 1− 4

∫ 1

0

∫ 1

0

∂

∂u
g(D(g−1(u), g−1(v)))

∂

∂v
g(D(g−1(u), g−1(v))) dudv

= 1− 4

∫ 1

0

∫ 1

0

∂g(D(g−1(u), g−1(v)))

∂g−1(u)

∂g(D(g−1(u), g−1(v)))

∂g−1(v)
dg−1(u) dg−1(v).

Setting x = g−1(u) and y = g−1(v) then

τCg(D) = 1− 4

∫ 1

0

∫ 1

0

∂

∂x
g(D(x, y))

∂

∂y
g(D(x, y)) dxdy

= 1− 4

∫ 1

0

∫ 1

0

(g′(D(x, y)))2D1(x, y)D2(x, y) dxdy.

ii) Using (2), the Spearman’s rho of model (19) is

ρCg(D) = 12

∫ 1

0

∫ 1

0

g(D(g−1(u), g−1(v))) dudv − 3. (22)

Take x = g−1(u) and y = g−1(v) in (22), we have

ρCg(D) = 12

∫ 1

0

∫ 1

0

g′(x)g′(y)g(D(x, y)) dxdy − 3.

�

For given D(·, ·) and g(·) by (20) and (21), we obtained exact expressions for τ and
ρ, these are presented in the subsequent sections.
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4.3. Dependence orders

Stochastic orders are useful tools for comparing the strength of dependence between the
considered random variables (or two random vectors). Let D∗(·, ·) and D∗∗(·, ·) be two
copulas, it is said that D∗∗(·, ·) is more concordant than D∗(·, ·) (denoted by D∗ ≺c D∗∗)
if

D∗(u, v) ≤ D∗∗(u, v), ∀u, v ∈ [0, 1].

Moreover, the function f : [0, 1]→ [0, 1] is said to be Supra-D if

D(f(x), f(y)) ≤ f(D(x, y)), ∀x, y ∈ [0, 1].

Dolati and Ućbeda-Flores [5] proposed a method to construct a new copula based on
the choice of pairs of order statistics of the marginal distributions and studied several
dependence properties including concordant order. The following proposition expresses
the concordance order between two distortion copulas, the result follows by Theorem
3.14 in Morillas [21].

Proposition 4.7. Let g1(·) and g2(·) be two distortion functions and assume that
Cg(D) satisfies (19), then Cg1(D) ≺c Cg2(D) if and only if g−1

1 ◦ g2 is Supra-D.

Since by assumption g(·) is an increasing function and it is known that the order is
preserved by concordance functions. Consequently, we have the following proposition.

Proposition 4.8. Let D1(·, ·) and D2(·, ·) be two copulas and assume that Cg(D) sat-
isfies in Equation (19). If D1 ≺c D2 then

i) Cg(D1) ≺c Cg(D2),

ii) τCg(D1) ≤ τCg(D2),

iii) ρCg(D1) ≤ ρCg(D2).

4.4. Sub-families

In this subsection, the dependence properties of model (19) are investigated when N has
geometric and truncated Poisson distributions.

Case I (N has a geometric distribution): In this case, by Example 3.2, we get g−1(t) =
t

θ + (1− θ)t
, so from (19), Cg(D)(u, v) is given by

Cg(D)(u, v) =

θD

(
u

θ + u(1− θ)
,

v

θ + v(1− θ)

)
1− (1− θ)D

(
u

θ + u(1− θ)
,

v

θ + v(1− θ)

) . (23)

By substituting the functions g(t) = θt
1−(1−θ)t and g′(t) = θ

(1−(1−θ)t)2 in equations

(20) and (21), we obtain the Kendall’s tau and Spearman’s rho of model (23) which are
stated in the next proposition.
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Proposition 4.9. LetD(·, ·) be a copula which is twice differentiable, then the Kendall’s
tau and Spearman’s rho of model (23) are given by

τCg(D) = 1− 4θ2

∫ 1

0

∫ 1

0

(
D1(x, y)

(1− (1− θ)D(x, y))2
)(

D2(x, y)

(1− (1− θ)D(x, y))2
) dxdy

and

ρCg(D) = 12θ3

∫ 1

0

∫ 1

0

D(x, y)

(1− (1− θ)x)2(1− (1− θ)y)2(1− (1− θ)D(x, y))
dxdy − 3,

respectively.
The upper (lower) tail dependence measures the probability of having large (small)

values. We obtained them for model (23) which are stated in the next proposition.

Proposition 4.10. If λL(D) and λU (D) exist and both are finite, then λL(Cg(D)) =
λL(D) and λU (Cg(D)) = λU (D).

P r o o f . Since g(t) = θt
1−(1−θ)t is an isomorphism and also

lim
t→0+

g(t)

tα
= lim
t→0+

θ

tα−1(1− (1− θ)t)
=


0, 0 < α < 1,

θ, α = 1,

∞, α > 1,

(24)

and

lim
t→1−

1− g(t)

(1− t)α
= lim
t→1−

1

(1− t)α(1− (1− θ)t)
=


0, 0 < α < 1,
1

θ
, α = 1,

∞, α > 1.

(25)

Thus, by exploiting (24), (25) and Theorem 4.2 of Durante et al. [7], we arrive at
λL(Cg(D)) = λL(D). Also, from Theorem 4.3 of Durante et al. [7] we conclude that
λU (Cg(D)) = λU (D). �

Example 4.11. If D(u, v) = Π(u, v), then we have the following results.

i) For all 0 < θ < 1; Cg(Π)(u, v) =
uv

1− (1− θ)(1− u)(1− v)
. This copula is the well

known AMH(1− θ), that is TP2.

ii) Since λL(Π) = λU (Π) = 0, hence Proposition 4.10 implies that

λL(Cg(Π)) = λU (Cg(Π)) = 0.

iii) By Nelsen [22], Kendall’s tau and Spearman’s rho are given by

τCg(Π) = − 2

3θ2
[(1− θ)2 ln(1− θ) + 1]− 1
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and

ρCg(Π) = − 3

θ2
[14(1−θ)dilog(1−θ)+8(1−θ) ln(1−θ)−8dilog(1−θ)+θ2−16θ+14],

where dilog(x) =
∫ x

1
ln(t)
1−t dt.

Example 4.12. Let G(·, ·) be the Gumbel survival copula with parameter α ≥ 1, then

i) For 0 < θ < 1,

Cg(G)(u, v) =
θ(w(u, v) + p(u)p(v) exp{−[q(u) + q(v)]1/α})

p(u)p(v)[1− (1− θ) exp{−[q(u) + q(v)]1/α}]− (1− θ)w(u, v)
,

where p(u) = θ + u(1− θ), q(u) =
(
− ln( (1−θ)u

θ+(1−θ)u )
)α

and w(u, v) = (uv − θ2(1−
u)(1− v)).

ii) Since G(·, ·) is TP2 by using Proposition 4.4, Cg(G)(·, ·) is TP2.

iii) It is easy to show that λL(G) = 0 and λU (G) = 2 − 21/θ. So, Proposition 4.10
implies that

λL(Cg(G)) = 0 and λU (Cg(G)) = 2− 21/θ.

iv) Since Π ≺c G ≺c M , so by Proposition 4.8, the following inequalities are deduced

τCg(Π) ≤ τCg(G) ≤ τCg(M) and ρCg(Π) ≤ ρCg(G) ≤ ρCg(M).

As it is shown in Example 4.11, Cg(Π)(u, v) = AMH(1− θ). Hence,

τ(AMH(1−θ)) ≤ τCg(G) ≤ 1, and ρ(AMH(1−θ)) ≤ ρCg(G) ≤ 1.

Case II (N has a truncated Poisson distribution): In this case by Example 3.3, we get

g−1(t) =
1

θ
ln(1 + t(eθ − 1)). So, we can write

Cg(D)(u, v) =
1

eθ − 1
{exp(θD

(
ln(1 + u(eθ − 1))

θ
,

ln(1 + v(eθ − 1))

θ

)
− 1}. (26)

The Kendall’s tau and Spearman’s rho of model (26) are given in the next result.

Proposition 4.13. Let D(·, ·) be a twice differentiable copula, then Kendall’s tau and
Spearman’s rho of model (26) are given by

τCg(D) = 1− 4θ2

(eθ − 1)2

∫ 1

0

∫ 1

0

D1(x, y)D2(x, y)e2θD(x,y) dxdy (27)

and

ρCg(D) =
12θ2

(eθ − 1)3

∫ 1

0

∫ 1

0

(eθD(x,y) − 1)eθ(x+y) dxdy − 3,

respectively.
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The next result provides the upper and lower tail dependence of model (26).

Proposition 4.14. If λL(D) and λU (D) exist, then λL(Cg(D)) = λL(D) and λU (Cg(D))
= λU (D).

P r o o f . The function g(t) = eθt−1
eθ−1

is an isomorphism and also

lim
t→0+

g(t)

tα
= lim
t→0+

eθt − 1

tα(eθ − 1)
=


0, 0 < α < 1,
θ

eθ − 1
, α = 1,

∞, α > 1,

(28)

and

lim
t→1−

1− g(t)

(1− t)α
= lim
t→1−

(eθ − eθt)
(eθ − 1)(1− t)α

=


0, 0 < α < 1,

θeθ

eθ − 1
, α = 1,

∞, α > 1.

(29)

So, by (28), (29) and Theorems 4.2-4.3 of Durante et al. (2010) the proof is completed.
�

Example 4.15. If D(u, v) = Π(u, v), then we have the following results.

i) For all θ > 0; Cg(Π) =
1

eθ − 1

{
exp
( ln(1 + (eθ − 1)u) ln(1 + (eθ − 1)v)

θ

)
− 1

}
.

Since Π(·, ·) is TP2 referring to Proposition 4.4, Cg(D)(·, ·) is TP2.

ii) By using Proposition 4.14 we obtain

λL(Cg(Π)) = λL(Π) = 0 and λU (Cg(Π)) = λU (Π) = 0.

iii) From the equation (27), we have

τCg(Π) = 1− 4θ2

(eθ − 1)2

∫ 1

0

∫ 1

0

xye2θxy dxdy

= 1− 2θ

(eθ − 1)2

{∫ 1

0

e2θydy − 1

2θ

∫ 1

0

(
e2θy − 1

y
) dy

}
= 1− 1

(eθ − 1)2

{
e2θ − 1−

∫ 1

0

e2θy − 1

y
dy

}
. (30)

By replacing eθt =
∑∞
k=0

(θt)k

k! in (30) we get

τCg(Π) = 1− 1

(eθ − 1)2

{
e2θ − 1−

∞∑
k=1

(2θ)k

k!

∫ 1

0

yk−1 dy

}

= 1− 1

(eθ − 1)2

{
e2θ − 1−

∞∑
k=1

(2θ)k

k(k!)

}
.
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Moreover, by applying Proposition 4.9, we have

ρCg(Π) =
12θ2

(eθ − 1)3

∫ 1

0

∫ 1

0

(eθxy − 1)eθ(x+y) dxdy − 3

=
12θ2

(eθ − 1)3

∫ 1

0

∫ 1

0

(eθxy+θx+θy − eθx+θy) dxdy − 3

=
12θ

(eθ − 1)3

{∫ 1

0

e2θy+1 − eθy

1 + y
dy −

∫ 1

0

(eθy+θ − eθy) dy

}
− 3.

Using eθt =
∑∞
k=0

(θt)k

k! , the Spearman’s rho of Cg(Π) is given by,

ρCg(Π) =
12θ

(eθ − 1)3

{
1− (eθ − 1)2

θ
+

∞∑
k=2

1

k!

∫ 1

0

(2θy + θ)k − (θy)k

1 + y

}
− 3.

Example 4.16. Let G(·, ·) be the Gumbel survival copula with parameter α ≥ 1, then
the following statements hold.

i) Cg(G) =
1

eθ − 1
{exp{r(u) + r(v)− θ + θ exp(−((− ln(1− r(u)))α

+(− ln(1−r(v)))α)1/α)−1},
where r(u) = ln(1 + u(eθ − 1)) and θ > 0.

ii) According to Proposition 4.4, Cg(G) is TP2.

iii) By Proposition 4.14,

λL(Cg(G)) = λL(G) = 0 and λU (Cg(G)) = λL(G) = 2− 21/θ.

iv) Since Π ≺c G ≺c M , thus by Proposition 4.8 we have,

τCg(Π) ≤ τCg(G) ≤ 1, and ρCg(Π) ≤ ρCg(G) ≤ 1.

5. SIMULATION RESULTS

It is known that one of the effective ways for evaluating the behaviour of dependent
models is to simulate random data from their corresponding copula. Zhang et al. [29]
presented an algorithm to generate random data from U = max{X1,1, . . . , X1,N} and
V = max{X2,1, . . . , X2,N} where (X1,i, X2,i), i = 1, . . . , N are iid random variables and
N follows a geometric distribution and is independent of (X1,1, X2,1). These assumptions
hold for our proposed model, so we can use the algorithm proposed by Zhang et al. [29]
to generate data from Examples 4.12 – 4.16.

Algorithm 1. Let D(·, ·) be the appropriate copula of the proposed model, then we
can follow the following steps for generating data:

1. For given θ, generate a random variable from a discrete distribution with parameter
θ, say N .



A generalized bivariate lifetime distribution 451

2. For i = 1 . . . , N and j = 1 . . . ,m generate random vectors (Z
(1)
i,j , Z

(2)
i,j ) from their

corresponding copula D(·, ·) with known parameter α.

3. For i = 1 . . . , N calculateXi = max{Z(1)
i,1 , . . . , Z

(1)
i,m} and Yi = max{Z(2)

i,1 , . . . , Z
(2)
i,m}.

4. Calculate T1 = min{X1, . . . , XN} and T2 = min{Y1, . . . , YN}.

5. For given g(·), compute H1(T1) = g(1− Tm1 ) and H2(T2) = g(1− Tm2 ).

6. Set U = H1(T1) , V = H2(T2),

then (U, V ) is a random vector generated from Cg(D).

Table 1 displays Kendall’s tau and Spearman’s rho of Example 4.12 based on a sample
of size 100 when m = 5, α = 8 and 104 data has been replicated from Example 4.12 by
using Algorithm 1. The results in Table 1 indicate that, ρ

τ <
3
2 and ρ ≥ τ ≥ 0. Also,

from Table 1, it is observed that by increasing θ both the Kendall’s tau and Spearman’s
rho increase.

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ 0.803 0.830 0.844 0.851 0.858 0.863 0.866 0.870 0.870 0.875
ρ 0.940 0.954 0.961 0.964 0.967 0.969 0.971 0.972 0.972 0.974
ρ

τ
1.170 1.149 1.139 1.133 1.127 1.124 1.121 1.118 1.118 1.114

Tab. 1. The simulation results of Example 4.12.

Table 2 illustrates the values of Kendall’s tau and Spearman’s rho of Example 4.15
based on a sample of size 100, m = 5, when 104 data which has been simulated from
Example 4.15 by using Algorithm 1. From Table 2, we have ρ

τ < 3
2 and ρ ≥ τ ≥ 0.

It is also observed that, from Table 2, both the Kendall’s tau and Spearman’s rho first
increase and then decrease as θ increases.

θ 1 2 3 4 5 6 7 8 9 10 50 100

τ 0.026 0.052 0.067 0.077 0.079 0.077 0.071 0.064 0.057 0.052 0.012 0.004
ρ 0.039 0.077 0.100 0.115 0.118 0.115 0.106 0.096 0.086 0.078 0.017 0.007
ρ

τ
1.498 1.497 1.498 1.496 1.496 1.496 1.495 1.496 1.495 1.496 1.496 1.496

Tab. 2. The simulation results of Example 4.15.

Table 3 displays Kendall’s tau and Spearman’s rho of Example 4.16 for a sample of
size 100 when m = 5, α = 8 and 104 data which has been replicated from Example 4.16
by using Algorithm 1. As we can see ρ

τ <
3
2 and ρ ≥ τ ≥ 0. Furthermore by increasing

θ the Kendall’s tau and Spearman’s rho decrease.

θ 1 5 10 50 100

τ 0.734 0.724 0.695 0.635 0.616
ρ 0.899 0.890 0.868 0.816 0.800
ρ

τ
1.224 1.229 1.249 1.286 1.297

Tab. 3. The simulation results of Example 4.16.
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6. CONCLUSIONS

In this paper, we have tackled a new dependent model which has been constructed
based on the structure of two parallel-series systems. Some reliability properties of the
proposed model such as conditional tail expectation has been calculated. Furthermore,
by considering extreme-value copulas as their base copula their dependence properties
such as their structure, Kendall’s tau, Spearman’s rho and tail dependences have been
investigated in special cases. It should be noted that the proposed model can be extended
to the case of a general number of systems.
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