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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 2 , P A G E S 2 1 7 – 2 3 2

AN EXTENSION OF THE ORDERING
BASED ON NULLNORMS

Emel Aşıcı

In this paper, we generally study an order induced by nullnorms on bounded lattices. We
investigate monotonicity property of nullnorms on bounded lattices with respect to the F -
partial order. Also, we introduce the set of incomparable elements with respect to the F-partial
order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between
the order induced by a nullnorm and the distributivity property for nullnorms.
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1. INTRODUCTION

Nullnorms and t-operators were introduced by Calvo, De Baets, Fodor [8] and Mas,
Mayor, Torrens [22], respectively. Nullnorms are a generalization of triangular norms
(t-norms, for short) and triangular conorms (t-conorms, for short) that are useful tool in
many different fields, such as expert systems, neural networks and fuzzy logic. Nullnorms
allow the freedom for the zero element a (sometimes called absorbing) to be an arbitrary
element from the unit interval [0, 1], which is 0 for t-norms and 1 for t-conorms. And then
Mas, Mayor and Torrens [23] have shown that nullnorms and t-operators are equivalent
since they have the same block structures in [0, 1]2. The equivalence between nullnorms
and t-operators is valid on [0, 1].

Karaçal, Ince and Mesiar [19] studied nullnorms on bounded lattices. They shown
the existence of nullnorms with zero element a for an arbitrary element a ∈ L \ {0, 1}
with underlying t-norms and t-conorms on an arbitrary bounded lattice. They obtained
the smallest and the greatest nullnorm on a bounded lattice.

Karaçal and Kesicioğlu [20] introduced a partial order defined by means of t-norms.
Also, Aşıcı [1] defined an order induced by a nullnorm on a bounded lattice L and

investigated some properties of such an order. For more details on t-norms, t-conorms
nullnorms and uninorms we refer to [2, 3, 4, 10, 11, 12, 15, 16, 17, 18, 24].

In this paper, we deeply investigate some properties of an order induced by nullnorms
on bounded lattices. The paper is organized as follows. We shortly recall some basic
notions in Section 2. In Section 3, we investigate monotonicity property of nullnorms
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on bounded lattices with respect to the F -partial order. Also, we give a sufficient
condition for the set of all idempotent elements of t-norm and t-conorm to be a lattice
with respect to the F -partial order. In Section 4, we define the set IF (x), denoting the
set of all incomparable elements with arbitrary but fixed x ∈ L according to F -partial
order and we investigate some properties of this introduced set. Next, we define the
set of incomparable elements with respect to the F -partial order for any nullnorm on
bounded lattices. Then, we determine sets of incomparable elements with respect to
the F -partial order of the greatest and the smallest nullnorm on a bounded lattice.
In Section 5, we investigate the relationship between the order induced by a nullnorm
and the distributivity property for nullnorms on the unit interval [0, 1]. We give our
concluding remarks in Section 6.

2. PRELIMINARIES

Let us now recall all necessary basic notions. A bounded lattice (L,≤) is a lattice which
has the top and bottom elements, which are written as 1 and 0, respectively, that is
there exist two elements 1, 0 ∈ L such that 0 ≤ x ≤ 1, for all x ∈ L.

Definition 2.1. (Calvo et al. [8], Karaçal et al. [19]) A nullnorm is a binary operator
F : L2 → L which is commutative, associative, non-decreasing in each variable and there
exists some element a ∈ L such that F (x, 0) = x for all x ≤ a, F (x, 1) = x for all x ≥ a.

Clearly, F is a t-norm if a = 0 and a t-conorm a = 1. It is easy to show that
F (x, a) = a for all x ∈ L. Therefore, a ∈ L is the zero (absorbing) element for F . It is
clear that F (1, 0) = a.

In this study, for the sake of brevity, the set [0, a)×(a, 1]∪(a, 1]×[0, a) for a ∈ L\{0, 1}
is denoted by Da, i. e., Da = [0, a)× (a, 1] ∪ (a, 1]× [0, a) for a ∈ L\{0, 1}.

Example 2.2. (Klement et al. [21]) The following are the four basic t-norms and t-
conorms on [0, 1] given by, respectively,
TM (x, y) = min(x, y) SM (x, y) = max(x, y)
TP (x, y) = xy SP (x, y) = x+ y − xy
TL(x, y) = max(x+ y − 1, 0) SL(x, y) = min(x+ y, 1)

TD(x, y) =

{
0 (x, y) ∈ [0, 1)2

min(x, y) otherwise.
SD(x, y) =

{
1 (x, y) ∈ (0, 1]2

max(x, y) otherwise.

Extremal t-norms T∧ and TW on L are defined as follows, respectively:
T∧(x, y) = x ∧ y

TW (x, y) =


x y = 1 ,

y x = 1,

0 otherwise.
Similarly, the t-conorms S∨ and SW can be defined as above.

In particular, TW = TD and T∧ = TM for L = [0, 1].
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Example 2.3. (Klement et al. [21]) The t-norm TnM on [0, 1] is defined as follows:

TnM (x, y) =

{
0 x+ y ≤ 1 ,

min(x, y) otherwise.

is called nilpotent minimum t-norm.
The t-norm T ∗ on [0, 1] is defined as follows:

T ∗(x, y) =

{
0 (x, y) ∈ (0, k)2 ,

min(x, y) otherwise.
0 < k < 1

Definition 2.4. (Casasnovas and Mayor [9]) A t-norm T on L is divisible if the fol-
lowing condition holds:

∀x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

Definition 2.5. (Birkhoff [7]) Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L. If a
and b are incomparable, in this case we use the notation a ‖ b.

Definition 2.6. (Drewniak et al. [14]) An element x ∈ L is called an idempotent
element of a function F : L2 → L if F (x, x) = x. The function F is called idempotent
if all elements of L are idempotent.

Definition 2.7. (Karaçal and Kesicioğlu [20]) Let L be a bounded lattice and T be a
t-norm on L. The order defined as follows is called a T− partial order (triangular order)
for t-norm T :

x �T y :⇔ T (`, y) = x for some ` ∈ L.

Definition 2.8. (Aşıcı [1]) Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm
with zero element a on L. Define the following relation, for x, y ∈ L, as

x �F y :⇔


if x, y ∈ [0, a] and there exist k ∈ [0, a] such that F (x, k) = y or,

if x, y ∈ [a, 1] and there exist ` ∈ [a, 1] such that F (y, `) = x or,

if (x, y) ∈ L∗ and x ≤ y,
(1)

where Ia = {x ∈ L | x ‖ a} and L∗ = [0, a]× [a, 1]∪ [0, a]× Ia∪ [a, 1]× Ia∪ [a, 1]× [0, a]∪
Ia × [0, a] ∪ Ia × [a, 1] ∪ Ia × Ia.

Note: The partial order �F in (1) is called F -partial order on L.

Lemma 2.9. (Aşıcı [1]) Let (L,≤, 0, 1) be a bounded lattice. For all nullnorms F and
all x ∈ L it holds that 0 �F x, x �F x and x �F 1.

Proposition 2.10. (Aşıcı [1]) Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm
on L. If x �F y for any x, y ∈ L, then x ≤ y.
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3. ON THE F -PARTIAL ORDER

In this section, we investigate monotonicity property of nullnorms on bounded lattices
with respect to the F -partial order. Also, we give a sufficient condition for the set of all
idempotent elements of t-norm and t-conorm to be a lattice with respect to the F -partial
order.

Proposition 3.1. Let (L,≤, 0, 1) be a bounded lattice, F be a nullnorm with zero
element a on L and a is comparable with all elements of L. If x �F y for x, y ∈ L, then
F (x, z) �F F (y, z) for all z ∈ L.

P r o o f . Let x �F y for x, y ∈ [0, a]. Then there exists an element k ∈ [0, a] such that
F (x, k) = y.

F (y, z) = F (F (x, k), z) = F (k, F (x, z)).

Since x ≤ a, then it must be the case that F (x, z) ≤ F (a, z) = a for all z ∈ L. It is clear
that F (y, z) ≤ a. So, F (x, z) �F F (y, z).

Let x �F y for x, y ∈ [a, 1]. Then there exists an element ` ∈ [a, 1] such that
F (y, `) = x.

F (x, z) = F (F (y, `), z) = F (`, F (y, z)).

Since y ≥ a, then it must be the case that F (y, z) ≥ F (a, z) = a for all z ∈ L. It is clear
that F (x, z) ≥ a. So, F (x, z) �F F (y, z).

Finally, let x �F y for x, y /∈ [0, a] and x, y /∈ [a, 1]. Due to the fact that a is
comparable with all elements of L and x �F y, then we have that x ≤ a ≤ y. So, we
get that F (x, z) ≤ F (a, z) = a ≤ F (y, z). Hence, F (x, z) �F F (y, z) by the definition of
�F . �

Corollary 3.2. Let (L,≤, 0, 1) be a bounded lattice, F be a nullnorm with zero element
a on L and a is comparable with all elements of L. If (L,�F ) is a lattice, then
F : (L,�F )2 → (L,�F ) is a nullnorm with zero element a.

Corollary 3.3. (Karaçal and Kesicioğlu [20]) Let (L,≤, 0, 1) be a bounded lattice, T
be a t-norm on L. If (L,�T ) is a lattice, then T : (L,�T )2 → (L,�T ) is a t-norm on L.

Proposition 3.4. (Karaçal et al. [19]) Let (L,≤, 0, 1) be a bounded lattice, a ∈
L \ {0, 1} and F be a nullnorm with zero element a on L. Then

(i) S∗ = F |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].

(ii) T ∗ = F |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

Proposition 3.5. (Karaçal and Kesicioğlu [20]) Let (L,≤, 0, 1) be a bounded lattice,
F be a nullnorm with zero element a on L. If ([0, a]∪ [a, 1],�F ) is a chain, then S∗ and
T ∗ are divisible on [0, a] and [a, 1], respectively, i. e., �F =≤.

Remark 3.6. The converse of the above Proposition 3.5 may not be true. Here is an
example illustrating such a case.
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Fig. 1. The order ≤ on L.

Example 3.7. Consider the lattice (L = {0, p, r, s, t, a, u, 1},≤, 0, 1) whose lattice dia-
gram is displayed in Figure 1.

Consider the nullnorm F : L2 → L with zero element a defined as follows [19]:

F (x, y) =


x ∨ y (x, y) ∈ [0, a]2 ,

y x = 1, y ≥ a ,
x y = 1, x ≥ a ,
a otherwise.

It is clear that S∨(x, y) = x ∨ y is a divisible t-conorm on [0, a]. But ([0, a],�F ) is not
a chain.

Note: In this paper, for any subset X of L, X�F
(X�F

) denotes the set of the upper
(lower) bounds of X with respect to �F . Also, for any x, y ∈ L, x∧F y (x∨F y) denotes
the greatest (least) element of the lower (upper) bounds with respect to �F , if they
exist.

Proposition 3.8. Let (L,≤, 0, 1) be a bounded lattice, F be a nullnorm with zero
element a on L such that a is comparable with all elements of L and HS∗ and HT∗ be
the sets of all idempotent elements of S∗ and T ∗, respectively. If S∗ is ∧-distributive
and T ∗ is ∨-distributive, then (HS∗ ∪HT∗ ,�F ) is a bounded lattice.

P r o o f . Let x, y ∈ HS∗ ∪HT∗ . We assume that x, y ∈ HS∗ . Firstly, we want to show
x ∨F y = F (x, y).
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Since F (x, y) = F (x, y), it must be x �F F (x, y) and y �F F (x, y). So, it holds
F (x, y) ∈ {x, y}�F

. Let k ∈ {x, y}�F
be arbitrary. Then it must be the case that

x �F k and y �F k. Since a is comparable with all elements of L, either k ≤ a or a ≤ k.
Let k ≤ a. Then there exists elements k1, k2 ∈ [0, a] such that
k = F (x, k1) = F |[0,a]2 (x, k1) = S∗(x, k1) and k = F (y, k2) = F |[0,a]2 (y, k2) =

S∗(y, k2).
Then we have that

F (k, x) = F |[0,a]2 (k, x) = S∗(S∗(x, k1), x) = S∗(k1, S
∗(x, x)) = S∗(k1, x) = k.

F (k, y) = F |[0,a]2 (k, y) = S∗(S∗(y, k2), y) = S∗(k2, S
∗(y, y)) = S∗(k2, y) = k.

Thus, we obtain that

F (k, F (x, y)) = F (F (k, x), y) = F (k, y) = k.

So, it holds F (x, y) �F k.
Let a ≤ k. Since x, y ≤ a, it is clear that F (x, y) ≤ a. Since F (x, y) ≤ a and a ≤ k,

we get that F (x, y) �F k, by the definition of �F . Thus, it is obtained x∨F y = F (x, y).
Now, we will show that x ∧F y = x ∧ y.

It is clear that

S∗(x ∧ y, x ∧ y) ≤ S∗(x, x) = x and S∗(x ∧ y, x ∧ y) ≤ S∗(y, y) = y.

x ∧ y ≤ S∗(x ∧ y, x ∧ y) ≤ x ∧ y.

We have that S∗(x ∧ y, x ∧ y) = x ∧ y. So, x ∧ y ∈ HS∗ . And

x = S∗(x, 0) ≤ S∗(x, x ∧ y) ≤ S∗(x, x) = x.

So, it is obtained that

x = S∗(x, x ∧ y) = F |[0,a]2 (x, x ∧ y) = F (x, x ∧ y).

Hence, we get that x ∧ y �F x.

y = S∗(y, 0) ≤ S∗(y, x ∧ y) ≤ S∗(y, y) = y.

And it is that

y = S∗(y, x ∧ y) = F |[0,a]2 (y, x ∧ y) = F (y, x ∧ y).

So, we have that x ∧ y �F y. Thus, it holds x ∧ y ∈ {x, y}
�F

. Let ` ∈ {x, y}
�F

be

arbitrary. Then, it must be ` �F x and ` �F y. Then there exist elements `1, `2 ∈ [0, a]
such that

F (`1, `) = F |[0,a]2 (`1, `) = S∗(`1, `) = x and F (`2, `) = F |[0,a]2 (`2, `) = S∗(`2, `) = y.

Since S∗ is ∧-distributive, we have that

x ∧ y = S∗(`1, `) ∧ S∗(`2, `) = S∗(`1 ∧ `2, `) = F |[0,a]2 (`1 ∧ `2, `) = F (`1 ∧ `2, `).
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Since `1 ∧ `2 ≤ a, we get that ` �F x ∧ y. So, it is obtained x ∧F y = x ∧ y.
Let x, y ∈ HT∗ . Similarly we have that x ∧F y = F (x, y) and x ∨F y = x ∨ y.
Let x ∈ HS∗ and y ∈ HT∗ . Then it must be x ≤ a ≤ y. So, we have that x �F y,

by the definition of �F . It is clear that x ∧F y = x and x ∨F y = y. Let x ∈ HT∗ and
y ∈ HS∗ . Then we have that x∧F y = y and x∨F y = x. Consequently, (HS∗ ∪HT∗ ,�F )
is a lattice. Since 0 ∈ HS∗ and 1 ∈ HT∗ , (HS∗ ∪HT∗ ,�F ) is a bounded lattice. �

Remark 3.9. The converse of the above Proposition 3.8 may not be true. Here is an
example illustrating such a case.

Example 3.10. Consider the lattice (L = {0, b, c, d, e, f, a, 1},≤, 0, 1) whose lattice di-
agram is displayed in Figure 2.

Fig. 2. The order ≤ on L.

Consider the unique idempotent nullnorm F with zero element a ∈ L \ {0, 1} defined
as follows [13]:

F (x, y) =


x ∨ y (x, y) ∈ [0, a]2 ,

x ∧ y (x, y) ∈ [a, 1]2,

a otherwise.

It is clear that S∗(x, y) = x ∨ y and T ∗(x, y) = x ∧ y. Since HS∗ = {0, b, c, d, e, f, a}
and HT∗ = {a, 1}, then we have (HS∗ ∪ HT∗ ,�F ) is a bounded lattice, but S∗ is not
∧-distributive. Now, we will show this claim.
S∗(e ∧ f, d) = S∗(b, d) = d.
S∗(e, d) ∧ S∗(f, d) = a ∧ f = f .

Since d 6= f , S∗ is not ∧-distributive.
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Corollary 3.11. Let (L,≤, 0, 1) be a bounded lattice, F be a nullnorm with zero el-
ement a on L such that a is comparable with all elements of L and HS∗ and HT∗ be
the sets of all idempotent elements of S∗ and T ∗, respectively. If S∗ is an infinitely
∧-distributive and T ∗ is an infinitely ∨-distributive, then (HS∗ ∪HT∗ ,�F ) is a complete
lattice.

4. ABOUT THE SET KL
F ON ANY BOUNDED LATTICE

Let F be a nullnorm on (L,≤, 0, 1) with zero element a and let I
L(x)
F be defined by

IL(x)
F = {yx ∈ L\{0, 1} | [x < yx and x �F yx] or

[yx < x and yx �F x] orx ‖ yx}.

In the following, the notation IL(x)
F is used to denote the set of all incomparable

elements with x ∈ L according to �F . Clearly, IL(x)
F = ∅, for x = 0 and x = 1.

Definition 4.1. Let (L,≤, 0, 1) be a bounded lattice. The set ILx for x ∈ L \ {0, 1} is
defined by

ILx = {y ∈ L\{0, 1} | x ‖ y}.

For any nullnorm on (L,≤, 0, 1), we get that ILx ⊆ I
L(x)
F for x ∈ L.

Proposition 4.2. Let (L,≤, 0, 1) be a bounded lattice and

F (∧)(x, y) =


x ∧ y (x, y) ∈ [a, 1]

2
,

a (x, y) ∈ (0, a]
2 ∪ [0, a]× Ia ∪ Ia × [0, a] ∪Da,

(x ∨ a) ∧ (y ∨ a) (x, y) ∈ [a, 1]× Ia ∪ Ia × [a, 1] ∪ Ia × Ia,
x ∨ y otherwise,

(2)

be the greatest nullnorm on L with zero element a (see [19]). Then

a) IL(x)

F (∧) = {yx ∈ (0, a) | x 6= yx} ∪ ILx for all x ∈ (0, a).

b) IL(x)

F (∧) = ILx for all x ∈ (a, 1) or x ‖ a.

P r o o f . a) Let yx ∈ IL(x)

F (∧) be arbitrary for x ∈ (0, a). Based on Lemma 2.9, it must be

x 6= yx. Thus, we need to show that yx ∈ (0, a) or yx ∈ ILx . We consider that yx /∈ (0, a)

and yx /∈ ILx . Since yx ∈ IL(x)

F (∧) , then it must be the case that [yx < x and yx �F (∧) x] or
[x < yx and x �F (∧) yx] or x ‖ yx.

Let yx < x and yx �F (∧) x.
Since yx /∈ (0, a), we have that yx = 0 or yx ∈ [a, 1) or yx ‖ a. If yx = 0, then we have
yx = 0 �F (∧) x, which is a contradiction. Let yx ∈ [a, 1). Since a ≤ yx < x, we have
that F (∧)(x, yx) = x ∧ yx = yx by the definition of F (∧). So, it holds yx �F (∧) x, which
is a contradiction. Since yx < x < a, it can not be yx ‖ a.

Let x < yx and x �F (∧) yx.
Since yx /∈ (0, a), we have a similar contradiction for yx = 0 and yx ∈ [a, 1).
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Let yx ‖ a. Due to the fact that x < yx and yx ‖ a, it is obtained that x �F (∧) yx, a
contradiction by the definition of �F .

Finally, since yx /∈ ILx , it can not be x ‖ yx. So, it must be the case that yx ∈ (0, a)
or yx ∈ ILx .

Hence, we have IL(x)

F (∧) ⊆ {yx ∈ (0, a) | x 6= yx} ∪ ILx for all x ∈ (0, a).

Conversely, let yx ∈ (0, a) or yx ∈ ILx such that x 6= yx for x ∈ (0, a). Let us show

that yx ∈ IL(x)

F (∧) .

Let yx ∈ (0, a) and x 6= yx for x ∈ (0, a). Suppose that yx /∈ IL(x)

F (∧) , i. e., yx < x and
yx �F (∧) x or x < yx and x �F (∧) yx.

i) Let yx < x and yx �F (∧) x. Then there exists an element k ∈ [0, a] such that
F (∧)(yx, k) = x. If k = 0, then we have x = yx, a contradiction. Since k ∈ (0, a], it is
obtained that

F (∧)(yx, k) = x = a,

a contradiction by the definition of F (∧). So, it holds yx �F (∧) x.

ii) Let x < yx and x �F (∧) yx. Then we have that similar contradiction as in i).

So, {yx ∈ (0, a) | x 6= yx} ⊆ IL(x)

F (∧) for all x ∈ (0, a).

Let yx ∈ ILx for x ∈ (0, a). By the definition of IL(x)
F , we have that ILx ⊆ I

L(x)
F . So,

{yx ∈ (0, a) | x 6= yx} ∪ ILx ⊆ I
L(x)

F (∧) .

Consequently, we find that IL(x)

F (∧) = {yx ∈ (0, a) | x 6= yx} ∪ ILx for all x ∈ (0, a).

b) Let x ∈ (a, 1). It is clear that ILx ⊆ I
L(x)
F for every nullnorm on L. Conversely, let

yx ∈ IL(x)

F (∧) be arbitrary. We will show that yx ∈ ILx . Suppose that yx /∈ ILx . In that case
x < yx or yx < x. If x < yx, then we have

x = x ∧ yx = F (∧)(x, yx).

So, we have that x �F (∧) yx, which is a contradiction.
Let yx < x. If a < yx < x, then we get that yx �F (∧) x, a contradiction. If yx < a < x,
then it is obtained that yx �F (∧) x, a contradiction by the definition of �F . So, it must

be IL(x)

F (∧) ⊆ ILx for x ∈ (a, 1). Consequently, we have IL(x)

F (∧) = ILx for x ∈ (a, 1).

If x ‖ a, then similarly it can be shown that IL(x)

F (∧) = ILx . �

Corollary 4.3. Let (L,≤, 0, 1) be a bounded lattice. For the infimum t-norm T∧ on L,

IL(x)
T∧

= ILx for x ∈ L.

Proposition 4.4. Let (L,≤, 0, 1) be a bounded lattice and

F (∨)(x, y) =


x ∨ y (x, y) ∈ [0, a]

2
,

a (x, y) ∈ [a, 1)
2 ∪ [a, 1]× Ia ∪ Ia × [a, 1] ∪Da,

(x ∧ a) ∨ (y ∧ a) (x, y) ∈ [0, a]× Ia ∪ Ia × [0, a] ∪ Ia × Ia,
x ∧ y otherwise.

(3)

be the smallest nullnorm on L with zero element a (see [19]). Then
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a) IL(x)

F (∨) = {yx ∈ (a, 1) | x 6= yx} ∪ ILx for all x ∈ (a, 1).

b) IL(x)

F (∨) = ILx for all x ∈ (0, a) or x ‖ a.

The proof of Proposition 4.4 is similar to the proof of Proposition 4.2.

Corollary 4.5. Let (L,≤, 0, 1) be a bounded lattice and card(L) > 3. For the weakest

t-norm TW on L, IL(x)
TW

= L \ {0, 1} for x ∈ L.

Definition 4.6. Let F be a nullnorm on (L,≤, 0, 1) with zero element a and let KL
F be

defined by

KL
F = {x ∈ L\{0, 1} | for some y ∈ L\{0, 1}, [x < y implies x �F y] or

[y < x implies y �F x] orx ‖ y}.

Definition 4.7. (Aşıcı and Karaçal [6]) Let (L,≤, 0, 1) be a bounded lattice. The set
IL is defined by

IL = {x ∈ L | ∃ y ∈ L such that x ‖ y}.

Proposition 4.8. Let (L,≤, 0, 1) be a bounded lattice, F (∧) be the greatest nullnorm
(2) with zero element a on L and card([0, a]) > 3. Then KL

F (∧) = (0, a) ∪ IL.

P r o o f . Let x ∈ (0, a) ∪ IL. Then it must be x ∈ (0, a) or x ∈ IL. We will show that
x ∈ KL

F (∧) .
Let x ∈ (0, a) and y ∈ (0, a) such that x < y. Then we get that x �F (∧) y. Suppose

that x �F (∧) y. Then there exists an element k ∈ [0, a] such that

F (∧)(x, k) = y.

If k = 0, then we have that x = y, which is a contradiction.
If k ∈ (0, a], then F (∧)(x, k) = y = a, which is a contradiction. Since for any x ∈ (0, a),
then there exists an element y ∈ (0, a), x < y such that x �F (∧) y, x ∈ KL

F (∧) . Hence,

(0, a) ⊆ KL
F (∧) .

Let x ∈ IL be arbitrary. Then there exists y ∈ L such that x ‖ y. In that case, we
get that x ∈ KL

F (∧) , by the definition of KL
F . Thus, IL ⊆ KL

F (∧) .

So, it is obtained that (0, a) ∪ IL ⊆ KL
F (∧) .

Conversely, let x ∈ KL
F (∧) be arbitrary. We need to show that x ∈ (0, a)∪IL. Suppose

that x /∈ (0, a) ∪ IL. Since x ∈ KL
F (∧) , then there exists an element y ∈ L \ {0, 1} such

that x < y and x �F (∧) y or y < x and y �F (∧) x or x ‖ y.
Let x < y and x �F (∧) y.

If x = 0, then we have that 0 �F (∧) y, which is a contradiction.
Let x ∈ [a, 1]. Since x < y, we have that

F (∧)(x, y) = x ∧ y = x.

So, it is obtained that x �F (∧) y, which is a contradiction.
Due to the fact that x /∈ IL, it is not possible x ‖ a.
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Let y < x and y �F (∧) x.
Let x ∈ [a, 1]. In that case, a < y, y < a or y ‖ a. If y = a, then we have that
y = a �F (∧) x, a contradiction.
If a < y < x, then we have that

F (∧)(x, y) = x ∧ y = y.

So, we get that y �F (∧) x, a contradiction.
If y < a ≤ x, it is obtained that y �F (∧) x, a contradiction, by the definition of �F .
If y ‖ a, since y < x, we have that y �F (∧) x, a contradiction, by the definition of �F .

Finally, due to the fact that x /∈ IL, it can not be x ‖ y. Thus, we have that
KL

F (∧) ⊆ (0, a) ∪ IL.

Consequently, KL
F (∧) = (0, a) ∪ IL. �

Corollary 4.9. Let (L,≤, 0, 1) be a bounded lattice. For the infimum t-norm T∧ on L,
KL

T∧
= IL.

Proposition 4.10. Let (L,≤, 0, 1) be a bounded lattice, F (∨) be the smallest nullnorm
(3) with zero element a on L and card([a, 1]) > 3. Then KL

F (∨) = (a, 1) ∪ IL.

The proof of Proposition 4.10 is similar to the proof of Proposition 4.8.

Corollary 4.11. Let (L,≤, 0, 1) be a bounded lattice. For the smallest t-norm TW on
L,

KL
TW

=

{
∅, if card(L) ≤ 3

L \ {0, 1}, otherwise.

Remark 4.12. Let (L,≤, 0, 1) be a chain. If | L |≤ 4, then it is obtained that KL
F = ∅

for any nullnorm F with zero element a ∈ L \ {0, 1}.

Note that if (L,≤, 0, 1) is not a chain, then the statement of Remark 4.12 may be
violated. For example, let L = {0, x, a, 1} whose lattice diagram is displayed in Figure 3.

Fig. 3. The order ≤ on L.

It is clear that KL
F 6= ∅ for every nullnorm F with zero element a.
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Definition 4.13. Define a relation β on the class of all nullnorms on L by F1βF2,

F1βF2 :⇔ KL
F1

= KL
F2
.

Lemma 4.14. The relation β given in Definition 4.13 is an equivalence relation.

Proposition 4.15. Let (L,≤, 0, 1) be a bounded lattice and F1 and F2 be two nullnorms
on L with zero elements a. If �F1

⊆�F2
, then KL

F2
⊆ KL

F1
.

P r o o f . Let F1 and F2 be two nullnorms on (L,≤, 0, 1) with zero elements a and
�F1
⊆�F2

. We assume that KL
F2
* KL

F1
. Then there exists an element x ∈ KL

F2
such

that x /∈ KF1
. Since x ∈ KF2

, then there exists an element y ∈ L \ {0, 1} such that
x < y and x �F2

y or y < x and y �F2
x or x ‖ y.

Let x < y and x �F2 y.
In that case, it must be x < y < a or a < x < y. The other possible conditions as
follows: x < a < y; x ‖ a, y < a; x ‖ a, y > a; x ‖ a, y ‖ a; y ‖ a, x < a; y ‖ a, x > a. In
that conditions, we have that x �F y, a contradiction by the definition of �F . Without
loss of generality, we assume that x < y < a . Since x /∈ KL

F1
and x < y, then we have

that x �F1
y. Since �F1

⊆�F2
, it is obtained that x �F2

y, a contradiction.
The proof can be shown for y < x and y �F2 x in a similar manner.
Let x ‖ y. Then it must be the case that x ∈ KL

F1
. This is a contradiction by the

definition of KF . So, KL
F2
⊆ KL

F1
�

Corollary 4.16. Let (L,≤, 0, 1) be a bounded lattice and F1 and F2 be two nullnorms
on L with zero elements a. If �F1

=�F2
, then KL

F1
= KL

F2

Corollary 4.17. Let (L,≤, 0, 1) be a bounded lattice and F1 and F2 be two nullnorms
on L with zero elements a. If �F1=�F2 , then F1 and F2 are equivalent under the
relation β.

Aşıcı and Karaçal [5] have shown that for the t-norms TW and T∧ on L, TW is the
order-weakest t-norm and T∧ is the order-strongest t-norm, i. e., �TW

⊆�T⊆�T∧ . Also,
Aşıcı [1] has shown that for the nullnorms, it need not be that case. That is, it has been
shown that smallest nullnorm on the unit interval [0, 1] is not order-weakest nullnorm
and the greatest nullnorm on the unit interval [0, 1] is not order-strongest nullnorm.
Nevertheless, order-weakest and order-strongest nullnorms on any bounded lattice has
not been determined. The following Proposition shows that order-weakest and order-
strongest nullnorms on any bounded lattice.

Proposition 4.18. Let (L,≤, 0, 1) be a bounded lattice and consider the nullnorms
FW = (SW , a, TW ) and F∨∧ = (S∨, a, T∧) on L. Then FW is the order-weakest nullnorm
on L and F∨∧ is the order-strongest nullnorm on L. That is,

�FW
⊆�F⊆�F∨∧ .

P r o o f . Let x �FW
y. We assume that x, y ∈ [0, a]. So, it must be the case that

x �SW
y. Then we have that x �S∨ y for all x, y ∈ [0, a].
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Let x, y ∈ [a, 1]. So, we obtain x �TW
y. Then we get x �T∧ y for all x, y ∈ [a, 1].

Let x, y /∈ [0, a] and x, y /∈ [a, 1]. Since x �FW
y, then it must be x ≤ y. So, we have

that x �F∨∧ y by the definition of �F . So, �FW
⊆�F⊆�F∨∧ . �

Corollary 4.19. Let (L,≤, 0, 1) be a bounded lattice and consider the nullnorms
FW = (SW , a, TW ) and F∨∧ = (S∨, a, T∧) on L. Then KF∨∧ ⊆ KF ⊆ KFW

.

Corollary 4.20. Let (L,≤, 0, 1) be a bounded lattice and consider the nullnorms
FW = (SW , a, TW ) and F∨∧ = (S∨, a, T∧) on L. Then nullnorms FW and F∨∧ on L can
not be equivalent under the relation β.

Definition 4.21. Let F be a nullnorm on the unit interval [0, 1] with zero element a
and K?

F defined by

K?
F = {x ∈ KF | for some y, y′ ∈ (0, 1), [x < y but x �F y]

and [y′ < x but y′ �F x]}.

Example 4.22. Consider the nullnorm F ? := F(SM , 15 ,T
?) : [0, 1]2 → [0, 1] with zero

element a = 1
5 defined as follows (see [21]) :

F(SM , 15 ,T
?)(x, y) =


max(x, y), (x, y) ∈ [0, 15 ]2

1
5 , (x, y) ∈ ( 1

5 ,
4
5 )2 ∪D 1

5

min(x, y), otherwise.

Then, K?
F = ( 1

5 ,
4
5 ). That is, there exist some y, y′ ∈ (0, 1) such that x < y, x �F? y

and y′ < x, y′ �F? x for x ∈ ( 1
5 ,

4
5 ).

The set, denoted K?
F , allows us to introduce the next equivalence relation on the class

of all nullnorms on the unit interval [0, 1].

Definition 4.23. Define a relation β? on the class of all nullnorms on the unit interval
[0, 1] by F1β

?F2,
F1β

?F2 :⇔ K?
F1

= K?
F2
.

Lemma 4.24. The relation β? given in Definition 4.23 is an equivalence relation.

Remark 4.25. One can wonder which nullnorms are provided K?
F = KF . To illustrate

this claim we shall give the following example.

Example 4.26. Consider the smallest nullnorm F (∨) : [0, 1]2 → [0, 1] with zero element
a ∈ (0, 1) in Proposition 4.4. It can be shown that, for all x ∈ (a, 1), there exist elements
y, y′ ∈ (a, 1) such that x < y, x �F (∨) y and y′ < x, y′ �F (∨) x. So, K?

F (∨) = (a, 1).
Since KF (∨) = (a, 1) (see [1]), we get that K?

F (∨) = KF (∨) = (a, 1).

Consider the greatest nullnorm F (∧) : [0, 1]2 → [0, 1] with zero element a ∈ (0, 1) in
Proposition 4.2. Similarly, it can be shown that K?

F (∧) = (0, a). Since KF (∧) = (0, a)
(see [1]), we have that K?

F (∧) = KF (∧) = (0, a).
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5. DISTRIBUTIVITY FOR NULLNORMS

Definition 5.1. (Mas et al. [23]) Let F1 and F2 be nullnorms on [0, 1]. F1 is distributive
over F2 if they satisfy the following condition:

F1(x, F2(y, z)) = F2(F1(x, y), F1(x, z)) (4)

for all x, y, z ∈ [0, 1].

Proposition 5.2. Let F1 and F2 be nullnorms on [0, 1] with the same zero elements.
If F1 is distributive over F2, then KF2 ⊆ KF1 .

P r o o f . Let F1 and F2 be nullnorms on the unit interval [0, 1] and F1 is distributive
over F2. Let x ∈ KF2

. Then there exists an element y ∈ (0, 1) such that x < y and
x �F2

y or y < x and y �F2
x. Without loss of generality, we assume that x < y and

x �F2
y. Suppose that x /∈ KF1

. Since x < y, then it must be case that x �F1
y.

Let x, y ∈ [0, a]. Then there exists an element k ∈ [0, a] such that F1(x, k) = y.

y = F1(x, k) = F1(x, F2(k, 0))

Since, F1 is distributive over F2, we get that

y = F1(x, F2(k, 0)) = F2(F1(x, k), F1(x, 0)) = F2(y, x).

So, it is obtained that x �F2
y, which is a contradiction.

Similarly, it can be obtained a contradiction for x, y ∈ [a, 1]. Since x ∈ KF2
, it can

not be x, y /∈ [0, a] and x, y /∈ [a, 1]. Because if x, y /∈ [0, a] and x, y /∈ [a, 1], since x < y,
we have that x �F y, by the definition of �F . �

Remark 5.3. The converse of the above Proposition 5.2 may not be true. Here is an
example illustrating a such case.

Example 5.4. Consider the nullnorm F : [0, 1]2 → [0, 1] with zero element a = 1
3

defined as follows (see [17] ):

F (x, y) =


max(x, y), (x, y) ∈ [0, 13 ]2

3xy−x−y+1
2 , (x, y) ∈ [ 13 , 1]2

1
3 , otherwise

and F (∧) : [0, 1]2 → [0, 1] with zero element a = 1
3 in Proposition 4.2. It is clear that

KF = ∅. Also, we know that KF (∧) = (0, a) (see [1]). Although KF = ∅ ⊂ (0, a) =
KF (∧) , F (∧) is not distributive over F . Now, we will show this claim.

F (∧)( 1
2 , F ( 5

6 ,
6
7 )) = F (∧)( 1

2 ,
61
84 ) = 1

2 and F (F (∧)( 1
2 ,

5
6 ), F (∧)( 1

2 ,
6
7 )) = F ( 1

2 ,
1
2 ) = 3

8 .

Since 1
2 6=

3
8 , F (∧) is not distributive over F .

Proposition 5.5. Let F1 and F2 be nullnorms on [0, 1] with the same zero elements.
If F1 is distributive over F2 and F2 is distributive over F1, then KF1 = KF2 .
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6. CONCLUDING REMARKS

We have discussed and investigated some properties of an order induced by a nullnorm on
bounded lattices, called F -partial order, generally. We have given a sufficient condition
for the set of all idempotent elements of t-norm and t-conorm to be a lattice with
respect to the F -partial order. We have defined the set IF (x), denoting the set of all
incomparable elements with arbitrary but fixed x ∈ L\{0, 1} according to F -partial order
and we have investigated some properties of this introduced set. Also, we have defined
the set of incomparable elements with respect to the F -partial order for any nullnorm on
bounded lattice and we determine this introduced set of smallest and greatest nullnorm
on a bounded lattice. Following this, we have investigated the relationship between the
order induced by a nullnorm and the distributivity property for nullnorms on the unit
interval [0, 1].
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[1] E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017),
35–46. DOI:10.1016/j.fss.2016.12.004
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2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.),
IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641,
Springer, Cham, pp. 78–84. DOI:10.1007/978-3-319-66830-7 7
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M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems
and Computing 641, Springer, Cham, pp. 69–77. DOI:10.1007/978-3-319-66830-7 7
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