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Abstract. The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe
phase separation in two-component systems interacting with an incompressible fluid flow.
We demonstrate the weak-strong uniqueness result for this system in a bounded domain
in three spatial dimensions which implies that when a strong solution exists, then a weak
solution emanating from the same data coincides with the strong solution on its whole life
span. The proof of given assertion relies on a form of a relative entropy method.
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1. Introduction

Given a bounded Lipschitz domain Ω ⊂ R
3 and a time T > 0, we consider the

Navier-Stokes/Allen-Cahn system

ut + divx(u⊗ u) +∇xp = divx S(∇xu)− ε divx(∇xc⊗∇xc),(1.1)

divx u = 0,(1.2)

ct + u · ∇xc = ε∆xc−
1

ε
F ′(c)(1.3)

on QT := (0, T )×Ω in connection with the Dirichlet boundary value for velocity, i.e.

(1.4) u|∂Ω = 0,

and Neumann boundary condition for concentration

(1.5) ∇xc · n|∂Ω = 0,
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which emanates from the initial conditions

(1.6) u(0, ·) = u0(·), c(0, ·) = c0(·).

The system has three unknowns u : QT 7→ R
3, p : QT 7→ R and c : QT 7→ R,

which represent velocity, pressure and concentration, respectively. Here S, the stress

tensor, and F , the energy density, are prescribed functions satisfying assumptions

outlined in Section 2.

The existence of a weak solution to the above system was claimed (without a proof)

in [9] assuming u0 ∈ W 1,2
0,div and c0 ∈ W 2,2

n . The proof may readily be constructed

as in [7]. The uniqueness of a weak solution is still an open problem.

On the other hand, strong solution is regular enough to ensure its uniqueness.

The existence of a strong solution emanating from u0 ∈ W 1,2
0,div(Ω), c ∈ W 2,2

n on

a short-time interval can also be proven as in [7].

The precise form of the above-mentioned existence results are stated in Section 2.

The main aim of this paper is to prove the weak-strong uniqueness for the above

system, namely, if a (unique) strong solution exists, all weak solutions emanating

from the same initial condition must be equal to the strong one.

We introduce a relative entropy functional which measures the distance between

a weak solution and an arbitrary sufficiently smooth function, and demonstrates that

the relative entropy functional satisfies a relative entropy inequality which allows us

to conclude that the distance between any weak solution and the strong solution is

zero as long as the strong solution exists. The relative entropy method was apparently

first introduced by Dafermos [2]. The weak-strong uniqueness property was proven

for the compressible isentropic fluids using this method by Feireisl et al. [4] and

for the full Navier-Stokes-Fourier by Feireisl and Novotný [6]. To the best of our

knowledge, a relative entropy functional for the Navier-Stokes/Allen-Cahn system is

presented here for the first time.

The relative entropy functional provides a means of distance between a weak

solution to a given problem and a sufficiently smooth functions. In our case, these

functions will be a strong solution to the same problem. Another use of the relative

entropy method is proving the singular limits; in such case, the smooth functions

would be a solution to a target system (see e.g. [1], [3], [5] and many others). The

relative entropy functional for the Navier-Stokes/Allen-Cahn system is introduced

by relation (3.1).

The paper is organized as follows. In the next section we state the hypotheses

and we recall some known results. The relative entropy functional is defined and

the relative entropy inequality is derived in Section 3. The last section contains our

main claim and its proof.
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1.1. Notation. Standard Lebesque, Sobolev and Bochner spaces are denoted by

Lp(Ω), W k,p(Ω) and Lp(0, T,X), respectively. We use this notation for both real-

and vector-valued function. Further, we introduce the following notation:

L2

div(Ω) := {ϕ ∈ C∞
0
(Ω), divx ϕ = 0}

‖·‖
L2

,

W 1,2
0,div(Ω) := W 1,2

0
(Ω) ∩ L2

div(Ω),

W s,2
n (Ω) := {ϕ ∈ C∞(Ω),∇ϕ · n|∂Ω = 0}

‖·‖
Ws,2

, s ∈ N.

2. Hypothesis and known results

The stress tensor is assumed to satisfy the standard linear constitutive relation

S(∇xu) =
ν

2
(∇xu+∇T

xu), ν > 0.

energy density F is taken to be a double-well potential with two local minimiz-

ers y1, y2 which satisfies

(2.1) F ∈ C1,1[f1, f2], −∞ < f1 < y1 < y2 < f2 < ∞.

Further, we assume that the initial condition c0 satisfies

(2.2)
[

ess inf
Ω

c0, ess sup
Ω

c0

]

⊆ [f1, f2].

2.1. Energy balance. Proceeding formally, we multiply (1.1) by u and (1.3) by

(ct + u · ∇xc), then integrate over space to get

1

2

d

dt

∫

Ω

|u|2 dx+ ν

∫

Ω

S(∇xu) : ∇xu dx = ε

∫

Ω

(∇xc⊗∇xc) : ∇xu dx,

and

−

∫

Ω

|ct + u · ∇xc|
2 dx =

ε

2

d

dt

∫

Ω

|∇xc|
2 dx+

1

ε

d

dt

∫

Ω

F (c) dx

− ε

∫

Ω

(∇xc⊗∇xc) : ∇xu dx.

The above equalities yield the following dissipation equation:

(2.3)
d

dt

∫

Ω

(1

2
|u|2 +

ε

2
|∇xc|

2 +
1

ε
F (c)

)

dx

+

∫

Ω

(S(∇xu) : ∇xu+ |ct + u · ∇xc|
2) dx = 0.
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2.2. Weak formulation. We say that the couple (u, c)

u ∈ L∞(0, T ;L2

div(Ω)) ∩ L2(0, T ;W 1,2
0,div(Ω)),(2.4)

c ∈ L∞(0, T ;W 1,2
n (Ω)) ∩ L2(0, T ;W 2,2

n (Ω))(2.5)

is a weak solution to the Navier-Stokes/Allen-Cahn system if it satisfies

(2.6)

∫

Ω

u(t) · v(t) dx−

∫

Ω

u0 · v(0) −

∫ t

0

∫

Ω

u · vt dxdt

−

∫ t

0

∫

Ω

(u⊗ u) : ∇xv dxdt+

∫ t

0

∫

Ω

S(∇xu) : ∇xv dxdt

= ε

∫ t

0

∫

Ω

(∇xc⊗∇xc) : ∇xv dxdt

for all v ∈ C∞(QT ) such that v = 0 on (0, T )× ∂Ω and divx v = 0 for a.e. t ∈ [0, T ],

(2.7) ct + u · ∇xc = ε∆xc−
1

ε
F ′(c)

almost everywhere in Ω× [0, T ], as well as the energy inequality

(2.8)

∫

Ω

(1

2
|u(t)|2 +

ε

2
|∇xc|

2 +
1

ε
F (c)

)

(x, t) dx

+

∫ t

0

∫

Ω

(S(∇xu) : ∇xu+ |ct + u · ∇xc|
2) dxdt

6

∫

Ω

(1

2
|u0|

2 +
ε

2
|∇xc0|

2 +
1

ε
F (c0)

)

dx

for a.e. t ∈ [0, T ].

We emphasise that the weak solution is supposed to fulfill the energy inequality

rather than equality. The energy dissipation (2.3) was derived just formally and it

holds only for sufficiently smooth solutions. Unfortunately, equation (2.4) does not

allow to multiply (1.1) by u.

Since we are considering an incompressible fluid, the pressure does not appear in

the weak formulation. However, it can be reconstructed by standard techniques, see

for example [8].

2.3. Existence.

Theorem 2.1 ([9], Theorem 2.1). Let u0 ∈ L2

div
(Ω) and c0 ∈ W 1,2

n (Ω) satisfy (2.2)

and let (2.1) hold. Then the system (1.1)–(1.6) possesses a global weak solution

(u, c) ∈ (L2(0, T,W 1,2
0,div(Ω)) ∩ L∞(0, T, L2(Ω)))

× (L∞(0, T,W 1,2
n (Ω)) ∩ L2(0, T,W 2,2(Ω))).
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Moreover, if u0 ∈ W 1,2
0,div(Ω) and c0 ∈ W 2,2

n (Ω), then there exists T ⋆ > 0 such that

(1.1)–(1.6) possesses a unique strong solution (U, C) in [0, T ⋆) such that

U ∈ L∞(0, T ;W 1,2
0,div(Ω)) ∩ L2(0, T ;W 2,2(Ω)),(2.9)

C ∈ L∞(0, T ;W 2,2
n (Ω)) ∩ L2(0, T ;W 3,2(Ω))(2.10)

holds for T < T ⋆.

The uniqueness of the strong solution is thus known. As mentioned before, our

aim is to show the uniqueness of the strong solution in the class of weak solutions.

The integrability properties, which allow to use the relative entropy inequality, are

(2.11) U ∈ L2(0, T ;L∞(Ω)3), ∇xC ∈ L2(0, T ;L∞(Ω)),

which follows from (2.9)–(2.10) and the Sobolev embedding theorem in three dimen-

sions. As equation (2.11) does not hold in general for weak solutions, we are not able

to show the uniqueness of weak solutions.

2.4. Weak maximum principle on the concentration. Both strong and weak

solutions of the Allen-Cahn equation with convection satisfy the maximum (and

minimum) principle as specified in the following proposition.

Proposition 2.2 (Weak maximum principle). Let (u, c) satisfy (2.4), (2.5)

and (2.7) almost everywhere in QT with boundary condition (1.5) and initial condi-

tion c(0, ·) = c0(·) fulfilling (2.2). Then for a.e. (x, t) ∈ QT ,

c(x, t) ∈ [m,M ] := co
{

ess inf
x∈Ω

c0, ess sup
x∈Ω

c0, y1, y2

}

,

where y1, y2 are the local minimizers of F .

P r o o f. We show the minimum principle only, the latter inequality is analogous.

By assumptions on c0 and F , we have m > −∞ and we test (2.7) by (c−m)− to get

1

2

∫

Ω

d

dt
((c−m)−)2 dx+ ε

∫

Ω

|∇x(c−m)−|2 dx+
1

ε

∫

Ω

F ′(c)(c−m)− dx = 0.

As the second and third integrals in the equation above have positive sign (mono-

tonicity of F ), we recover that ((c−m)−)2 = 0 for a.a. t ∈ [0, T ] and, consequently,

c(x, t) > m for a.e. (x, t) ∈ QT . �
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3. Relative entropy

3.1. Relative entropy functional. The particular form of the relative entropy

functional reads

(3.1) E(u, c|U, C)(t) =

∫

Ω

(1

2
|u−U|2 +

ε

2
|∇x(c− C)|2

)

(x, t) dx.

To prove that the relative entropy functional indeed measures a distance of two

solutions, we need to show that it does not give zero value for c 6= C. This is a direct

consequence of the following lemma.

Lemma 3.1. Let Ω be a bounded Lipschitz domain T > 0, let F satisfy (2.1) and

c0 satisfy (2.2). Let u1,u2 ∈ L2(0, T,W 1,2
0,div(Ω)), c1, c2 satisfy (2.5). There exists K

independent of u1, c1, u2 and c2, such that if c1 and c2 are solutions to (2.7) with

corresponding velocities emanating from c0, then

∫

Ω

(c1 − c2)
2(t) dx 6 K

∫ t

0

∫

Ω

((∇x(c1 − c2))
2 + (u1 − u2)

2) dx

holds for a.e. t ∈ [0, T ].

As a consequence, if E(u, c|U, C)(t) = 0 for a.e. t ∈ [0, T ], then c = C a.e. in

Ω× [0, T ].

P r o o f. We take the difference of equations (2.7) for the two solutions, test by

c1 − c2 and integrate over (0, τ) ⊂ (0, T ) to obtain

(3.2)

∫

Ω

1

2
(c1 − c2)

2(τ) dx = −

∫ τ

0

∫

Ω

(c1 − c2)(u1 · ∇xc1 − u2 · ∇xc2) dxdt

+ ε

∫ τ

0

∫

Ω

|∇x(c1 − c2)|
2 dxdt+

1

ε

∫ τ

0

∫

Ω

(F ′(c1)− F ′(c2))(c1 − c2) dxdt.

First, we focus on the difference of the convective terms. Integration by parts

together with boundary conditions and solenoidality of u1, u2 yield

(3.3) −

∫ τ

0

∫

Ω

(c1 − c2)(u1 · ∇xc1 − u2 · ∇xc2) dxdt

=

∫ τ

0

∫

Ω

c1u2 · ∇xc2 dxdt+

∫ τ

0

∫

Ω

c2u1 · ∇xc1 dxdt

= −

∫ τ

0

∫

Ω

c1(u1 − u2) · ∇xc2 dxdt

= −

∫ τ

0

∫

Ω

(c1 − c2)(u1 − u2) · ∇xc2 dxdt

=

∫ τ

0

∫

Ω

c2(u1 − u2) · ∇x(c1 − c2) dxdt.
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Since F ′ is Lipschitz, the last term on the right-hand side of (3.2) can be estimated as

(3.4)
1

ε

∫ τ

0

∫

Ω

(F ′(c1)− F ′(c2))(c1 − c2) dxdt 6
LF ′

ε

∫ τ

0

∫

Ω

(c1 − c2)
2 dxdt.

We use (3.2), (3.3), (3.4) and the Cauchy-Schwarz inequality in order to deduce

∫

Ω

1

2
|c1 − c2|

2(τ) dx 6

∫ τ

0

(

(

ess sup
Ω

1

2
|c2|

2 + ε
)

∫

Ω

|∇x(c1 − c2)|
2 dx

)

dt

+
1

2

∫ τ

0

∫

Ω

|u1 − u2|
2 dxdt+

LF ′

ε

∫ τ

0

∫

Ω

|c1 − c2|
2 dxdt.

The integrability properties of (ui, ci) allow to apply the Gronwall inequality which

concludes the proof. �

3.2. Relative entropy inequality.

Proposition 3.2. Let (U, C) be a strong solution to (1.1)–(1.6). Then the relative

entropy functional satisfies the following relative entropy inequality:

(3.5) E(u, c|U,C)(t) +

∫ t

0

∫

Ω

S(∇(u−U)) : ∇x(u−U) dxdt

+

∫ t

0

∫

Ω

|(ct + u · ∇xc)− (Ct +U · ∇xC)|2 dxdt

−

∫

Ω

(1

2
|u0 −U0|

2 +
ε

2
|∇x(c0 − C0)|

2

)

dx

6

∫ t

0

∫

Ω

((u−U)⊗U) : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∆x(c− C)U · ∇x(c− C) dxdt

+ ε

∫ t

0

∫

Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∆x(c− C)(u−U) · ∇xC dxdt

−
1

ε

∫ t

0

∫

Ω

(F ′(c)− F ′(C))×((ct + u · ∇xc)− (Ct +U · ∇xC)) dxdt.
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The remainder of Section 3 is devoted to the proof of (3.5).

3.3. Initial estimates. In order to obtain (3.5), we note the following:

⊲ the energy inequality (2.8) which holds for weak solutions:

(3.6)
1

2

∫

Ω

|u|2(x, t) dx+
ε

2

∫

Ω

|∇xc|
2(x, t) dx+

1

ε

∫

Ω

F (c)(x, t) dx

+

∫ t

0

∫

Ω

S(∇xu) : ∇xu dxdt+

∫ t

0

∫

Ω

|ct + u · ∇xc|
2 dxdt

6
1

2

∫

Ω

|u0|
2 dx+

ε

2

∫

Ω

|∇xc0|
2 dx+

1

ε

∫

Ω

F (c0) dx,

⊲ the weak formulation of the momentum equation (2.6) with v = −U:

(3.7) −

∫

Ω

(u ·U)(x, t) dx+

∫

Ω

u0 ·U0 dx+

∫ t

0

∫

Ω

u ·Ut dxdt

+

∫ t

0

∫

Ω

(u⊗ u) : ∇xUdxdt−

∫ t

0

∫

Ω

S(∇xu) : ∇xUdxdt

= − ε

∫ t

0

∫

Ω

(∇xc⊗∇xc) : ∇xUdxdt,

(Note, that the regularity of U is sufficient. Indeed, U can be approximated by

smooth selenoidal functions which are allowed to be test functions in (2.6). As all

terms in (3.7) have sense, the convergence of corresponding integrals is a standard

matter.)

⊲ the equation for concentration (2.7) multiplied by −(Ct +U · ∇xC):

(3.8) −

∫ t

0

∫

Ω

(ct + u · ∇xc)(Ct +U · ∇xC) dxdt

= ε

∫ t

0

∫

Ω

∇xc · ∇xCt dxdt+ ε

∫ t

0

∫

Ω

∇xc · ∇x(U∇xC) dxdt

+
1

ε

∫ t

0

∫

Ω

F ′(c)(Ct +U · ∇xC) dxdt,

⊲ the momentum equation (1.1) for the strong solution (U, C)multiplied by (U− u):

(3.9)
1

2

∫

Ω

|U|2(x, t) dx−
1

2

∫

Ω

|U0|
2 dx

−

∫ t

0

∫

Ω

Ut · u dxdt+

∫ t

0

∫

Ω

(U⊗U) : ∇xu dxdt

+

∫ t

0

∫

Ω

S(∇xU) : ∇x(U− u) dxdt

− ε

∫ t

0

∫

Ω

(∇xC ⊗∇xC) : ∇x(U− u) dxdt = 0.
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⊲ the concentration equation (1.3) for strong solutions (U, C) multiplied by (Ct +

U · ∇xC)− (ct + u · ∇xc):

(3.10)

∫ t

0

∫

Ω

|Ct +U · ∇xC|2 dxdt

−

∫ t

0

∫

Ω

(Ct +U · ∇xC)(ct + u · ∇xc) dxdt

= −
ε

2

∫

Ω

|∇xC|2(x, t) dx+
ε

2

∫

Ω

|∇xC0|
2 dx

+ ε

∫ t

0

∫

Ω

∆xC(U · ∇xC) dxdt

− ε

∫ t

0

∫

Ω

∆xC(ct + u · ∇xc) dxdt

−
1

ε

∫ t

0

∫

Ω

F ′(C)(Ct + U · ∇xC) dxdt

+
1

ε

∫ t

0

∫

Ω

F ′(C)(ct + u · ∇xc) dxdt.

3.4. Formation of the left-hand side of (3.5). We sum the relations (3.6)–

(3.10). With the help of integration by parts we obtain

(3.11)

∫

Ω

(1

2
|u−U|2 +

ε

2
|∇x(c− C)|2

)

(x, t) dx

+

∫ t

0

∫

Ω

S(∇(U − u)) : ∇x(U− u) dxdt

+

∫ t

0

∫

Ω

|(ct + u · ∇xc)− (Ct +U · ∇xC)|2 dxdt

−

∫

Ω

(1

2
|u0 −U0|

2 +
ε

2
|∇x(c0 − C0)|

2

)

dx 6 R.

The left-hand side of (3.11) is the difference of the relative entropy functionals plus

non-negative dissipation terms, while all the other terms were put to the right-hand

side R. We can split R into three parts,

R = Rconv +Rε +RF .

Rconv contains the remaining convective terms, namely

(3.12) Rconv = −

∫ t

0

∫

Ω

(U⊗U) : ∇xu dxdt−

∫ t

0

∫

Ω

(u⊗ u) : ∇xUdxdt.
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Rε is a sum of all remaining terms led by ε, i.e.

Rε = − ε

∫ t

0

∫

Ω

(∇xc⊗∇xc) : ∇xUdxdt+ ε

∫ t

0

∫

Ω

∇xc · ∇x(U · ∇xC) dxdt

+ ε

∫ t

0

∫

Ω

(∇xC ⊗∇xC) : ∇x(U− u) dxdt+ ε

∫ t

0

∫

Ω

∆xC(U · ∇xC) dxdt

− ε

∫ t

0

∫

Ω

∆xC(u · ∇xc).

Finally, RF is a sum of all terms led by 1/ε:

(3.13) εRF = −

∫

Ω

F (c)(x, t) dx+

∫

Ω

F (c0) dx+

∫ t

0

∫

Ω

F ′(c)(Ct +U · ∇xC) dxdt

−

∫ t

0

∫

Ω

F ′(C)(Ct +U · ∇xC) dxdt+

∫ t

0

∫

Ω

F ′(C)(ct + u · ∇xc) dxdt.

3.5. Reformulation of the right-hand side. We treat Rconv first. Using the

identities

−

∫

Ω

u⊗ u : ∇xUdx =

∫

Ω

u⊗U : ∇xu dx,

∫

Ω

(u−U) ⊗U : ∇xUdx = 0,

we can rewrite (3.12) into

(3.14) Rconv =

∫ t

0

∫

Ω

((u−U)⊗U) : ∇x(u−U) dxdt.

We simplify Rε using integration by parts, in particular,

Rε = ε

∫ t

0

∫

Ω

∆xcU · ∇xc dxdt− ε

∫ t

0

∫

Ω

∆xcU · ∇xC dxdt

− ε

∫ t

0

∫

Ω

∆xCU · ∇xC dxdt+ ε

∫ t

0

∫

Ω

∆xCu · ∇xC dxdt

+ ε

∫ t

0

∫

Ω

∆xCU · ∇xC dxdt− ε

∫ t

0

∫

Ω

∆xCu · ∇xc dxdt.

The third and the fifth terms cancel out, the remaining four are equal to

(3.15) Rε = ε

∫ t

0

∫

Ω

∆x(c− C)U · ∇x(c− C) dxdt

− ε

∫ t

0

∫

Ω

∆xC(u−U) · ∇x(c− C) dxdt.
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The latter integral in (3.15) is not in a form that enables its estimation. We refor-

mulate it by three integrations by parts, in particular,

(3.16) −ε

∫ t

0

∫

Ω

∆xC(u−U) · ∇x(c− C) dxdt

= ε

∫ t

0

∫

Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∇xC ⊗ (u−U) : ∇x ⊗∇x(c− C) dxdt

= ε

∫ t

0

∫

Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

− ε

∫ t

0

∫

Ω

∇x(c− C)⊗ (u−U) : ∇x ⊗∇xC dxdt

= ε

∫ t

0

∫

Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∆x(c− C)(u −U) · ∇xC dxdt.

We deduce from (3.15)–(3.16) that

(3.17) Rε = ε

∫ t

0

∫

Ω

∆x(c− C)U · ∇x(c− C) dxdt

+ ε

∫ t

0

∫

Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dxdt

+ ε

∫ t

0

∫

Ω

∆x(c− C)(u −U) · ∇xC dxdt =:
4

∑

j=1

Rε,j .

Finally, we treat RF . We write all terms in (3.13) as space-time integrals to get

(3.18)

RF = −
1

ε

∫ t

0

∫

Ω

F ′(c)(ct + u · ∇xc) dxdt+
1

ε

∫ t

0

∫

Ω

F ′(c)(Ct +U · ∇xC) dxdt

−
1

ε

∫ t

0

∫

Ω

F ′(C)Ct dxdt+
1

ε

∫ t

0

∫

Ω

F ′(C)(ct + u · ∇xc) dxdt

= −
1

ε

∫ t

0

∫

Ω

(F ′(c)− F ′(C))× ((ct + u · ∇xc)− (Ct +U · ∇xC)) dxdt.

The desired inequality follows by combination of (3.11), (3.14), (3.17) and (3.18).
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4. Weak-strong uniqueness property

Theorem 4.1. Let u0 ∈ W 1,2
0,div(Ω)

3 and c0 ∈ W 2,2
n (Ω) fulfill (2.2),

(u, c) ∈ (L2(0, T,W 1,2
0,div(Ω)) ∩ L∞(0, T, L2(Ω)))

× (L∞(0, T,W 1,2(Ω)) ∩ L2(0, T,W 2,2(Ω)))

be a weak solution, and

(U, C) ∈ (L2(0, T,W 2,2(Ω)) ∩ L∞(0, T,W 1,2
0,div(Ω)))

× (L∞(0, T ∗,W 2,2
n (Ω)) ∩ L2(0, T ∗,W 3,2(Ω)))

be a strong solution to Navier-Stokes/Allen-Cahn system (1.1)–(2.2) both emanating

from the same initial data (u0, c0). Then on the life span [0, T
⋆) of the strong solution

we have (u, c) = (U, C).

P r o o f. The proof of the weak-strong uniqueness uses the Gronwall-type argu-

ment. Hence, we aim at rewriting the relative entropy inequality in the form

(4.1) E(τ) − E0 +D 6 λD + k

∫ τ

0

ω(s)E(s) ds,

where

⊲ k > 0 is a (possibly large) constant, independent of time,

⊲ D denotes the dissipative terms and λ ∈ [0, 1),

⊲ ω ∈ L1[0, T ] for all T ∈ (0, T ⋆),

⊲ (4.1) holds for almost all τ ∈ [0, T ⋆).

After reaching (4.1), one employs the Gronwall inequality to obtain the desired

conclusion. Hence, the whole proof reduces to showing (4.1).

We focus on the right-hand side terms of (3.5). They all share similar struc-

ture: they are integrals of three factors, two of them being in a difference form.

Roughly speaking, one of those differences is L2(0, T ;L2(Ω))-integrable and is a part

of the dissipation D. The latter difference is L∞(0, T ;L2(Ω))-integrable and is a

part of the relative entropy (3.5). Finally, the third factor which is not a difference

is L2(0, T ;L∞(Ω))-integrable.

The strategy for reaching (4.1) is to use weighted Young’s inequality with small

weight to the first type factors to ensure λ < 1, while the large weight is kept with

the latter. The latter integral contains two factors whose integrability properties
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match ideally. This is crucial to ensure that the condition on ω in scheme (4.1) is

fulfilled. In particular, we have

|Rconv| 6

∫ τ

0

∫

Ω

|∇x(u−U)||U||u −U| dxdt(4.2)

6
δ

2

∫ τ

0

∫

Ω

|∇x(u−U)|2 dxdt

+
1

2δ

∫ τ

0

(

ess sup
Ω

|U|2
∫

Ω

|u−U|2 dx

)

dt,

|Rε,1| 6 ε

∫ τ

0

∫

Ω

|∆x(c− C)||U||∇x(c− C)| dxdt(4.3)

6
δε

2

∫ τ

0

∫

Ω

|∆x(c− C)|2 dxdt

+
ε

2δ

∫ τ

0

(

ess sup
Ω

|U|2
∫

Ω

|∇x(c− C)|2 dx

)

dt,

|Rε,2|+ |Rε,3| 6 2ε

∫ τ

0

∫

Ω

|∇x(c− C)||∇xC||u−U| dxdt(4.4)

6 δε

∫ τ

0

∫

Ω

|u−U|2 dxdt

+
ε

δ

∫ τ

0

(

ess sup
Ω

|∇xC|2
∫

Ω

|∇x(c− C)|2 dx

)

dt,

|Rε,4| 6 ε

∫ τ

0

∫

Ω

|∆x(c− C)||u −U||∇xC| dxdt(4.5)

6
δε

2

∫ τ

0

∫

Ω

|∆x(c− C)|2 dxdt

+
ε

2δ

∫ τ

0

(

ess sup
Ω

|∇xC|2
∫

Ω

|u−U|2 dx

)

dt,

and finally, by the Lipschitz property of the function F ′,

(4.6) RF 6
1

ε

∫ τ

0

∫

Ω

|F ′(c)− F ′(C)||(ct + u · ∇xc)− (Ct +U · ∇xC)| dxdt

6
δ

2ε

∫ τ

0

∫

Ω

|(ct + u · ∇xc)− (Ct +U · ∇xC)|2 dxdt.0.0

+
LF ′

2δε

∫ τ

0

∫

Ω

|c− C|2 dxdt.
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In the last but one step, we use equations (1.3), (2.7) to treat the term

(4.7)
δε

2

∫ τ

0

∫

Ω

|∆x(c− C)|2 dxdt

6
δ

ε

∫ τ

0

∫

Ω

∣

∣

∣
ε∆x(c− C)−

1

ε
(F ′(c)− F ′(C))

∣

∣

∣

2

dxdt

+
δ

ε

∫ τ

0

∫

Ω

∣

∣

∣

1

ε
(F ′(c)− F ′(C))

∣

∣

∣

2

dxdt

6
δ

ε

∫ τ

0

∫

Ω

|(ct + u · ∇xc)− (Ct +U · ∇xC)|2 dxdt

+
δL2

F ′

ε3

∫ τ

0

∫

Ω

|c− C|2.

Finally, we collect all terms on the right-hand sides of (4.2)–(4.6) and apply (4.7)

and also Lemma 3.1. Then, clearly with a proper choice of δ, one gets the in-

equality of the Gronwall type (4.1). Applying the Gronwall’s inequality yields

E(u, c|U, C)(t) = 0 for almost all t ∈ [0, T ⋆), which concludes the proof. �

Remark 4.2. The weak-strong uniqueness result can be proven under weaker

assumptions on the regularity of U and C than the ones assumed in Theorem 4.1.

Namely, the assumption

C ∈ L2(0, T ∗,W 3,2(Ω))

can be replaced by

∇C ∈ L2(0, T ∗, L∞(Ω)),

which still suffices to get all the desired estimates.
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