
Mathematica Bohemica

Fereshteh Forouzesh; Farhad Sajadian; Mahta Bedrood
Inverse topology in MV-algebras

Mathematica Bohemica, Vol. 144 (2019), No. 3, 273–285

Persistent URL: http://dml.cz/dmlcz/147774

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147774
http://dml.cz


144 (2019) MATHEMATICA BOHEMICA No. 3, 273–285

INVERSE TOPOLOGY IN MV-ALGEBRAS

Fereshteh Forouzesh, Farhad Sajadian, Mahta Bedrood, Bam

Received October 15, 2017. Published online September 25, 2018.
Communicated by Sándor Radeleczki

Abstract. We introduce the inverse topology on the set of all minimal prime ideals of an
MV-algebra A and show that the set of all minimal prime ideals of A, namely Min(A), with
the inverse topology is a compact space, Hausdorff, T0-space and T1-space.
Furthermore, we prove that the spectral topology on Min(A) is a zero-dimensional Haus-

dorff topology and show that the spectral topology on Min(A) is finer than the inverse
topology on Min(A). Finally, by open sets of the inverse topology, we define and study a
congruence relation of an MV-algebra.
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1. Introduction and preliminaries

MV-algebras were introduced by Chang to provide algebraic semantics for

 Lukasiewicz infinite-valued propositional logics (see [3]). Eslami introduced the

prime spectrum of a BL-algebra (see [5]).

Belluce et al. introduced the prime spectrum of an MV-algebra and studied in [1]

a topological space on Spec(A). They defined the topological space for MV-algebras

as follows:

Let A be an MV-algebra. The set of all prime ideals of A is denoted by Spec(A).

Spec(A) can be endowed with a spectral topology. Thus, if I is an ideal of A,

then uA(I) = {P ∈ Spec(A) : I * P} is an open set in Spec(A), while vA(I) =

{P ∈ Spec(A) : I ⊆ P} is closed. Also, let a ∈ A. The open sets uA(a) = {P ∈

Spec(A) : a /∈ P} constitute a basis for the open sets of Spec(A). Topological space

Spec(A) is called the prime spectrum of A.

Also, Forouzesh et al. introduced the spectral topology and quasi-spectral topology

of proper prime A-ideals in MV-modules and proved some properties of them (see [6]).
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In addition, Bhattacharjee et al. studied the minimal prime spectra of commuta-

tive rings with identity. They had been able to identify several interesting types of

extensions of rings. Also, they introduced inverse topology on the minimal prime

spectra in reduced rings (see [2]). We take this idea from this paper.

In the present paper, we define the inverse topology on the set of all minimal prime

ideals of an MV-algebra A and prove some important results. In fact, let Min(A)

be the set of all minimal prime ideals of A. Since Min(A) ⊆ Spec(A), we consider

the topology induced by spectral topology on Min(A) and show that the spectral

topology on Min(A) is zero-dimensional Hausdorff topology. Next, we prove that

the spectral topology on Min(A) is finer than the inverse topology on Min(A). Also,

we show that the inverse topology on Min(A) is a Hausdorff space, compact space,

T0-space and T1-space on Min(A).

We recollect some definitions and results which will be used in the following.

Definition 1.1 ([3]). An MV-algebra is a structure (A,⊕, ∗, 0), where ⊕ is a

binary operation, ∗ is a unary operation, and 0 is a constant such that the following

axioms are satisfied for any a, b ∈ A:

(MV1) (A,⊕, 0) is an Abelian monoid,

(MV2) (a∗)∗ = a,

(MV3) 0∗ ⊕ a = 0∗,

(MV4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Take 1 = 0∗ and define the auxiliary operation ⊙ as:

x⊙ y = (x∗ ⊕ y∗)∗.

We recall that the natural order determines a bounded distributive lattice structure

such that

x ∨ y = x⊕ (x∗ ⊙ y) = y ⊕ (x⊙ y∗) and x ∧ y = x⊙ (x∗ ⊕ y) = y ⊙ (y∗ ⊕ x).

Definition 1.2 ([4]). An ideal of an MV-algebra A is a nonempty subset I of A

satisfying the following conditions:

(I1) If x ∈ I, y ∈ A and y 6 x, then y ∈ I.

(I2) If x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(A) the set of all ideals of an MV-algebra A.

Definition 1.3 ([4]). Let I be an ideal of an MV-algebra A. Then I is proper if

I 6= A.

⊲ A proper ideal I of an MV-algebra A is called a prime ideal if whenever x ∧ y ∈ I

for all x, y ∈ A, then x ∈ I or y ∈ I.
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We denote the set of all prime ideals of an MV-algebra A by Spec(A).

⊲ An ideal I of an MV-algebra A is called a minimal prime ideal of A if:

(1) I ∈ Spec(A);

(2) If there exists Q ∈ Spec(A) such that Q ⊆ I, then I = Q.

We denote the set of all prime minimal ideals of an MV-algebra A by Min(A).

Definition 1.4 ([8]). Let X be a nonempty subset of an MV-algebra A and

AnnA(X) be the annihilator of X defined as

AnnA(X) = {a ∈ A : a ∧ x = 0 ∀x ∈ X}.

2. Inverse topology in MV-algebras

In the sequel section, (A,⊕, ∗, 0) or simply A is an MV-algebra.

Theorem 2.1. Let A be an MV-algebra and P ∈ Spec(A). Then P ∈ Min(A) if

and only if for each x ∈ P there exists r ∈ A− P such that x ∧ r = 0.

P r o o f. Let P ∈ Min(A). Suppose that there exists x ∈ P such that for each

r ∈ A− P , x ∧ r 6= 0. Obviously, T = {r ∧ x : r ∈ A− P} ∪ {1} is a ∧-closed system

of A. Then there exists Q ∈ Spec(A) such that Q ∩ T = ∅. Consider two cases:

Case 1. Let Q ⊆ P. Since P ∈ Min(A), Q = P, hence x ∈ Q. Since 1 ∧ x = x,

Q ∩ T 6= ∅, which is a contradiction.

Case 2. Let Q * P. Hence, there exists u ∈ Q−P. Since u∧ x 6 u and u ∈ Q, we

get u ∧ x ∈ Q. Also, we have u ∧ x ∈ T, hence Q ∩ T 6= ∅, which is a contradiction.

Conversely, let for all x ∈ P , there exist r ∈ A− P such that r ∧ x = 0. We show

that P ∈ Min(A). Let K ∈ Spec(A) such that K $ P. Hence, there exist x ∈ P −K

and r ∈ A − P such that r ∧ x = 0. Thus 0 = r ∧ x ∈ K, since x /∈ K, hence r ∈ K,

which is a contradiction. Thus P ∈ Min(A). �

Theorem 2.2. Let A be anMV-algebra, P ∈ Min(A) and I be a finitely generated

ideal. Then I ⊆ P if and only if AnnA(I) * P.

P r o o f. Let I = (a1, a2, . . . , an] and I ⊆ P. By Theorem 2.1, for all ai ∈ P ,

1 6 i 6 n, there exists ui ∈ A−P such that ui ∧ ai = 0. Take u = u1 ∧ u2 ∧ . . .∧un.

Obviously, u ∈ A − P. Since for all x ∈ I we have x 6 a1 ⊕ . . . ⊕ an, we get

u∧ x 6 u∧ (a1 ⊕ a2 ⊕ . . .⊕ an) 6 u∧ a1 ⊕ u∧ a2 ⊕ . . .⊕ u∧ an = 0. Hence u∧x = 0

for all x ∈ I. Therefore u ∈ AnnA(I). This implies AnnA(I) * P .

Conversely, let AnnA(I) * P . Then there exists x ∈ AnnA(I) − P, so x ∧ ai = 0

for all ai ∈ I. Since x ∧ ai = 0 ∈ P and x /∈ P, we get ai ∈ P for all 1 6 i 6 n.

Therefore I ⊆ P. �
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Lemma 2.3. Let A be an MV-algebra. If 0 6= x ∈ A, then there exists

P ∈ Min(A) such that x /∈ P.

P r o o f. Let 0 6= x ∈ A. Assume that for all P ∈ Min(A), 1 6= x ∈ P. So

x ∈
⋂

P∈Min(A)

P. Also, we have
⋂

P∈Min(A)

P =
⋂

P∈Spec(A)

P = 0. Hence x = 0, which is a

contradiction. �

N o t e : Let A be an MV-algebra. Since Min(A) ⊆ Spec(A), we consider Min(A)

as the topology induced by the spectral topology. Thus, for any ideal I ⊆ A and

a ∈ A let us define

VA(I) = Min(A) ∩ vA(I), UA(I) = Min(A) ∩ uA(I),

where vA(I) = {P ∈ Spec(A) : I ⊆ P} and uA(I) = {P ∈ Spec(A) : I * P}. It

follows that the family {VA(I)}I⊆A is the family of closed sets of the spectral topology

on Min(A), the family {UA(I)}I⊆A is the family of open sets of the spectral topology

on Min(A) and the family {UA(a)}a∈A is a basis for the topology of Min(A).

Lemma 2.4. Let A be an MV-algebra. Suppose that a, b ∈ A and I, J ∈ Id(A).

Then the following holds:

(1) UA(a) ∩ UA(b) = UA(a ∧ b),

(2) UA(I) ∪ UA(J) = UA(I ∨ J),

(3) UA(a) = ∅ if and only if a = 0,

(4) UA(I) ∩ UA(J) = UA(I ∧ J),

(5) UA(a) ∪ UA(b) = UA(a ∨ b) = UA(a⊕ b),

(6) VA(I) ∩ VA(J) = VA(I ∨ J),

(7) VA(a) ∪ VA(b) = VA(a ∧ b),

(8) VA(a) ∩ VA(b) = VA(a ∨ b) = VA(a⊕ b),

(9) VA(I) ∪ VA(J) = VA(I ∧ J).

P r o o f. (1) We have

P ∈ UA(a ∧ b) ⇔ P ∈ Min(A), a ∧ b /∈ P

⇔ P ∈ Min(A), a /∈ P and b /∈ P

⇔ P ∈ UA(a) ∩ UA(b).

(2) Let P ∈ UA(I) ∪ UA(J). Consider two cases, P ∈ UA(I) or P ∈ UA(J).

Case 1. Let P ∈ UA(I).

P ∈ UA(I) ⇒ P ∈ Min(A), I * P

⇒ ∃ t ∈ I such that t /∈ P

276



⇒ ∃ t ∈ I ⊆ I ∨ J such that t /∈ P

⇒ I ∨ J * P

⇒ P ∈ UA(I ∨ J).

Case 2. Let P ∈ UA(J). It is similar to Case 1. Then UA(I)∪UA(J) ⊆ UA(I ∨J).

Let P ∈ UA(I ∨ J) but P /∈ UA(I) ∪ UA(J). We have

P /∈ UA(I) ∪ UA(J) ⇒ P ∈ Min(A), I ⊆ P and J ⊆ P

⇒ P ∈ Min(A), I ∨ J ⊆ P ∨ P = P

⇒ P /∈ UA(I ∨ J),

which is a contradiction. So UA(I ∨ J) ⊆ UA(I) ∪ UA(J). Therefore UA(I ∨ J) =

UA(I) ∪ UA(J).

(3) Since for all P ∈ Min(A) we have 0 ∈ P.

(4) We have

P ∈ UA(I ∩ J) ⇒ P ∈ Min(A), I ∩ J * P

⇒ P ∈ Min(A), I * P and J * P

⇒ P ∈ UA(I) and P ∈ UA(J)

⇒ P ∈ UA(I) ∩ UA(J).

Thus UA(I ∩ J) ⊆ UA(I) ∩ UA(J). Now, suppose that

P ∈ UA(I) ∩ UA(J) ⇒ P ∈ UA(I) and P ∈ UA(J)

⇒ P ∈ Min(A), I * P and J * P

⇒ ∃ t ∈ I such that t /∈ P and ∃x ∈ J such that x /∈ P

⇒ t ∧ x 6 t ∈ I, x ∧ t 6 x ∈ J and x ∧ t /∈ P

⇒ t ∧ x ∈ I ∩ J and x ∧ t /∈ P

⇒ I ∩ J * P

⇒ P ∈ UA(I ∩ J).

Thus UA(I) ∩ UA(J) ⊆ UA(I ∩ J). Therefore UA(I) ∩ UA(J) = UA(I ∩ J).

(5) We have for any ideal I of A, a /∈ I or b /∈ I if and only if a⊕b /∈ I if and only if

a∨b /∈ I. For any prime ideal P we have P ∈ UA(a)∪UA(b) if and only if P ∈ UA(a∨b)

if and only if P ∈ UA(a⊕ b). Hence UA(a) ∪ UA(b) = UA(a ∨ b) = UA(a⊕ b).

(6) We have by (2)

VA(I ∨ J) = Min(A) − UA(I ∨ J) = Min(A) − (UA(I) ∪ UA(J))

= U c
A(I) ∩ U c

A(J) = VA(I) ∩ VA(J).
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(7) We have

P ∈ VA(a) ∪ VA(b) ⇔ P ∈ VA(a) or P ∈ VA(b)

⇔ a ∈ P or b ∈ P (since a ∧ b 6 a ∈ P or a ∧ b 6 b ∈ P )

⇔ a ∧ b ∈ P (since P ∈ Spec(A))

⇔ P ∈ VA(a ∧ b).

(8) By (5) we have

VA(a) ∩ VA(b) = U c
A(a) ∩ U c

A(b) = (UA(a) ∪ UA(b))
c

= (UA(a ∨ b))c = U c
A(a⊕ b)) = V (a⊕ b).

(9) By (4) we have

VA(I) ∪ VA(J) = U c
A(I) ∪ U c

A(J) = (UA(I) ∩ UA(J))
c

= U c
A(I ∧ J) = VA(I ∧ J).

�

Theorem 2.5. Let A be an MV-algebra. The spectral topology on Min(A) is a

zero-dimensional Hausdorff topology.

P r o o f. We know that the family {UA(a)}a∈A is a basis for spectral topology

on Min(A). We claim that UA(a) = VA(AnnA(a)). By Theorem 2.2, we obtain

P ∈ UA(a) ⇒ P ∈ Min(A), a /∈ P

⇒ AnnA(a) ⊆ P

⇒ P ∈ VA(AnnA(a))

⇒ UA(a) ⊆ VA(AnnA(a)).

It follows from Theorem 2.2 that

P ∈ VA(AnnA(a)) ⇒ P ∈ Min(A), AnnA(a) ⊆ P

⇒ a /∈ P

⇒ P ∈ UA(a)

⇒ VA(AnnA(a)) ⊆ UA(a).

Therefore VA(AnnA(a)) = UA(a).
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Now, we show that the spectral topology on Min(A) is a Hausdorff topology.

Let P1 and P2 be two distinct minimal prime ideals of A. Since P1 6= P2, we get

P1 * P2 or P2 * P1. Without loss of generality, we suppose that P1 * P2. Then

there exists a ∈ P1 such that a /∈ P2. Take U = UA(a) and V = U c
A
(a) = VA(a) =

UA(AnnA(a)). Hence P2 ∈ U and P1 ∈ V. We have U ∩V = UA(a)∩UA(AnnA(a)) =

UA(a)∩U c
A
(a) = ∅. We conclude that the spectral topology on Min(A) is a Hausdorff

topology. �

Lemma 2.6. Let A be a nonempety MV-algebra. The collection β = {VA(I) :

I ∈ Id(A)} is a base for a topology on Min(A).

P r o o f. For all P ∈ Min(A), I0 = {0} is an ideal of an MV-algebra A such that

I0 ⊆ P. So P ∈ VA(I0). Let VA(I), VA(J) ∈ β. It follows from Lemma 2.4 (6) that

VA(I) ∩ VA(J) = VA(I ∨ J). Therefore, this collection is a base for the topology on

Min(A). �

R e m a r k 2.7. The induced topology of base

β = {VA(I) : I is finitely generated ideal of A}

is called the inverse topology. When equipped with the inverse topology on Min(A),

we shall write Min−1(A).

R e m a r k 2.8. Collection {VA(a) : a ∈ A} forms a subbase for a topology on

Min−1(A).

P r o o f. Obviously, Min(A) =
⋃

a∈A

VA(a). By Theorem 2.4 (6), we have

V (I) = V ((a1, . . . , an]) = V ((a1] ∨ . . . ∨ (an]) = V ((a1]) ∩ . . . ∩ V ((an]) =

n
⋂

i=1

V (ai).

�

Lemma 2.9. The spectral topology on Min(A) is finer than the inverse topology

on Min(A).

P r o o f. It follows from Theorem 2.5, Lemma 2.4 (6) and (4) that

V (I) = V ((a1, a2, . . . , an]) = V

( n
∨

i=1

(ai])

)

=

n
⋂

i=1

V (ai)

=

n
⋂

i=1

U(AnnA(ai)) = U

( n
∧

i=1

AnnA(ai)

)

.
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For any finitely generated ideal I of A we have VA(I) an open set in the spectral

topology on Min(A). We conclude that the spectral topology is finer than the inverse

topology on Min(A). �

R e m a r k 2.10. Let I and J be finitely generated ideals of an MV-algebra A.

Then the following holds:

(1) I ∧ J is a finitely generated ideal.

(2) I ∨ J is a finitely generated ideal.

P r o o f. Let I = (a1, a2, . . . , an] and J = (b1, b2, . . . , bm]. We have

(a1, a2, . . . , an] ∩ (b1, b2, . . . , bm] = ((a1] ∨ (a2] ∨ . . . (an]) ∩ ((b1] ∨ (b2] ∨ . . . ∨ (bm])

= (a1 ⊕ a2 ⊕ . . .⊕ an] ∩ (b1 ⊕ b2 ⊕ . . .⊕ bm]

= ((a1 ⊕ . . .⊕ an) ∧ (b1 ⊕ . . .⊕ bm)].

Thus, I ∧ J is a finitely generated ideal of A.

(2) Suppose that I = (a1, a2, . . . , an] and J = (b1, b2, . . . , bm]. We have

I ∨ J = (a1, a2, . . . , an] ∨ (b1, b2, . . . , bm] =

n
∨

i=1

(ai] ∨
m
∨

i=1

(bi]

= (a1 ⊕ a2 ⊕ . . .⊕ an] ∨ (b1 ⊕ b2 ⊕ . . .⊕ bm]

= (a1 ⊕ . . .⊕ an ⊕ b1 ⊕ . . .⊕ bm].

Hence, I ∨ J is a finitely generated ideal of A. �

Theorem 2.11. Let A be an MV-algebra. If for any a ∈ A there exists a finitely

generated ideal I of A such that I ⊆ AnnA(a) and AnnA((a] ∨ I) = {0}, then the

spectral topology and the inverse topology on Min(A) are equal.

P r o o f. By Lemma 2.9, we have that the spectral topology on Min(A) is finer

than the inverse topology on Min(A). It is enough to show that for any a ∈ A there

exists a finitely generated ideal I of A such that UA(a) = VA(I). We have for any

a ∈ A that there exists a finitely generated ideal I of A such that I ⊆ AnnA(a) and

AnnA((a] ∨ I) = 0. Let P ∈ UA(a). Then a /∈ P. If x ∈ I, then x ∧ a = 0 and we

get x ∈ P. Thus I ⊆ P, so UA(a) ⊆ VA(I). Let VA(I) * UA(a). Then there exists

P ∈ Min(A) such that I ⊆ P and a ∈ P. We show that (a] ∨ I ⊆ P.

t ∈ (a] ∨ I ⇒ t 6 na⊕ b such that b ∈ I ⊆ P

⇒ t ∈ P

⇒ (a] ∨ I ⊆ P.

But we have AnnA((a] ∨ I) = 0, then AnnA((a] ∨ I) ⊆ P, which contradicts Theo-

rem 2.2. �
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We recall that for any a ∈ A, UA(a) is compact in Spec(A) (see [1]). It follows

form Theorem 2.4 (2) that UA(I) = UA

( n
∨

i=1

(ai]
)

=
n
⋃

i=1

UA((ai]) =
n
⋃

i=1

UA(ai). We

conclude that U(I) is compact.

Theorem 2.12. Let A be an MV-algebra. Then for any a ∈ A, VA(a) is compact

in Min(A)−1.

P r o o f. It is sufficient to show that any cover of VA(a) with open basis sets

contains a finite cover of VA(a). By Theorem 2.5 we have

UA(AnnA(a)) = VA(a) ⊆
⋃

i∈I

VA(ai) =
⋃

i∈I

UA(AnnA(ai)).

Since UA(AnnA(a)) is compact in spectral topology on Min(A), there exists a finite

subset J of I such that V (a) ⊆
⋃

i∈J

UA(AnnA(ai)) =
n
⋃

i=1

VA(ai). This implies that

VA(a) is a compact set in Min−1(A). �

R e m a r k 2.13. Let A be an MV-algebra. For any ideal I of A, UA(I) =

VA(AnnA(I)) in the spectral topology on Min−1(A).

P r o o f. Let P ∈ VA(AnnA(I)). Then P ∈ Min(A) and AnnA(I) ⊆ P. Let t ∈ A

and UA(t) be an open set such that P ∈ UA(t). We show that UA((t])∩UA(I) 6= ∅. Let

UA((t]) ∩UA(I) = ∅. By Lemma 2.4 (4), we have UA((t]) ∩UA(I) = UA((t] ∧ I) = ∅.

It follows from Lemma 2.4 (3) that (t]∧ I = 0. As t ∈ AnnA(I), we get t ∈ P, which

is a contradiction. Thus VA(AnnA(I)) ⊆ UA(I).

Let P ∈ UA(I). Then P ∈ Min(A), I * P. Now, we have

x ∈ AnnA(I) ⇒ x ∧ a = 0 ∀ a ∈ I

⇒ x ∈ P (since P is a prime ideal)

⇒ AnnA(I) ⊆ P

⇒ P ∈ VA(AnnA(I))

⇒ UA(I) ⊆ VA(AnnA(I))

⇒ UA(I) ⊆ V A(AnnA(I))

⇒ UA(I) ⊆ VA(AnnA(I)).

Therefore UA(I) = VA(AnnA(I)). �

Theorem 2.14. Min−1(A) is compact, T0-space and T1-space.
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P r o o f. We have Min(A) = VA(0) = {P ∈ Min(A) : 0 ∈ P}. It follows from

Theorem 2.12 that Min−1(A) is compact. For P1, P2 ∈ Min(A) such that P1 6= P2,

where P1 * P2 or P2 * P1. Without loss of generality, we suppose that P1 * P2.

Then there exists a ∈ P1 such that a /∈ P2. Taking U = VA(a), then P1 ∈ U and

P2 /∈ U. Hence Min−1(A) is a T0-space. Let P,Q ∈ Min(A) be distinct minimal

prime ideals and let a ∈ P −Q. By Lemma 2.1, there is an x /∈ P such that a∧x = 0.

It follows that a ∧ x ∈ Q and so x ∈ Q − P. Notice that P ∈ VA(a) − VA(x) and

Q ∈ VA(x), so VA(x) * VA(a). Hence, the inverse topology is a T1-space. �

We note that a topological space X is connected if and only if it has only A and ∅

as clopen subsets (see [7]).

Corollary 2.15. If A is an MV-algebra and A 6= {0, 1}, then Min−1(A) is dis-

connected.

P r o o f. Since A 6= {0, 1}, there exists a ∈ A such that a 6= 0, 1. By Theo-

rem 2.5, VA(a) = UA(AnnA(a)) is a nonempty clopen set. Therefore Min−1(A) is

disconnected. �

Theorem 2.16. Min−1(A) is a Hausdorff topological space.

P r o o f. Let P and Q be two distinct minimal prime ideals of A. Since

P 6= Q, there are a ∈ P − Q and b ∈ Q − P. By Theorem 2.2, since (a] ⊆ P

and (b] ⊆ Q and P,Q ∈ Min(A), we get AnnA((a]) * P and AnnA((b]) * Q.

Hence, P ∈ UA(AnnA(a)), Q ∈ UA(AnnA(b)), P ∈ VA(a) and Q ∈ VA(b).

By Theorem 2.5, since the spectral topology on Min(A) is Hausdorff, we have

VA(a) ∩ VA(b) = UA(AnnA(a)) ∩ UA(AnnA(b)) = ∅. �

Lemma 2.17. H ⊆ Min−1(A) is clopen if and only if there exist finitely generated

ideals I and J of A such that V (I) = H , I ∧ J = {0} and Ann(I ∨ J) = {0}.

P r o o f. Suppose H is a clopen subset of Min−1(A). By Theorem 2.14, the

inverse topology on Min(A) is compact. It follows that H is compact. So H is

a union of base open sets. Now, by Lemma 2.4 (9), we have H =
n
⋃

i=1

VA(Ii) =

VA(I1∧I2∧ . . .∧In) and by Remark 2.10 (1), there exists a finitely generated ideal I

of A such that VA(I1 ∧ I2 ∧ . . . ∧ In) = VA(I). Since the complement of H is also

clopen, we conclude that for some finitely generated ideal, Min(A) − H = VA(J).

Thus, by Lemma 2.4 (6), we have ∅ = VA(I) ∩ VA(J) = VA(I ∨ J). So for every

P ∈ Min(A) we get I ∨ J * P. By Remark 2.10 (2), I ∨ J is a finitely generated

ideal. Now, by Theorem 2.2, for every P ∈ Min(A), AnnA(I ∨ J) ⊆ P. We have
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AnnA(I ∨ J) ⊆
⋂

P∈Min(A)

P = 0. Hence AnnA(I ∨ J) = 0. Finally, by Lemma 2.4 (9),

we get VA(I) ∪ VA(J) = VA(I ∧ J) = Min(A). Since I ∧ J ⊆ P for all P ∈ Min(A),

I ∧ J = {0}. Conversely, since Ann(I ∨ J) = {0} for every P ∈ Min(A) we have

AnnA(I ∨ J) ⊆ P. By Remark 2.16 and Theorem 2.2, we get I ∨ J * P. Now, by

Lemma 2.4 (2), for every P ∈ Min(A) we have

P ∈ UA(I ∨ J) ⇒ P ∈ UA(I) ∩ UA(J) ⇒ P ∈ V c
A(I) ∪ V c

A(J).

We obtain V c
A
(I)∪V c

A
(J) = Min(A). Hence VA(I)∩VA(J) = ∅. Now by Lemma 2.4 (9),

we have

VA(I) ∪ VA(J) = VA(I ∧ J) = VA(0) = Min(A).

Then VA(I) is a complement of VA(J). Thus VA(I) = H is clopen. �

N o t a t i o n. We recall that let A and B be disjoint compact subspaces of the

Hausdorff space X. Then there exist disjoint open sets U and V containing A and B,

respectively (see [7]).

Theorem 2.18. Min(A)−1 is a compact zero-dimensional Hausdorff space if and

only if for every a, b ∈ A such that a∧ b = 0 there exist finitely generated ideals I, J

of A such that a ∈ I, b ∈ J , I ∧ J = {0} and AnnA(I ∨ J) = {0}.

P r o o f. Suppose that Min−1(A) is a compact zero-dimensional Hausdorff space

and a, b ∈ A such that a ∧ b = 0. By Lemma 2.4 (1), we have UA(a) ∩ UA(b) =

UA(a ∧ b) = UA(0) = ∅ and since UA(a) and UA(b) are closed, they are compact

subsets of Min(A). By the above notation and since Min−1(A) is zero-dimensional,

there exists a clopen set H ⊆ Min(A) such that UA(a) ⊆ H, and H ∩UA(b) = ∅. By

Lemma 2.17, there exist finitely generated ideals I, J containing a and b, respectively,

such that H = VA(I) and VA(J) = Min(A)−H such that (a ∈ I, b ∈ J), I∧J = {0},

and AnnA(I ∨ J) = {0}.

Conversely, we show that Min−1(A) has a base of clopen sets. It is sufficient

to show that given P ∈ VA(a), there is a clopen subset H ⊆ Min(A) for which

P ∈ H ⊆ VA(a). Let P ∈ VA(a). Then P ∈ Min(A) and a ∈ P . By Theorem 2.1,

there exists b ∈ A − P such that a ∧ b = 0. Now, by hypothesis, there exist finitely

generated ideals I, J of A such that a ∈ I, b ∈ J , I∧J = {0} and AnnA(I∨J) = {0}.

By Theorem 2.17, we define H = VA(I). It is a clopen subset of Min−1(A). Since

a ∈ I, it follows that VA(I) ⊆ VA(a). Now, we show that P ∈ VA(I). Let P /∈ VA(I).

Then I * P. Since I ∧ J = {0} ⊆ P , we get J ⊆ P. It follows that b ∈ P, which is a

contradiction. Therefore Min−1(A) is zero-dimensional. By Theorems 2.16 and 2.14,

we obtain that Min−1(A) is a Hausdorff space and it is compact. �
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Theorem 2.19. Let A be a nontrivial MV-algebra. For a, b ∈ A define a ∼ b if

and only if VA(a) = VA(b). Hence, a ∼ b if and only if for any P ∈ Min(A), a ∈ P if

and only if b ∈ P.

P r o o f. Obviously, ∼ is an equivalence relation on A. Let a, b, c, d ∈ A such that

a ∼ b and c ∼ d. We will prove that a⊕c ∼ b⊕d, a∗ ∼ b∗. Suppose that P ∈ Min(A).

Then a, c 6 a⊕ c ∈ P if and only if a ∈ P and c ∈ P if and only if b ∈ P and d ∈ P if

and only if b⊕ d ∈ P. That is, a⊕ c ∈ P if and only if b⊕ d ∈ P. Hence a⊕ c ∼ b⊕ d.

Similarly, a∨ c ∼ b∨d. Since P is a prime ideal, we get a∧ c ∈ P if and only if a ∈ P

or c ∈ P if and only if b ∈ P or d ∈ P if and only if b∧ d ∈ P. Thus a∧ c ∼ b∧ d. Let

a ∼ b. Then a ∈ P if and only if b ∈ P. We show that a∗ ∈ P if and only if b∗ ∈ P.

We have

a∗ ∈ P ⇒ a⊙ a∗ 6 a∗ ∈ P ⇒ a⊙ a∗ ∈ P

⇒ a∗ ⊕ (a⊙ a∗) ∈ P ⇒ a 6 a ∨ a∗ ∈ P

⇒ a ∈ P ⇒ b ∈ P

⇒ b⊙ b∗ 6 b ∈ P ⇒ b⊙ b∗ ∈ P

⇒ b⊕ (b⊙ b∗) ∈ P ⇒ b∗ 6 b ∨ b∗ ∈ P

⇒ b∗ ∈ P.

Similarly, we obtain that if b∗ ∈ P, then a∗ ∈ P. Hence a∗ ∈ P if and only if b∗ ∈ P.

Thus a∗ ∼ b∗. The congruence class of x with respect to ∼ will be denoted by [x],

i.e. [x] = {y ∈ A : x ∼ y}. Let A/∼ be the quotient set. Since ∼ is a congruence

on A, the algebra (A/∼,⊕, ∗, [0]) is an MV-algebra, where [a] ⊕ [b] = [a ⊕ b] and

[a]∗ = [a∗]. �

Theorem 2.20. Let a, b ∈ A. Then we have:

(1) [a] 6 [b] if and only if VA(b) ⊆ VA(a).

(2) [a] = [b] if and only if (a] = (b].

(3) [a] = [1] if and only if ord(a) 6 ∞.

(4) [a] = [0] if and only if a = 0.

(5) [a ∨ b] = [a⊕ b].

(6) [na] = [a] for some n ∈ N.

P r o o f. (1) By Lemma 2.4 (7), we have

[a] 6 [b] ⇔ [a] ∧ [b] = [a] ⇔ [a ∧ b] = [a] ⇔ VA(a ∧ b) = VA(a)

⇔ VA(a) ∪ VA(b) = VA(a) ⇔ VA(b) ⊆ VA(a).
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(2) We have [a] = [b] if and only if VA(a) = VA(b). It follows that

(a] =
⋂

{P ∈ Min(A) : a ∈ P} =
⋂

{P ∈ Min(A) : P ∈ VA(a)}

=
⋂

{P ∈ Min(A) : P ∈ VA(b)} =
⋂

{P ∈ Min(A) : b ∈ P} = (b].

(3) By (2), we have [a] = [1] if and only if (a] = (1] = A. Hence, 1 ∈ (a] if and

only if 1 6 na for some n ∈ N. We get na = 1 for some n ∈ N, that is, ord(a) 6 ∞.

(4) By (2), we obtain [a] = [0] if and only if (a] = (0] = {0} if and only if a = 0.

(5) It follows from Lemma 2.4 (8) that VA(a∨b) = VA(a⊕b). Hence [a∨b] = [a⊕b].

(6) By (5), we get [na] = [a⊕ a⊕ . . .⊕ a] = [a ∨ a ∨ . . . ∨ a] = [a]. �

A c k n o w l e d g e m e n t. The authors are very indebted to the referees for valu-

able suggestions that improved the readability of the paper.
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