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Abstract. We first show that the Gaussian integral means of f : C → C (with respect to

the area measure e−α|z|2 dA(z)) is a convex function of r on (0,∞) when α 6 0. We then
prove that the weighted integral means Aα,β(f, r) and Lα,β(f, r) of the mixed area and the
mixed length of f(rD) and ∂f(rD), respectively, also have the property of convexity in the
case of α 6 0. Finally, we show with examples that the range α 6 0 is the best possible.

Keywords: Gaussian integral means; weighted integral means; analytic function;
convexity
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1. Introduction

Let D represent a unit disk and dA denote the Euclidean area measure in the

complex plane C, H(D) stands for the space of holomorphic mappings f : D → C,

and U(D) denotes univalent functions in H(D). Recall that for any real number α

and 0 < r < 1, the weighted area measure is defined by

dAα(z) = (1 − |z|2)α dA(z),

where dA is the area measure of D. Moreover, we already know that

rD = {z ∈ D : |z| < r}, rT = {z ∈ D : |z| = r}.
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For any real number α and 0 < p < ∞ we define the Gaussian integral means of
an analytic function f : C → C as

Mp,α(f, r) =

∫

{z∈C : |z|6r} |f(z)|pe−α|z| dA(z)
∫

{z∈C : |z|6r}
e−α|z|2 dA(z)

, r ∈ (0,∞).

The above concept can be found in the theory of Fock spaces, e.g. see [2] and [12]. It

is not hard to verify that the function r 7→Mp,α(f, r) strictly increases as r ∈ (0,∞)

unless f is a constant. Readers can refer to [7] for more details.

In [11], Xiao and Zhu first introduced the notion of the integral means of an

analytic function and discussed the area integral means of f ∈ H(D):

Mp,α(f, r) =

∫

rD
|f(z)|p dAα(z)
∫

rD
dAα(z)

, 0 < p <∞.

They proved that while r 7→ Mp,α(f, r) strictly increases unless f is a constant, it

is different to the classical case in the sense that logMp,α(f, r) is not always convex

in log r. Additionally, they proposed a conjecture where log r 7→ logMp,α(f, r) is

convex when α 6 0 and concave when α > 0. In [9], Wang and Zhu obtained the

result when −3 6 α 6 0 and chose p = 2, α = 1, f(z) = 1 + z to verify that the

conjecture is untrue. Subsequently, Wang, Xiao and Zhu got the conclusion when

−2 6 α 6 0 and 0 < p < ∞ in [8]. Unfortunately, it is still unknown whether the

conjecture is always true when p 6= 2. Inspired by previous research, Xiao and Xu

discussed the fundamental case of p = 1 from a differential geometric viewpoint in

their manuscript, see [10]. They also discussed monotonic growths and logarithmic

convexities of the weighted integral means Aα,β(f, r) and Lα,β(f, r) of the mixed

area and the mixed length of f(rD) and ∂f(rD) for the range r ∈ [0, 1).

At exactly the same time, the problem of Gaussian integral means was also studied.

In [7], Wang and Xiao showed that the logarithmic convexity of function Mp,α(f, r)

under the case of f(z) = zk is a monomial. Subsequently, the conclusions were

improved. In [7], the case of an arbitrary analytic function f was considered.

Recently, Peng, Wang and Zhu investigated the (ordinary but not logarithmic)

convexity of the area integral means of analytic functions in [6]. They claimed that

for every r ∈ [0, 1) and when p = 2, the optimal range of Mp,α(f, r) which is convex,

is α 6 0.

Naturally, we can ask a fundamental question: When p = 2, are Mp,α(f, r),

Aα,β(f, r) and Lα,β(f, r) convex functions? Indeed, we obtained the answer to the

above question, which is the main result of this paper.
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Theorem A. Let f : C → C be an analytic function.

(i) If α 6 0, then r 7→M2,α(f, r) is a convex function of r in the interval (0,∞).

(ii) If α > 0 and k > 1, then there exists some λ (depending on k and α) in the

range (0,∞) such that M2,α(z
k, r) is a convex function of r in the range (0, λ)

and a concave function of r in the interval (λ,∞).

Furthermore, if we take λ = λ(k, α), the inflection point above, we have the

following statements: for any fixed α > 0, λ(k, α) increases as k (k > 1); for any

fixed k > 1, λ(k, α) decreases as α (α > 0). Based on Theorem A, we can easily see

that the range α 6 0 is the best possible.

Theorem B. Let 0 6 β 6 1 and 0 < r < 1.

(i) If α 6 0, then Aα,β(f, r) is a convex function for all f ∈ U(D). Furthermore,

the range α 6 0 is the best possible.

(ii) If α 6 0, then Lα,β(f, r) is a convex function for all f ∈ U(D). Furthermore,

the range α 6 0 is the best possible.

2. Preliminaries

For f ∈ H(D) and 0 < r < 1, we respectively define the integral means of the

mixed area and the mixed length for f(rD) and ∂f(rD) as:

ΦA(f, r) =
A(f, r)

πr2
, ΦL(f, r) =

L(f, r)

2πr
,

where A(f, t) and L(f, t) denote the area of f(rD) and the length of ∂f(rD) with

respect to the standard Euclidean metric on C. Next, in the sense of isoperimetry,

the mathematical expression

ΦA(f, t) = (πt2)−1

∫

tD

|f ′(z)|2 dA(z) 6
[

(2πt)−1

∫

tT

|f ′(z)||dz|
]2

= [ΦL(f, t)]
2

holds. See [10].

Furthermore, we will use the following convention in the rest of this paper:

dµα(t) = (1− t2)α dt2, vα(t) = µα([0, t]) ∀ t ∈ (0, 1),

and for 0 6 β 6 1 we define

ΦA,β(f, t) =
A(f, t)

(πt2)β
, ΦL,β(f, t) =

L(f, t)

(2πt)β
,
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and

Aα,β(f, r) =

∫ r

0 ΦA,β(f, t) dµα(t)
∫ r

0 dµα(t)
, Lα,β(f, r) =

∫ r

0 ΦL,β(f, t) dµα(t)
∫ r

0 dµα(t)
,

which are called the weighted integral means of the mixed area and mixed length of

f(rD) and ∂f(rD), respectively.

Recall that Mp(f, r) = (2π)−1
∫ 2π

0
|f(√reiθ)|p dθ. If we write every analytic func-

tion f : C → C in the form of a power series

f(z) =

∞
∑

k=0

akz
k,

then we can immediately obtain that

M2(f, r) =
∞
∑

k=0

|ak|2rk.

To simplify the notation, we will write

M =M(r) =M2(f, r), ϕ = ϕ(x) =

∫ x

0

e−αt dt, H = H(x) =

∫ x

0

M(t)e−αt dt.

Note that ϕ and H depend on the parameter α, thus here and throughout the paper

we will let ∂ϕ/∂α and ∂H/∂α denote the derivatives of ϕ and H with respect to α,

respectively. In what follows, unspecified derivatives are taken with respect to the

main variable x.

A calculation with polar coordinates gives

M2,α(f, r) =

∫ r2

0
M2(f, t)e

−αt dt
∫ r2

0 e−αt dt
=
H(r2)

ϕ(r2)
.

Using an elementary computation, we get the following formula:

ϕ(x) =

{ 1− e−αx

α
, α 6= 0,

x, α = 0.

Next, we also have:


































ϕ′(x) = e−αx,

H ′(x) =M(x)ϕ′(x),

M ′(r) =
∞
∑

k=0

(k + 1)|ak+1|2rk > 0, r ∈ (0,∞),

M ′′(r) =
∞
∑

k=0

(k + 2)(k + 1)|ak+2|2rk > 0, r ∈ (0,∞).
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Throughout the paper, we use the notation U ∼ V to denote that U and V

have the same sign, and employ the symbol ≡ when a new notation is introduced.
Finally, N is the set of all natural numbers.

3. Convexity for Mp,α(f, ·)

3.1. The case α 6 0. In what follows, we investigate conditions for the function

M2,α(f, r) to be a convex function of r in the interval (0,∞). It is not hard to see

that the convexity of the function M2,α(f,
√
r) depends on the sign of the weight

parameter α, so we will first discuss the case of α 6 0. The following basic lemma is

needed; it comes directly from [12] with (0, 1) being replaced by (0,∞).

Lemma 3.1. Suppose f(x) is twice differentiable on (0,∞). Then f(x2) is convex

in the range (0,∞) if and only if f ′(x) + 2xf ′′(x) is nonnegative on (0,∞). In

particular, if f(x) is nondecreasing and convex in the interval (0,∞), then f(x2) is

convex on (0,∞).

P r o o f. Let g(x) = f(x2), we easily have

g′′(x) = 2[f ′(x2) + 2x2f ′′(x2)].

Then the desired result follows. �

Lemma 3.2. Suppose α > 0, then the function

E(x) = 4xϕ′(x)− (1 − 2αx)ϕ(x)

is strictly positive on (0,∞).

P r o o f. Take x0 = 1/2α, we can easily obtain that

1− 2αx 6 0, x ∈ [x0,∞),

which implies that E(x) > 0 in the range [x0,∞). For x ∈ (0, x0) we get

1− 2αx > 0

and

E(x) ∼ 4xϕ′(x)

1− 2αx
− ϕ(x) ≡ E1(x).
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It follows from direct computations that:

E′
1(x) =

4(ϕ′ + xϕ′′)(1 − 2αx) + 8αxϕ′

(1− 2αx)2
− ϕ′

=
4(ϕ′ − αxϕ′)(1 − 2αx) + 8αxϕ′ − (1− 2αx)2ϕ′

(1− 2αx)2
=

(4α2x2 + 3)ϕ′

(1 − 2αx)2
> 0.

Thus, E(x) ∼ E1(x) > E1(0) = 0 on (0, x0). This completes the proof of the lemma.

�

Lemma 3.3. If α > 0, k > 1, x ∈ (0,∞) and

h = h(x) =

∫ x

0

tke−αt dt,

then the following statements hold:

(I) g1(x) := xkϕ(x)− h(x) > 0,

(II) g2(x) := (∂ϕ/∂α)(x) + xϕ(x) > 0,

(III) g3(x) := h(x)(∂ϕ/∂α)(x) − (∂h/∂α)(x)ϕ(x) > 0,

(IV) g4(x) := −2e−αx
(

(∂ϕ/∂α)(x) + xϕ(x)
)

+ ϕ2(x) > 0.

P r o o f. (I) Obviously,

h(x) =

∫ x

0

tke−αt dt 6 xk
∫ x

0

e−αt dt = xkϕ(x),

which means g1(x) > 0.

(II) It is not difficult to get

∂2ϕ

∂α∂x
= −xe−αx = −xϕ′(x),

∂2h

∂α∂x
= −xk+1e−αx = −xk+1ϕ′(x),

and

g′2(x) =
∂2ϕ

∂α∂x
+ ϕ(x) + xϕ′(x) = −xϕ′(x) + ϕ(x) + xϕ′(x) = ϕ(x) > 0.

Thus g2(x) > g2(0) = 0, for which (II) holds.

(III) Based on the definition of g3(x) and several calculations we have:

g′3(x) = h′(x)
∂ϕ

∂α
(x) + h(x)

∂2ϕ

∂α∂x
− ∂2h

∂α∂x
ϕ(x) − ∂h

∂α
(x)ϕ′(x)

= e−αx
[

xk
∂ϕ

∂α
(x)− xh(x) + xk+1ϕ(x) − ∂h

∂α
(x)

]

= e−αx
[

xk
(∂ϕ

∂α
(x) + xϕ(x)

)

− xh(x)− ∂h

∂α
(x)

]

∼ xk
(∂ϕ

∂α
(x) + xϕ(x)

)

− xh(x)− ∂h

∂α
(x) ≡ g(x).
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Note that

g′(x) = kxk−1
(∂ϕ

∂α
(x) + xϕ(x)

)

+ xkα(x)− h(x) − xk+1e−αx + xk+1e−αx

= kxk−1
(∂ϕ

∂α
(x) + xϕ(x)

)

+ xkα(x)− h(x).

Then g′(x) > 0 follows from (I) and (II). Hence g′3(x) ∼ g(x) > g(0) = 0, then

g3(x) > g3(0) = 0, which proves (III).

(IV) It is easy to check that

g′4(x) = 2αe−αx
(∂ϕ

∂α
(x) + xϕ(x)

)

> 0.

Thus g4(x) > g4(0) = 0, which means (IV) holds. �

Lemma 3.4. Let k > 1 and x ∈ (0,∞). Then the function

v(α) =
(

xk − h(x)

ϕ(x)

)(4xϕ′(x)

ϕ(x)
+ 2αx− 1

)

increases for α ∈ (0,∞), where h(x) is defined above.

P r o o f. In order to simplify the above formulae, we will represent h(x) as h

and ϕ(x) as ϕ. It follows from direct computations that

v′(α) =
1

ϕ2

[

h
∂ϕ

∂α
− ∂h

∂α
ϕ
][4xϕ′

ϕ
+ 2αx− 1

]

+
(

xk − h

ϕ

)[−4x2e−αxϕ− 4xϕ′∂ϕ/∂α

ϕ2
+ 2x

]

=
x

ϕ3

{ 1

x

[

h
∂ϕ

∂α
− ∂h

∂α
ϕ
][

4xϕ′ − (1− 2αx)ϕ
]

+ 2(xkϕ− h)
[

−2e−αx
(∂ϕ

∂α
+ xϕ

)

+ ϕ2
]}

∼ 1

x

[

h
∂ϕ

∂α
− ∂h

∂α
ϕ
]

[4xϕ′ − (1− 2αx)ϕ]

+ 2(xkϕ− h)
[

−2e−αx
(∂ϕ

∂α
+ xϕ

)

+ ϕ2
]

=
1

x
g3(x)E(x) + 2g1(x)g4(x) > 0.

Then the desired result follows. �
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Theorem 3.5. Let f : C → C be an analytic function. If α 6 0, then both

M2,α(f,
√
r) and M2,α(f, r) are convex functions of r on (0,∞).

P r o o f. Note that M2,α(f,
√
r) = H(r)/ϕ(r), hence in order to prove the con-

vexity of M2,α(f,
√
r) we just need to show that the function H(x)/ϕ(x) is convex

in the range (0,∞). In the following section, we also write h for h(x), ϕ for ϕ(x)

and M for M(x). These functions were defined previously. A basic calculation gives

(H

ϕ

)′

=
H ′ϕ−Hϕ′

ϕ2
=
H ′

ϕ
− Hϕ′

ϕ2
.

(H

ϕ

)′′

=
H ′′ϕ−H ′ϕ′

ϕ2
− (H ′ϕ′ +Hϕ′′)ϕ2 −Hϕ′(2ϕϕ′)

ϕ4

=
H ′′

ϕ
− 2H ′ϕ′

ϕ2
− Hϕ′′

ϕ2
+

2H(ϕ′)2

ϕ3
=
H ′′

ϕ
− 2

H ′

ϕ

ϕ′

ϕ
+ 2

H

ϕ

(ϕ′

ϕ

)2

− H

ϕ

ϕ′′

ϕ

=
M ′ϕ′ +Mϕ′′

ϕ
− 2

M(ϕ′)2

ϕ2
+
(2(ϕ′)2

ϕ3
− ϕ′′

ϕ2

)

H

∼M ′ϕ′ϕ2 +Mϕ′′ϕ2 − 2M(ϕ′)2ϕ+ 2(ϕ′)2H − ϕ′′ϕH

=M ′ϕ′ϕ2 +M(−αϕ′)ϕ2 − 2M(ϕ′)2ϕ+ 2(ϕ′)2H − (−αϕ′)ϕH

= ϕ′[M ′ϕ2 + (1 + ϕ′)(H −Mϕ)] ∼M ′ϕ2 + (1 + ϕ′)(H −Mϕ)

= (1 + ϕ′)
[M ′ϕ2

1 + ϕ′
+H −Mϕ

]

∼ M ′ϕ2

1 + ϕ′
+H −Mϕ ≡ σ(x).

Here we used the identity

αϕ = 1− ϕ′,

which is valid for all α including α = 0.

Next, we will proceed to determine the sign of σ(x) for the interval (0,∞). By

a direct calculation we have:

σ′(x) =M ′′ ϕ2

1 + ϕ′
+M ′

( ϕ2

1 + ϕ′

)′

+Mϕ′ −Mϕ′ −M ′ϕ

=M ′′ ϕ2

1 + ϕ′
+M ′

( ϕ2

1 + ϕ′

)′

−M ′ϕ >M ′
[( ϕ2

1 + ϕ′

)′

− ϕ
]

=
M ′ϕ

(1 + ϕ′)2
[2ϕ′(1 + ϕ′)− ϕϕ′′ − (1 + ϕ′)2]

=
M ′ϕ

(1 + ϕ′)2
[(ϕ′)2 + αϕϕ′ − 1] =

−αM ′ϕ2

(1 + ϕ′)2
> 0.

Thus σ(x) > σ(0) = 0, which means that (H/ϕ)′′ > 0 holds for α 6 0 and x ∈ (0,∞).

This proves that the function M2,α(f,
√
r) is convex for r ∈ (0,∞). Note that

M2,α(f, r) is increasing, then by Lemma 1 we can easily get that M2,α(f, r) is also

convex for r ∈ (0,∞). This completes the proof of Theorem 3.5. �
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3.2. The case α > 0. In the following section we use examples to show that

M2,α(f, r) is generally not a convex function of r for positive α. These examples

actually reveal more delicate behaviour of M2,α(f, r) when α > 0.

Theorem 3.6. Suppose k > 1 and α > 0. Then there exists some λ = λ(k, α) ∈
(0,∞) such thatM2,α(z

k, r) is a convex function of r on (0, λ) and a concave function

of r on (λ,∞). Furthermore, for any fixed α, λ(k, α) is increasing in k; and for any

fixed k, λ(k, α) is decreasing in α.

P r o o f. When f(z) = zk, it follows that

M(t) =M2(f, t) =
1

2π

∫ 2π

0

|(
√
teiθ)k|2 dθ = tk,

thus

H(r) =

∫ r

0

M(t)e−αt dt =

∫ r

0

tke−αt dt = h(r).

Consequently,

M2,α(z
k, r) =

H(r2)

ϕ(r2)
=
h(r2)

ϕ(r2)
.

By Lemma 3.1, in order to prove the theorem, we only need to determine the sign

of the function

∆(x) =
(h(x)

ϕ(x)

)′

+ 2x
(h(x)

ϕ(x)

)′′

on (0,∞). Via a rewrite,

h = h(x, α, k) =

∫ x

0

tke−αt dt

and

ϕ = ϕ(x) =

∫ x

0

e−αt dt.

By direct computations we have

∆(x) =
h′

ϕ
− hϕ′

ϕ2
+ 2x

[h′′

ϕ
− 2

h′ϕ′

ϕ2
+ 2

h(ϕ′)2

ϕ3
− hϕ′′

ϕ2

]

=
1

ϕ3

[

h′ϕ2 − hϕ′ϕ+ 2xh′′ϕ2 − 4xh′ϕ′ϕ+ 4xh(ϕ′)2 − 2xhϕ′′ϕ
]

=
1

ϕ3

[

ϕ(h′ϕ+ 2xh′′ϕ− 4xh′ϕ′) + h(4x(ϕ′)2 − 2xϕ′′ϕ− ϕ′ϕ)
]

∼ ϕeαx(h′ϕ+ 2xh′′ϕ− 4xh′ϕ′) + heαx(4x(ϕ′)2 − 2xϕ′′ϕ− ϕ′ϕ)
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= ϕeαx(ϕxke−αx + 2ϕkxke−αx − 2αϕxk+1e−αx − 4xk+1e−2αx)

+ heαx(4xe−2αx + 2αϕxe−αx − e−αxϕ)

= 2ϕ2kxk + (4xe−αx + 2xαϕ − ϕ)(h− ϕxk)

= 2kxkϕ2 + [4xϕ′ − (1− 2αx)ϕ](h − ϕxk) ≡ ω(x, α, k).

With the help of Lemma 3.2 we get

ω(x, α, k) ∼ 2kxkϕ2

4xϕ′ − (1 − 2αx)ϕ
+ h− ϕxk ≡ ∆1(x).

It is not hard to obtain that























(2kxkϕ2)′ = 2k2xk−1ϕ2 + 4kxkϕ− 4αkxkϕ2,

4xϕ′ − (1− 2αx)ϕ = 4x− ϕ− 2αxϕ,

(4xϕ′ − (1 − 2αx)ϕ)′ = 3− αϕ− 2αx+ 2α2xϕ,

(h− ϕxk)′ = −kxk−1ϕ.

Then

∆′
1(x) =

(2k2xk−1ϕ2 + 4kxkϕ− 4αkxkϕ2)(4x− ϕ− 2αxϕ)

(4x− ϕ− 2αxϕ)2

− 2kxkϕ2(3− αϕ− 2αx+ 2α2xϕ)

(4x− ϕ− 2αxϕ)2
− kxk−1ϕ

=
kxk−1ϕ2[8kx− 2kϕ− 4kαxϕ− 2x− 4αx2 + 2αxϕ− ϕ]

(4x− ϕ− 2αxϕ)2

∼ 8kx− 2kϕ− 4kαxϕ− 2x− 4αx2 + 2αxϕ− ϕ

= 4kx− 4αx2 − 2k + 1

α
+
(

4kx− 2x+
2k + 1

α

)

e−αx ≡ δ(x).

To continue the calculation we have

δ′(x) = 4k − 8αx+ (2k − 3− 4αkx+ 2αx)e−αx.

Note that

δ′(0) = 3(2k − 1) > 0, δ′(∞) < 0,

so there exists some λ1 ∈ (0,∞) such that δ′(x) > 0 on (0, λ1) and δ
′(x) < 0

on (λ1,∞). Since δ(0) = 0, δ(∞) < 0, it follows that there exists a point λ2 ∈ (0,∞)

such δ(x) > 0 for x ∈ (0, λ2) and δ(x) < 0 for x ∈ (λ2,∞). It is easy to see that

lim
x→0+

∆1(x) = 0, lim
x→∞

∆1(x) < 0,
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with details deferred to after the proof. So there exists λ ∈ (0,∞) such ∆(x) > 0

for x ∈ (0, λ) and ∆(x) < 0 for x ∈ (λ,∞). That is to say there exists some

λ = λ(k, α) ∈ (0,∞) such that M2,α(z
k, r) is a convex function of r on (0, λ) and

a concave function of r on (λ,∞).

Take λ = λ(α, k) as a solution of equation

ω(x, α, k) = 0,

or equivalently, ∆(x) = 0. For any l > k we will proceed to determine the sign of

ω(λ(α, k), α, l) = ω(λ, α, l).

Since

ω(λ, α, k) = 2kλkϕ2(λ, α)+[4λϕ′(λ, α)−(1−2αλ)ϕ(λ, α)](h(λ, α, k)−λkϕ(λ, α)) = 0,

it follows that

4λϕ′(λ, α) − (1− 2αλ)ϕ(λ, α) =
2kλkϕ2(λ, α)

λkϕ(λ, α) − h(λ, α, k)
.

Thus, we can get

ω(λ, α, l) = 2lλlϕ2(λ, α) + [4λϕ′(λ, α) − (1− 2αλ)ϕ(λ, α)](h(λ, α, l) − λlϕ(λ, α))

= 2lλlϕ2(λ, α) +
2kλkϕ2(λ, α)

λkϕ(λ, α) − h(λ, α, k)
(h(λ, α, l) − λlϕ(λ, α))

=
2kλkϕ2(λ, α)

λkϕ(λ, α) − h(λ, α, k)
[lλl−k(λkϕ(λ, α) − h(λ, α, k)) + k(h(λ, α, l)− λlϕ(λ, α))]

∼ lλl−k(λkϕ(λ, α) − h(λ, α, k)) + k(h(λ, α, l)− λlϕ(λ, α))

≡ ω1(λ, α, k, l).

Since
∂ω1(λ, α, k, l)

∂λ
= l(l− k)λl−k−1(λkϕ(λ, α) − h(λ, α, k)) > 0,

we obtain

ω(λ, α, l) ∼ ω1(λ, α, k, l) > ω1(0, α, k, l) = 0,

which implies that for any fixed α, λ is increasing in k.

Next, we are going to determine the sign of ω(λ(α, k), β, k) = ω(λ, β, k) for β > α.

Since

ω(λ, α, k) = 2kλkϕ2(λ, α)

+ [4λϕ′(λ, α)− (1 − 2αλ)ϕ(λ, α)](h(λ, α, k) − λkϕ(λ, α)) = 0,
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it follows that

2kλk =
1

ϕ2(λ, α)
(λkϕ(λ, α) − h(λ, α, k))[4λϕ′(λ, α) − (1− 2αλ)ϕ(λ, α)].

With the help of Lemma 3.4 and direct calculations, we have

ω(λ, β, k) = 2kλkϕ2(λ, β) + [4λϕ′(λ, β) − (1− 2βλ)ϕ(λ, β)](h(λ, β, k) − λkϕ(λ, β))

= ϕ2(λ, β)
{[

λk − h(λ, α, k)

ϕ(λ, α)

][4λϕ′(λ, α)

ϕ(λ, α)
+ 2αλ− 1

]

−
[

λk − h(λ, β, k)

ϕ(λ, β)

][4λϕ′(λ, β)

ϕ(λ, β)
+ 2βλ− 1

]}

∼
[

λk − h(λ, α, k)

ϕ(λ, α)

][4λϕ′(λ, α)

ϕ(λ, α)
+ 2αλ− 1

]

−
[

λk − h(λ, β, k)

ϕ(λ, β)

][4λϕ′(λ, β)

ϕ(λ, β)
+ 2βλ− 1

]

< 0,

which implies that for any fixed k, λ is decreasing in α. This completes the proof of

Theorem 3.6. �

Remark 3.7. In the proof of Theorem 3.6 we claimed that

lim
x→0+

∆1(x) = 0, lim
x→∞

∆1(x) < 0.

This is elementary but cumbersome, so we deferred the details here. Recall that

∆1(x) =
2kxkϕ2

4xϕ′ − (1 − 2αx)ϕ
+ h− ϕxk.

Then L’Hopital’s rule gives us

lim
x→0+

2kxkϕ2

4xϕ′ − (1− 2αx)ϕ
= lim

x→0+

2k2xk−1ϕ2 + 4kxkϕ− 4αkxkϕ2

3− αϕ − 2αx+ 2α2xϕ
= 0.

From the explicit formulae for h and ϕ we deduce that

lim
x→0+

h = 0, lim
x→0+

xkϕ = 0.

Thus lim
x→0+

∆1(x) = 0.

Again with the help of L’Hopital’s rule we obtain

lim
x→∞

2kxkϕ2

4xϕ′ − (1− 2αx)ϕ
= lim

x→∞

2k2xk−1ϕ2 + 4kxkϕ− 4αkxkϕ2

3− αϕ− 2αx+ 2α2xϕ

= lim
x→∞

2k2xk−2ϕ[(k − 1)ϕ+ 2x− 2αxϕ] + 4kxk−1(kϕ− x− 2xα)ϕ′

−2α+ 2α2ϕ+ (2α2x− α)ϕ′

= lim
x→∞

2k2xk−2ϕ[(k − 1)ϕ+ 2xϕ′] + 4kxk−1(kϕ− x− 2xα)ϕ′

−2α+ 2α2ϕ+ (2α2x− α)ϕ′
< 0.
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The last inequality holds due to the fact that

lim
x→∞

ϕ =
1

α
, lim

x→∞
ϕ′ = 0.

Moreover, Lemma 3.3 (I) states that h− xkϕ < 0, hence lim
x→∞

∆1(x) < 0.

4. Convexity for Aα,β(f, ·)

In this section, we deal with the convexity of Aα,β(f, r). First, we consider the case

when f(z) = zn is a monomial. For our purpose we need the following preliminary

results, which come directly from [10].

Lemma 4.1. Let −∞ < α < ∞, 0 6 β 6 1 and f ∈ H(D). Then r 7→ Aα,β(f, r)

strictly increases on (0, 1) unless

f =

{

constant when β < 1,

linear map when β = 1.

Proposition 4.2. Let 0 6 β 6 1 and 0 < r < 1. If α 6 0 and n ∈ N, then both

Aα,β(z
n,
√
r) and Aα,β(z

n, r) are convex functions on (0, 1). Consequently, Aα,β(f, r)

is convex for all f ∈ U(D).

P r o o f. From [9] we know that fλ(x) =
∫ x

0 t
λ(1− t)α dt. Given n ∈ N, a direct

calculation gives ΦA,β(z
n, t) = nπ

1−βt2(n−β), and by a change of variable we have

Aα,β(z
n, r) =

∫ r

0
ΦA,β(z

n, t) dµα(t)
∫ r

0
dµα(t)

=
nπ

1−β
∫ r2

0
tn−β(1− t)α dt

∫ r2

0
(1 − t)α dt

=
nπ

1−βf(n−β)(r
2)

f0(r2)
.

To prove the convexity of Aα,β(z
n,
√
r) we just need to show that the function

F (x)/ψ(x) is convex on (0, 1). Here

F (x) =

∫ x

0

tn−β(1 − t)α dt, ψ(x) =

∫ x

0

(1− t)α dt.

To simplify the displayed formulae we will write F for F (x) and ψ for ψ(x). Next, let

N = N(x) := xn−β , then F ′ = Nψ′. Obviously, both N ′ and N ′′ are nonnegative.

537



A basic calculation gives

(F

ψ

)′′

=
F ′′

ψ
− 2F ′ψ′

ψ2
− Fψ′′

ψ2
+

2F (ψ′)2

ψ3

∼ ψ[N ′ψ′ψ +N(ψ′′ψ − 2(ψ′)2)] + (2(ψ′)2 − ψ′′ψ)F

∼ (1− x)N ′ψ2 + [2− (α+ 2)ψ](F −Nψ).

Then from the proof of Theorem 6 in [6] we find Aα,β(z
n,
√
r) is convex for

r ∈ (0, 1). Since Aα,β(z
n, r) is nondecreasing (see Lemma 4.1), which we com-

bine with Lemma 3.1, we see that Aα,β(z
n, r) is also convex on (0, 1).

For f ∈ U(D), writing f(z) =
∞
∑

n=0
anz

n we can easily get that

ΦA,β(f(z), t) = (πt2)−βA(f, t) = π
1−β

∞
∑

n=0

n|an|2t2(n−β),

whence

Aα,β(f, r) =

∫ r

0
π
1−β

∑∞
n=0 n|an|2t2(n−β) dµα(t)
∫ r

0 dµα(t)

=

∑∞
n=0 |an|2

∫ r

0 (πt
2)−βA(zn, t) dµα(t)

∫ r

0 dµα(t)
=

∞
∑

n=0

|an|2Aα,β(z
n, r).

Therefore Aα,β(f, r) is also convex function on (0, 1) for all f ∈ U(D). �

Proposition 4.3. Let 0 6 β 6 1 and 0 < r < 1, and suppose α > 0. Then there

exists a positive integer n such that the function Aα,β(z
n, r) is not convex in the

interval (0, 1).

P r o o f. Note that

Aα,β(z
n, r) = nπ

1−β
f(n−β)(r

2)

f0(r2)
,

so by Lemma 3.1, in order to prove the conclusion, we need to determine the sign of

the function

∆2(x) =
(F (x)

ψ(x)

)′

+ 2x
(F (x)

ψ(x)

)′′

for the range (0, 1). Let λ = n− β > 1, then n > β + 1. A rewrite results in

F = F (x, α, λ) =

∫ x

0

tλ(1− t)α dt
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and

ψ = ψ(x, α) =

∫ x

0

(1 − t)α dt.

From the proof of Theorem 7 in [6] we know that there exists a unique point

x0 ∈ (0, 1) such that ∆2(x) > 0 for x ∈ (0, x0) and ∆2(x) < 0 for x ∈ (x0, 1).

We therefore find that Aα,β(z
n, r) is not convex on (0, 1) when n > β + 1. �

Theorem 4.4. Let 0 6 β 6 1 and 0 < r < 1. If α 6 0, then Aα,β(f, r) is a convex

function for all f ∈ U(D). Furthermore, the range α 6 0 is the best possible.

P r o o f. The result directly follows from Proposition 4.2 and Proposition 4.3.

�

We have proved that when α 6 0, Aα,β(f, r) is a convex function. Naturally, when

α > 0, is the function Aα,β(f, r) concave for the interval (0, 1)? In fact, it is not.

In what follows, for α > 0 we give an example such that the function Aα,β(f, r) is

neither convex nor concave on (0, 1). First, we need the following lemma:

Lemma 4.5. Let f ∈ H(D). Then f belongs to U(D) provided that one of the

following two conditions is valid:

f(0) = f ′(0)− 1 = 0 and
∣

∣

∣

z2f ′(z)

f2(z)
− 1

∣

∣

∣
< 1

(see [5] or [1]),

∣

∣

∣

∣

[f ′′(z)

f ′(z)

]′

− 1

2

[f ′′(z)

f ′(z)

]2
∣

∣

∣

∣

6 2(1− |z|2)−2 ∀z ∈ D

(see [4] or [3]).

Example 4.6. Let α = 1, β = 1 and f(z) = z + z2/2. Then function Aα,β(f, r)

is neither convex nor concave for r ∈ (0, 1).

P r o o f. Since

|z| < 1 < 2− |z| 6 |z + 2| ∀z ∈ D,
∣

∣

∣

∣

z2f ′(z)

f2(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

z2(1 + z)

(z + z2/2)2
− 1

∣

∣

∣

∣

=
|z|2

|z + 2|2 < 1,

therefore f ∈ U(D) due to Lemma 4.5. As f ′(z) = z + 1, we have

A(f, t) =

∫

tD

|z + 1|2 dA(z) = π

(

t2 +
t4

2

)
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and
∫ r

0

ΦA,1(f, t) dµ1(t) = r2 − r4

4
− r6

6
.

Meanwhile,

v1(r) =

∫ r

0

(1− t2) dt2 = r2 − r4

2
,

thus we get

A1,1(f, r) =
12− 3r2 − 2r4

6(2− r2)
:= P (r2).

Hence we just need to consider the convexity of P (x2) on (0, 1). Note that

∆2(x) = P ′(x) + 2xP ′′(x) =
Q(x)

3(2− x)3
,

where Q(x) = 6− 15x+ 6x2 − x3.

Note that Q′(x) = −15 + 12x − 3x2 is an open-downward parabola with its axis

of symmetry about x = 2 > 1, so Q′(x) increases on (0, 1) and thus Q′(x) < Q′(1) =

−6 < 0, hence Q(x) decreases on (0, 1). Since Q(0) = 6 > 0, Q(1) = −4 < 0,

then there exists x0 ∈ (0, 1) such that Q(x) > 0 for x ∈ (0, x0) and Q(x) < 0

for x ∈ (x0, 1). Consequently, function Aα,β(f, r) is neither convex nor concave for

r ∈ (0, 1). �

5. Convexity of Lα,β(f, ·)

Analogously, we can obtain the following results for the mixed lengths, but in this

section we need the following lemma from [10].

Lemma 5.1. Let −∞ < α < ∞, 0 6 β 6 1 and f ∈ U(D) or f(z) = a0 + anz
n

with n ∈ N. Then r 7→ Lα,β(f, r) strictly increases in the interval (0, 1) unless

f =

{

constant when β < 1,

linear map when β = 1.

Proposition 5.2. Let 0 6 β 6 1 and 0 < r < 1. If α 6 0 and n ∈ N, then both

Lα,β(z
n,
√
r) and Lα,β(z

n, r) are convex functions on (0, 1). Consequently, Lα,β(f, r)

is convex for all f ∈ U(D).
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P r o o f. The proof is similar to that of Proposition 4.2, except for the following

statement: If f ∈ U(D), then there exists g(z) =
∞
∑

n=0
bnz

n such that g is the square

root of the zero-free derivative f ′ on D and f ′(0) = g2(0), and hence

ΦL,β(f, t) = (2πt)−β

∫

tT

|f ′(z)||dz| = (2πt)−β

∫

tT

|g(z)|2|dz| = (2πt)1−β

∞
∑

n=0

|bn|2t2n.

Thus, we have completed the proof. �

Similar to Proposition 4.3 and Theorem 4.4 we then have the following two results.

Proposition 5.3. Let 0 6 β 6 1 and 0 < r < 1, and suppose α > 0. Then there

exists a positive integer n such that function Lα,β(z
n, r) is not convex on (0, 1).

Theorem 5.4. Let 0 6 β 6 1 and 0 < r < 1. If α 6 0, then Lα,β(f, r) is a convex

function for all f ∈ U(D). Furthermore, the range α 6 0 is the best possible.

Next, we give an example to verify that when α > 0, Lα,β(f, r) is neither convex

nor concave for r ∈ (0, 1).

Example 5.5. Let α = 1, β = 0 and f(z) = (z + 2)3. Then function Lα,β(f, r)

is neither convex nor concave for r ∈ (0, 1).

P r o o f. Obviously, we can obtain that f ′(z) = 3(z + 2)2 and f ′′(z) = 6(z + 2),

thus
[f ′′(z)

f ′(z)

]′

− 1

2

[f ′′(z)

f ′(z)

]2

= − 4

(z + 2)2
.

It is not hard to see that

√
2(1− |z|2) 6 2− |z| ∀z ∈ D.

So,
∣

∣

∣

∣

[f ′′(z)

f ′(z)

]′

− 1

2

[f ′′(z)

f ′(z)

]2
∣

∣

∣

∣

=
4

|z + 2|2 6
4

(2− |z|)2 6
2

(1− |z|2)2 .

Then we know f ∈ U(D) via Lemma 4.5. If we continue the computation, we have

L(f, t) =

∫ 2π

0

|f ′(teiθ)|t dθ = 6πt(t2 + 4)

and
∫ r

0

ΦL,β(f, t) dµ1(t) = 12π

(4

3
r3 − 3

5
r5 − 1

7
r7
)

.
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Combining this with v1(r) = r2 − r4/2 we get

L1,β(f, r) =
24π(140r − 63r3 − 15r5)

105(2− r2)
.

For our purpose we just need to determine the convexity of the function

R(x) =
140x− 63x3 − 15x5

2− x2
.

Note that

R′(x) =
280− 238x2 − 77x4 + 45x6

(2− x2)2

and

R′′(x) =
6x(28− 182x2 + 90x4 − 15x6)

(2− x2)3
=

6xT (x)

(2 − x2)3
,

where T (x) = 28− 182x2 + 90x4 − 15x6.

If we let s = x2, then we get

T (x) = U(s) = 28− 182s+ 90s2 − 15s3.

Since U ′(s) = −182 + 180s − 45s2 is an open-downward parabola with its axis of

symmetry being s = 2 > 1, we get U ′(s) increases in the interval (0, 1), whence

U ′(s) < U ′(1) = −47 < 0. Therefore U(s) decreases in the range (0, 1). Obviously,

we also have the equalities

U(0) = 28, U(1) = −79.

Summing up, we therefore find that there exists s0 ∈ (0, 1) such that U(s) > 0 for

s ∈ (0, s0) and U(s) < 0 for s ∈ (s0, 1). Then there exists x0 ∈ (0, 1) such that

R′′(x) > 0 for x ∈ (0, x0) and R
′′(x) < 0 for x ∈ (x0, 1). Consequently, Lα,β(f, r) is

neither convex nor concave on (0, 1). �
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