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Abstract. Based on the results in A. Feintuch (1989), this work sheds light upon some
interesting properties of strongly asymptotically Toeplitz and Hankel operators, and rela-
tions between these two classes of operators. Indeed, among other things, two main results
here are (a) vanishing Toeplitz and Hankel operators forms an ideal, and (b) finding the
distance of a strongly asymptotically Toeplitz operator from the set of vanishing Toeplitz
operators.
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1. Introduction

Let T be the unit circle in the complex plane and L2 = L2(T) be the Hilbert

space of (equivalence classes of) square-integrable functions on T with respect to the

normalized Lebesgue measure dθ/2π, so that the measure of the entire circle is 1.

The L2-inner product is given by

〈f, g〉 :=
1

2π

∫ 2π

0

f(eiθ)g(eiθ) dθ.

Therefore, the L2-norm of a function f ∈ L2 is given by

‖f‖ :=

(
1

2π

∫ 2π

0

|f(eiθ)|2 dθ

)1/2

.

For each integer n let en(e
iθ) := einθ be regarded as a function on T. It is well-

known that {en}n∈Z forms an (monomial) orthonormal basis for L
2. Now, we con-

sider the (closed) subspace H2 of L2 spanned by {en}
∞

n=0, which consists of all
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L2-functions whose negative Fourier coefficients vanish:

H2 := {f ∈ L2 : 〈f, en〉L2 = 0 for n < 0},

that is, f ∈ H2 if its Fourier series is of the form
∞∑

n=0
ane

inθ with
∞∑

n=0
|an|

2 < ∞.

On the subspace spanned by {e0, e1, . . . , en}, i.e.
n∨

i=0

ei, we introduce the unitary

operator Jn given by

Jnei := en−i for 0 6 i 6 n.

The operator Jn can then be extended to H2 by defining it to be zero on the

orthogonal complement of
n∨

i=0

ei, and we will denote the resulting operator on H2

by Jn as well.

For φ ∈ L∞(T), the (classical) Toeplitz operator Tφ and the (classical) Hankel

operator Hφ with symbol φ are defined as

Tφ : H2 → H2, f 7→ P (φf),

Hφ : H2 → L2 ⊖H2, f 7→ (I − P )(φf),

where P and I stand for the orthogonal projection from L2 onto H2 and the identity

operator, respectively. It is also known that Toeplitz and Hankel operators can be

characterized by the unilateral forward shift operator U , defined on the monomial

basis as Uen = en+1, and its Hilbert adjoint operator U
∗ (called unilateral backward

shift), in an operator equation as

T is a Toeplitz operator on H2 ⇔

Toeplitz equation
︷ ︸︸ ︷

U∗TU = T , see [2],

H is a Hankel operator on H2 ⇔ U∗H = HU
︸ ︷︷ ︸

Hankel equation

, see [4].

Now, to relate the operator Jn to U and U∗, we introduce another operator,

Pn on H2, which is the orthogonal projection onto
n∨

i=0

ei and is defined by

(Pnf)(ζ) :=

n∑

i=0

aiζ
i,

where
∞∑

i=0

aiei is the Fourier expansion of f .

Some straightforward consequences can be easily concluded:

(a) Pn
SOT

// I (i.e. Pn converges to I in the Strong Operator Topology (SOT) as

n → ∞).
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(b) Jn = PnJn = JnPn and JnJn = Pn for n = 0, 1, 2, . . .

(c) UnU∗n = I − Pn−1 for all n > 1.

The notion of asymptotic Toeplitzness was first introduced by Barría and Halmos

in [1], as a natural (asymptotic) generalization of Toeplitzness on H2 = H2(T).

According to them, an operator1 T ∈ B(H2) is (strongly) asymptotically Toeplitz if

the Toeplitz sequence of T , given by

(Tn(T ))n∈N := (U∗nTUn)n∈N,

converges in the strong operator topology (SOT).

In 1989, Feintuch [3] extended their definition considering other usual topologies

on B(H2). Thus, we have three flavors of asymptotic Toeplitzness: uniform, strong

and weak, and each of the first two implies the next. More precisely, an opera-

tor T ∈ B(H2) is called uniformly asymptotically Toeplitz, strongly asymptotically

Toeplitz, and weakly asymptotically Toeplitz if its Toeplitz sequence is convergent in

the uniform operator topology (UOT), the strong operator topology (SOT), and the

weak operator topology (WOT), respectively. For each of them the limit-operator of

the sequence (Tn(T ))n∈N, which we generally denote by T (T ), is a Toeplitz operator,

whose symbol is called the asymptotic symbol of T and is usually denoted by σ(T ).

It is worth mentioning that the class of uniformly asymptotically Toeplitz oper-

ators forms a (uniformly closed) subspace of B(H2), and it contains both Toeplitz

and compact operators. Hence, any compact perturbation of a Toeplitz operator

belongs to the set of uniformly asymptotically Toeplitz operators. But surprisingly,

Feintuch proved that these are the only ones [3], Theorem 4.1:

Theorem 1.1 (Feintuch’s characterization of uniform asymptotic Toeplitz-

ness). A bounded operator on H2 is uniformly asymptotically Toeplitz if and only

if it is a compact perturbation of a Toeplitz operator.

Hence, if the difference of a bounded operator on H2 from any Toeplitz operator is

not a compact operator, then it does not respect uniform asymptotical Toeplitzness.

Following Barría and Halmos in [1], Feintuch introduced in [3] the notion of asymp-

totic Hankelness. According to him, an operator T ∈ B(H2) is asymptotically Hankel

if the Hankel sequence of T , given by

(Hn(T ))n∈N := (JnTU
n+1)n∈N.

It is not immediately obvious that the limit-operator of sequence (Hn(T ))n∈N is

a Hankel operator. The interested reader is referred to Feintuch’s work, where he

1Here, B(H) stands for the C∗-algebra of all bounded operators on a Hilbert space H .
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showed, for example, that the limit-operator of Hankel sequence of an operator in

WOT is a Hankel operator [3], Lemma 3.1.

For the rest of this paper, we introduce the following subspaces of B(H2):

HS := {T ∈ B(H2) : (Hn(T ))n∈N is convergent in SOT},

H
0
S := {T ∈ B(H2) : Hn(T )

SOT
// 0 as n → ∞},

TS := {T ∈ B(H2) : (Tn(T ))n∈N is convergent in SOT},

T
0
S := {T ∈ B(H2) : Tn(T )

SOT
// 0 as n → ∞},

where we shall call each element in H0
S and T0

S a vanishing Hankel operator and

vanishing Toeplitz operator, respectively.

Remark 1.2. Here we list some basic and main results of elements in TS and T
0
S :

(1) T0
S contains all compact operators. Indeed, for a compact operator K we have

KUnej
SOT

// 0 (as n → ∞ and for j = 0, 1, 2, . . .).

(2) T0
S also contains all Hankel operators, since U∗n SOT

// 0, for a Hankel opera-

tor H we have

Tn(H)ej = (U∗nHUn)ej = (U∗2nH)ej
SOT

// 0 (as n → ∞ and for j = 0, 1, 2, . . .).

(3) TS contains the norm-closed algebra generated by all Toeplitz operators and all

Hankel operators together [1], Theorem 4.

(4) Obviously, any Toeplitz operator is in TS . But those elements in the norm-

closed algebra generated by all Toeplitz operators belong to T0
S which are in

the commutator ideal2 of the same algebra [1], Theorem 7.

2. Main results

The following statement shows that the set of strongly asymptotically Toeplitz

operators is topologically well-behaved:

2 The commutator ideal of a C∗-algebra A is the closed ideal generated by the commutators
ab− ba for all a, b ∈ A.

474



Proposition 2.1. TS is uniformly closed in B(H2).

P r o o f. Let (Tk)k∈N be a uniformly convergent sequence in TS to an operator

T ∈ B(H2). We shall show that T ∈ TS . Since ‖Tn(T )‖ 6 ‖T ‖ for each n it suffices

to show that for f ∈ H2, the sequence (Tn(T )f)n∈N is a Cauchy sequence. So fix

f ∈ H2 \ {0}, ε > 0, and choose k so that ‖T − Tk‖ < ε/4‖f‖. Then

‖[Tn(T )− Tm(T )]f‖ = ‖Tn(T − Tk)f + [Tn(Tk)− Tm(Tk)]f + Tm(Tk − T )f‖

6 ‖Tn(T − Tk)f‖+ ‖[Tn(Tk)− Tm(Tk)]f‖+ ‖Tm(Tk − T )f‖

6 ‖U∗n(T − Tk)U
n‖‖f‖+ ‖[Tn(Tk)− Tm(Tk)]f‖

+ ‖U∗m(T − Tk)U
m‖‖f‖

6 2‖T − Tk‖‖f‖+ ‖[Tn(Tk)− Tm(Tk)]f‖.

Since Tk ∈ TS , there exists a natural number N such that for n,m > N ,

‖[Tn(Tk)− Tm(Tk)]f‖ < ε/2.

Thus,

‖[Tn(T )− Tm(T )]f‖ < ε,

and the proof is complete. �

The next result, along with [3], Lemma 6.1, shows that vanishing Toeplitz and

Hankel operators form a left ideal.

Proposition 2.2. If T ∈ T0
S ∩H0

S , then AT ∈ T0
S for any A ∈ B(H2).

P r o o f. For n = 1, 2, . . . we have

Tn(AT ) = U∗nATUn

= U∗nA(I − Pn−1)TU
n + U∗nAPn−1TU

n

= (U∗nAUn)(U∗nTUn) + (U∗nAJn−1)(Jn−1TU
n)

= Tn(A)Tn(T ) + (Hn−1(A
∗))∗Hn−1(T ).

Since ‖Tn(A)‖ and ‖(Hn−1(A
∗))∗‖ are uniformly bounded by ‖A‖, we have the

required result. �

The following result gives a sufficient condition for a vanishing Toeplitz operator

to be a vanishing Hankel operator.

Proposition 2.3. Let T ∈ T0
S be such that

TUn SOT
// 0 as n → ∞.

Then T ∈ H0
S .
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P r o o f. For any f ∈ H2 and n = 1, 2, . . . we have

‖TUn(f)‖2 = ‖Pn−1TU
n(f)‖2 + ‖(I − Pn−1)TU

n(f)‖2

= ‖Jn−1TU
n(f)‖2 + ‖U∗nTUn(f)‖2

= ‖(Hn−1(T ))f‖
2 + ‖(Tn(T ))f‖

2.

Thus, if Tn(T )
SOT

// 0 and TUn SOT
// 0 as n → ∞, it follows that Hn(T )

SOT
// 0,

i.e. T ∈ H0
S . �

It is obvious that the product of two Toeplitz operators is not generally Toeplitz,

however, such operators are in the norm-closed algebra generated by all Toeplitz

operators and all Hankel operators together, whose limit operator may be obtained

as a differentiation formula on this algebra.

Proposition 2.4. If ϕ, φ ∈ L∞(T), then T (TϕTφ) = TϕTφ +Hϕ∗Hφ.

P r o o f. For n = 1, 2, 3 . . .,

Tn(TϕTφ) = U∗nTϕTφU
n

= U∗nTϕ(I − Pn−1)TφU
n + U∗nTϕPn−1TφU

n

= U∗nTϕU
nU∗nTφU

n + (U∗nTϕJn−1)(Jn−1TφU
n)

= TϕTφ + (Jn−1TϕU
n)∗Hn−1(Tφ)

= TϕTφ + (Hn−1(Tϕ))
∗Hn−1(Tφ).

Since for a Toeplitz operator Tf , Hn(Tf ) = PnHf , which is a finite rank, and

Hn(Tf ) converges strongly to Hf , we have

Tn(TϕTφ) = TϕTφ + (Pn−1Hϕ)
∗Pn−1Hφ

= TϕTφ +Hϕ∗ Pn−1Hφ
SOT

// TϕTφ +Hϕ∗Hφ ,

where ϕ∗(eiθ) = ϕ(e−iθ). This gives the required formula. �

2.1. Distance formula. Now, we give a distance formula of asymptotically

Toeplitz operators from the set of vanishing Toeplitz operators. But before stat-

ing it, let us bring the following simple fact to our attention.

Lemma 2.5. If T ∈ TS , then

‖T (T )‖ 6 lim inf
n→∞

‖Tn(T )‖ 6 ‖T ‖,

where T (T ) stands for the limit Toeplitz operator of (Tn(T ))n∈N in the strong oper-

ator topology.
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P r o o f. Since T ∈ TS , Tn(T )
SOT

// T (T ). Hence, for every f ∈ H2 with ‖f‖ = 1

we have

‖(T (T ))f‖ 6 ‖(Tn(T )− T (T ))f‖+ ‖Tn(T )‖,

for n = 0, 1, 2, . . . Therefore

‖(T (T ))f‖ 6 lim inf
n→∞

‖Tn(T )‖.

This in turn implies that

‖T (T )‖ 6 lim inf
n→∞

‖Tn(T )‖.

Since ‖Tn(T )‖ 6 ‖T ‖, the proof is complete. �

Theorem 2.6. For T ∈ TS, dist(T,T
0
S) = ‖σ(T )‖, where Tn(T )

SOT
// Tσ(T ).

P r o o f. Since T ∈ TS , the sequence Tn(T ) converges strongly to a Toeplitz op-

erator Tσ(T ) for some σ(T ) ∈ L∞(T), and thus (T − Tσ(T )) ∈ T0
S. Therefore

‖σ(T )‖ = ‖Tσ(T )‖ = ‖T − (T − Tσ(T ))‖ > dist(T,T0
S).

For the opposite inequality, considering L ∈ T0
S along with Lemma 2.5, we have

‖T (T )‖ = ‖T (T − L)‖ 6 ‖T − L‖.

Recall that T (T ), the limit-operator of the sequence (Tn(T ))n∈N, is simply Tσ(T ).

Thus,

‖σ(T )‖ = ‖T (T )‖ 6 inf{‖T − L‖ : L ∈ T0
S} = dist(T,T0

S),

and the proof is complete. �
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