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Abstract. We consider Littlewood-Paley functions associated with a non-isotropic
dilation group on R

n. We prove that certain Littlewood-Paley functions defined by
kernels with no regularity concerning smoothness are bounded on weighted Lp spaces,
1 < p < ∞, with weights of the Muckenhoupt class. This, in particular, generalizes a result
of N.Rivière (1971).
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1. Introduction

Let P be an n× n real matrix such that

〈Px, x〉 > 〈x, x〉 ∀x ∈ R
n,

where 〈x, y〉 = x1y1 + . . . + xnyn is the inner product in Rn with x = (x1, . . . , xn),

y = (y1, . . . , yn). Define a dilation group {δt}t>0 on Rn by δt = tP = exp((log t)P ).

Let

(1.1) gψ(f)(x) =

(∫ ∞

0

|f ∗ ψt(x)|
2 dt

t

)1/2

be the Littlewood-Paley function on Rn, where ψt(x) = t−γψ(δ−1
t x) with γ being

trace P and ψ a function in L1(Rn) such that

(1.2)

∫

Rn

ψ(x) dx = 0.
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When P = E (the identity matrix) and gψ is defined with ψt(x) = t−nψ(t−1x)

in (1.1), it is known that if we further assume that |ψ(x)| 6 C(1+ |x|)−n−ε for some

ε > 0, then

(1.3) ‖gψ(f)‖p 6 Cp‖f‖p, 1 < p <∞,

where ‖f‖p = ‖f‖Lp (see [16] and [5], [8], [10], [11], [17] for related results; also [6] for

a result on the homogeneous groups including the Heisenberg group). We refer to [1]

for an earlier result, which requires in addition certain regularity on ψ to get (1.3).

The reverse inequality of (1.3) also holds if a certain non-degeneracy condition on ψ

is further assumed (see [13], Theorem 3.8, and also [19]).

In this note we shall prove, in particular, a result analogous to (1.3) in the case of

the general dilation group {δt} (see Theorem 1.1 below). To establish the general-

ization, we need an analogue of Lemma 3 of [16] (Lemma 3.4). It is to be noted that

to prove Lemma 3.4 similarly to Lemma 3 of [16] we have a difficulty in the general

case, which does not occur even in the case where P is diagonal. As can be seen

in the proof of Lemma 3.4, this will be overcome by a method different from that

of [16].

It is known that |δtx| is strictly increasing as a function of t on R+ = (0,∞) for

x 6= 0, where |x| = 〈x, x〉1/2. Define a norm function r(x), x 6= 0, to be the unique

positive real number t such that |δt−1x| = 1, while let r(0) = 0. Then r(δtx) = tr(x)

for all t > 0 and x ∈ Rn. Further, the following properties of r(x) and δt are known

(see [3], [4]):

(a) r(x + y) 6 r(x) + r(y), r(−x) = r(x);

(b) r(x) 6 1 if and only if |x| 6 1;

(c) if |x| 6 1, |x| 6 r(x);

(d) |x| > r(x) for |x| > 1;

(e) if t > 1, |δtx| > t|x| for all x ∈ Rn;

(f) |δtx| 6 t|x| for all x ∈ Rn if 0 < t 6 1.

Similarly, we can also consider a norm function r∗(x) associated with the dilation

group {δ∗t }t>0, where δ
∗
t denotes the adjoint of δt; we have properties of r

∗(x) and δ∗t
analogous to those of r(x) and δt mentioned above. A polar coordinates expression

for the Lebesgue measure

∫

Rn

ϕ(x) dx =

∫ ∞

0

∫

Sn−1

ϕ(δtθ)t
γ−1µ(θ) dσ(θ) dt

will be used in the following, where µ is a strictly positive C∞ function on the unit

sphere Sn−1 = {x : |x| = 1} and dσ is the Lebesgue surface measure on Sn−1. See

also [14], [21] for relevant results.
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We consider a pointwise majorant of ψ defined as

(1.4) Hψ(x) = h(r(x)) = sup
r(y)>r(x)

|ψ(y)|

and recall two seminorms from [16]:

Bε(ψ) =

∫

|x|>1

|ψ(x)||x|ε dx for ε > 0,(1.5)

Cu(ψ) =

(∫

|x|<1

|ψ(x)|u dx

)1/u

for u > 1.(1.6)

Let

B(x, t) = {y ∈ R
n : r(x − y) < t}

be the ball with respect to r in Rn with center x and radius t; such a ball is also

called an r-ball. We say that a weight function w belongs to the weight class Ap,

1 < p <∞, of Muckenhoupt if the quantity

[w]Ap
= sup

B

(
|B|−1

∫

B

w(x) dx

)(
|B|−1

∫

B

w(x)−1/(p−1) dx

)p−1

is finite, where the supremum is taken over all r-balls B in Rn and |B| denotes

the Lebesgue measure of B. Let M(f) be the Hardy-Littlewood maximal function

defined as

M(f)(x) = sup
x∈B

|B|−1

∫

B

|f(y)| dy,

where the supremum is taken over all r-balls B in Rn containing x. Then we define

the class A1 to be the family of weight functions w such that M(w) 6 Cw almost

everywhere. The infimum of all such C is defined to be [w]A1
. We refer to [2], [12]

for relevant results on Ap.

We denote by Lpw the weighted L
p space of all functions f satisfying

‖f‖Lp
w
= ‖f‖p,w =

(∫

Rn

|f(x)|pw(x) dx

)1/p

<∞.

In this note, we shall prove the following.

Theorem 1.1. Let ψ ∈ L1(Rn). Let Hψ , Bε(ψ) and Cu(ψ) be as in (1.4), (1.5)

and (1.6), respectively. We assume that ψ satisfies (1.2) and that

(1) there exists ε > 0 such that Bε(ψ) <∞;

(2) there exists u > 1 such that Cu(ψ) <∞;

(3) Hψ ∈ L1(Rn).

Then gψ defined by (1.1) is bounded on L
p
w for all p ∈ (1,∞) and w ∈ Ap.
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Special cases of Theorem 1.1 are treated in [14], Theorem (1.4), page 269. Theo-

rem 1.1 follows from the next result.

Theorem 1.2. Let ψ ∈ L1(Rn). Suppose that ψ satisfies (1.2) and (1), (2) of

Theorem 1.1. We also assume that there exist a non-negative, non-increasing func-

tion h on R+ with h(r(x)) ∈ L1(Rn) and a non-negative function Ω in Lq(Sn−1) for

some q, 2 6 q 6 ∞, such that

|ψ(x)| 6 h(r(x))Ω(x′), x′ = δr(x)−1x.

Then

(1) gψ is bounded on L
p
w if p > q′ and w ∈ Ap/q′ , where q

′ denotes the exponent

conjugate to q;

(2) gψ is bounded on L
2
w and L

2
w−1 if w ∈ A2/q′ .

If we assume that ψ is compactly supported, then we have the following results.

Theorem 1.3. Let ψ ∈ L1(Rn) with (1.2). Suppose that ψ is compactly sup-

ported. Then we have the following.

(1) If ψ ∈ Lq(Rn) for some q > 2, then

(α) gψ is bounded on L
p
w for p > q′, w ∈ Ap/q′ ;

(β) gψ is bounded on L
2
w and L

2
w−1 for w ∈ A2/q′ .

(2) If ψ ∈ Lq(Rn) for some q ∈ (1, 2], then gψ is bounded on L
2
w and L

2
w−1 if

wq
′/2 ∈ A1.

Corollary 1.4. Let ψ be a function of compact support in L1(Rn) with (1.2).

If we further suppose that ψ ∈ Lq(Rn) for some q ∈ (1, 2], then gψ is bounded on

Lp(Rn) if 0 < 1/p < 1/2 + 1/q′.

When P = E, part (2) of Theorem 1.3 is due to [8]; so is Corollary 1.4 for p ∈ (1, 2),

where its optimality is also shown.

We denote by ψ̂ the Fourier transform defined as

ψ̂(ξ) = F (ψ)(ξ) =

∫

Rn

ψ(x)e−2πi〈x,ξ〉 dx.

Let Z denote the set of integers and S (Rn) the Schwartz space of rapidly decreasing

smooth functions on Rn.

To prove the theorems above we apply the following result.
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Proposition 1.5. Let v ∈ A2. Let ψ ∈ L1(Rn) with (1.2). If we further assume

that

(1.7)

∫ 2

1

|ψ̂(δ∗t ξ)|
2 dt 6 Cmin(|ξ|ε, |ξ|−ε) ∀ ξ ∈ R

n \ {0}

with some ε ∈ (0, 1) and

(1.8) sup
k∈Z

∫

Rn

∫ 2

1

|ψt2k ∗ f(x)|2 dt v(x) dx 6 Cv‖f‖
2
L2

v
∀ f ∈ S (Rn),

then gψ is bounded on L
2
v.

Remark 1.6. It is known and also can be seen from our proof of Corollary 1.4

for p ∈ (1, 2] below that gψ is bounded on L
p for every p with 1 < p 6 2 if gψ is

bounded on L2
w−1 for all w ∈ A1. This can be applied to gψ of Theorem 1.2 and

part (1) of Theorem 1.3.

Remark 1.7. Our results in this note may be stated also in terms of the non-

isotropic dilations of [21] as in [18], which readers would infer easily.

In Section 2 we shall prove Proposition 1.5 by applying a well-known discrete

parameter Littlewood-Paley decomposition with respect to the dilation group {δ∗t }.

The method is analogous to the one in the isotropic case of [16]. We include the

proof for the sake of completeness.

We shall prove Theorem 1.2 in Section 3. To prove part (2) we shall apply Propo-

sition 1.5. Let

(1.9) Jε(ψ) = sup
|ξ|=1

∫∫

Rn×Rn

|ψ(x)ψ(y)||〈ξ, P (x − y)〉|−ε dxdy.

To use Proposition 1.5, we need to show Jε(ψ) < ∞ for some ε > 0 under the

assumptions of Theorem 1.2. A proof of this may be similar to the one for the case

P = E, which is given in [16], if P is diagonal. However, in the general case, we need

different methods that can be found in the proof of Lemma 3.4 below, as mentioned

above. If Jε(ψ) < ∞, we can deduce the decay estimate
∫ 2

1 |ψ̂(δ∗t ξ)|
2 dt 6 C|ξ|−ε,

ε > 0, from certain trigonometric integral estimates in [18] (Lemma 3.2). We shall

also apply an observation of [8] concerning duality in proving part (2). Part (1)

of Theorem 1.2 follows from part (2) by the extrapolation theorem of Rubio de

Francia [15].

In Section 4 we shall prove Theorem 1.3 and Corollary 1.4. Part (1) of Theorem 1.3

will be shown along the lines of the proof of Theorem 1.2 by using the compactness

of the support of ψ. We shall apply methods of Duoandikoetxea [8] in proving the
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weighted boundedness of part (2). To prove Corollary 1.4 for p ∈ (1, 2), we shall

apply Theorem 1.3 (2) and methods of [8]. The proof for p ∈ [2,∞) will be given by

adapting methods of [11], which is based on the use of vector valued inequalities.

2. Proof of Proposition 1.5

Let f ∈ S (Rn). We take Φ ∈ S (Rn) such that supp(Φ) ⊂ {1/2 6 r∗(ξ) 6 2} and

∞∑

j=−∞

Φ(δ∗2j ξ) = 1 for ξ 6= 0.

Let

D̂j(f)(ξ) = Φ(δ∗2j ξ)f̂(ξ), j ∈ Z.

We use the decomposition

f ∗ ψt(x) =

∞∑

j=−∞

∞∑

k=−∞

Dj+k(f ∗ ψt)(x)χ[2k,2k+1)(t) =

∞∑

j=−∞

Aj(x, t),

where χE denotes the characteristic function of a set E and

Aj(x, t) =

∞∑

k=−∞

Dj+k(f ∗ ψt)(x)χ[2k,2k+1)(t).

We have

gψ(f)(x) 6
∞∑

j=−∞

Sj(f)(x)

with

Sj(f)(x) =

(∫ ∞

0

|Aj(x, t)|
2 dt

t

)1/2

.

Note that

‖Sj(f)‖
2
2 =

∞∑

k=−∞

∫

Rn

∫ 2k+1

2k
|Dj+k(f ∗ ψt)(x)|

2 dt

t
dx.

Thus, if we set Uj = {2−1−j 6 r∗(ξ) 6 21−j}, Plancherel’s theorem and (1.7) imply

‖Sj(f)‖
2
2 6

∞∑

k=−∞

C

∫

Uj+k

(∫ 2k+1

2k
|ψ̂(δ∗t ξ)|

2 dt

t

)
|f̂(ξ)|2 dξ

6

∞∑

k=−∞

C

∫

Uj+k

min(|δ∗2kξ|
ε, |δ∗2kξ|

−ε)|f̂(ξ)|2 dξ.
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Applying the δ∗t analogues of (e), (f) of Section 1, we have

min(|δ∗2kξ|
ε, |δ∗2kξ|

−ε) 6 C2−ε|j| for ξ ∈ Uj+k.

Thus

(2.1) ‖Sj(f)‖
2
2 6 C2−ε|j|

∞∑

k=−∞

∫

Uj+k

|f̂(ξ)|2 dξ 6 C2−ε|j|‖f‖22,

where the last inequality follows from the Plancherel theorem and the fact that∑
χUj

(ξ) 6 C with a constant C independent of ξ ∈ Rn.

While, by (1.8) we see that

‖Sj(f)‖
2
2,v =

∞∑

k=−∞

∫

Rn

∫ 2k+1

2k
|Dj+k(f) ∗ ψt(x)|

2 dt

t
v(x) dx

6

∞∑

k=−∞

C

∫

Rn

|Dj+k(f)(x)|
2v(x) dx.

Since v ∈ A2, by the L
2
v boundedness of the discrete Littlewood-Paley operator, we

have
∞∑

k=−∞

∫

Rn

|Dj+k(f)(x)|
2v(x) dx 6 C‖f‖22,v.

Thus

(2.2) ‖Sj(f)‖
2
2,v 6 C‖f‖22,v.

Interpolation with change of measures between the estimates (2.1) and (2.2) im-

plies that

(2.3) ‖Sj(f)‖2,vθ 6 C2−ε(1−θ)|j|/2‖f‖2,vθ

with θ ∈ (0, 1). Choosing θ close to 1 such that v1/θ ∈ A2, by (2.3) we have

‖Sj(f)‖2,v 6 C2−ε(1−θ)|j|/2‖f‖2,v.

From this and the triangle inequality it follows that

‖gψ(f)‖2,v 6

∞∑

j=−∞

‖Sj(f)‖2,v 6 C‖f‖2,v.

This completes the proof of Proposition 1.5.
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3. Proof of Theorem 1.2

We first state some results needed to show Theorem 1.2 from Proposition 1.5.

Lemma 3.1. Let ψ ∈ L1(Rn). Suppose that ψ satisfies (1.2) and condition

Bε(ψ) <∞ for some ε ∈ (0, 1]. Then

∫ 2

1

|ψ̂(δ∗t ξ)|
2 dt 6 C|ξ|2ε for ξ ∈ R

n.

P r o o f. We have |ψ̂(ξ)| 6 C|ξ|ε for all ξ ∈ Rn (see [16] for a proof). By this

and the δ∗t analogue of (f) of Section 1, we have the estimates as claimed. �

Lemma 3.2. Let L be the degree of the minimal polynomial of P . Then for

η, ζ ∈ Rn we have

∣∣∣∣
∫ 2

1

exp(i〈δ∗t η, ζ〉)
dt

t

∣∣∣∣ 6 C|〈η, Pζ〉|−1/L

for some positive constant C independent of η and ζ.

This is from [18]. Let Jε(ψ) be as in (1.9). Applying Lemma 3.2, we have the next

result.

Lemma 3.3. Let ψ ∈ L1(Rn). Suppose that Jε(ψ) <∞ with ε ∈ (0, 1/L]. Then

∫ 2

1

|ψ̂(δ∗t ξ)|
2 dt 6 C|ξ|−ε ∀ ξ ∈ R

n \ {0}.

P r o o f. We write

∫ 2

1

|ψ̂(δ∗t ξ)|
2 dt =

∫∫

Rn×Rn

ψ(x)ψ(y)

∫ 2

1

exp(−2πi〈δ∗t ξ, x− y〉) dt dxdy.

Then Lemma 3.2 implies that

∫ 2

1

|ψ̂(δ∗t ξ)|
2 dt 6 C

∫∫

Rn×Rn

|ψ(x)ψ(y)|min(1, |〈ξ, P (x− y)〉|−1/L) dxdy.

We easily see that the right-hand side is bounded by CJε(ψ)|ξ|
−ε for ε ∈ (0, 1/L].

This completes the proof. �
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A sufficient condition for Jε(ψ) <∞ is given in the next result.

Lemma 3.4. Let h be a non-negative function on R+ and set H(x) = h(r(x)).

Suppose that H ∈ L1(Rn)∩L∞(Rn). Let Ω be a non-negative function in Lv(Sn−1)

for some v > 1. For a non-negative function F on Rn we assume that Cu(F ) < ∞

for some u > 1 and that

F (x) 6 h(r(x))Ω(x′) for |x| > 1.

Then we have Jε(F ) <∞ for ε < min(1/u′, 1/(2v′)).

P r o o f. We define

Lε(f, g; ξ) =

∫∫

Rn×Rn

f(x)g(y)|〈ξ, P (x − y)〉|−ε dxdy,

where f , g are non-negative functions and ξ ∈ Sn−1. We write F = E + G, where

E(x) = F (x) if |x| < 1 and E(x) = 0 otherwise. We note that

Lε(F, F ; ξ) = Lε(E,E; ξ) + 2Lε(E,G; ξ) + Lε(G,G; ξ).

To prove the lemma it suffices to show that

sup
ξ∈Sn−1

Lε(E,E; ξ) <∞,(3.1)

sup
ξ∈Sn−1

Lε(E,G; ξ) <∞,(3.2)

sup
ξ∈Sn−1

Lε(G,G; ξ) <∞(3.3)

when ε < min(1/u′, 1/(2v′)).

By Hölder inequality and rotation, we see that

Lε(E,E; ξ) 6 CCu(F )
2

(∫∫

|x|<1,|y|<1

|x1 − y1|
−εu′

dxdy

)1/u′

<∞,

which proves (3.1).

Let ζ = P ∗ξ. Then if Y = E or Y = G, we see that

Lε(Y,G; ξ) 6

∫

Rn

Y (x)

(∫

Rn

G(y)|〈ζ, x − y〉|−ε dy

)
dx.

We prove

(3.4) sup
x∈Rn,ξ∈Sn−1

∫

Rn

G(y)|〈ζ, x − y〉|−ε dy <∞

if ε < 1/(2v′), which will imply (3.2) and (3.3) since Y ∈ L1.
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If n = 1, we have

∫

R

G(y)|〈ζ, x − y〉|−ε dy 6 C

∫

|x−y|>1

G(y)|x − y|−ε dy + C

∫

|x−y|61

G(y)|x− y|−ε dy

6 C‖H‖1 + C‖H‖∞

∫

|y|61

|y|−ε dy,

which proves (3.4) when n = 1.

Let n > 2. For x ∈ Rn, s > 0, let

Iε(ζ, x, s) =

∫

Sn−1

|〈ζ, x− δsω〉|
−εΩ(ω)µ(ω) dσ(ω).

Then by Hölder inequality

Iε(ζ, x, s) 6 C(Nεv′ (ζ, x, s))
1/v′‖Ω‖v,

where

Nε(ζ, x, s) =

∫

Sn−1

|〈ζ, x − δsω〉|
−εµ(ω) dσ(ω).

Thus

(3.5)

∫

Rn

G(y)|〈ζ, x − y〉|−ε dy 6

∫ ∞

1

h(s)sγ−1Iε(ζ, x, s) ds

6 C‖Ω‖v

∫ ∞

1

h(s)sγ−1(Nεv′(ζ, x, s))
1/v′ ds.

We shall see that

(3.6) sup
x∈Rn

Nε(ζ, x, s) 6 C|δ∗sζ|
−ε

if 0 < ε < 1/2. Then (3.4) follows from (3.5) and (3.6). We can deduce (3.6) from

Lemma 3.5 below. This completes the proof. �

The following result is used in the proof of Lemma 3.4.

Lemma 3.5. Let n > 2 and η ∈ Sn−1. Suppose that 0 < δ < 1/2. Then

sup
a∈R

∫

Sn−1

|a− 〈η, ω〉|−δ dσ(ω) 6 C

with a constant C independent of η.

346



P r o o f. By rotation, we may assume that η = (1, 0, . . . , 0). Thus we have to

estimate

I(a) =

∫

Sn−1

|a− ω1|
−δ dσ(ω), a ∈ R.

We see that

I(a) = cn−2

∫
π

0

|a− cos θ|−δ(sin θ)n−2 dθ 6 cn−2

∫
π

0

|a− cos θ|−δ dθ,

where cn−2 = 2π
(n−1)/2/Γ((n− 1)/2). Thus the conclusion follows from an elemen-

tary fact that

sup
a∈R

∫
π

0

|a− cos θ|−δ dθ <∞ if 0 < δ < 1/2.

�

Let

MΩ(f)(x) = sup
r>0

r−γ
∫

r(y)<r

|f(x− y)|Ω(δr(y)−1y) dy,

where Ω is a non-negative function on Sn−1.

We also need the following result (see [7]) for proving Theorem 1.2.

Lemma 3.6. Let Ω ∈ Lq(Sn−1), Ω > 0. ThenMΩ is bounded on L
2
w if q > 2 and

w ∈ A2/q′ .

P r o o f of Theorem 1.2. Applying the assumed pointwise majorization of ψ, we

can prove that

sup
t>0

|ψt ∗ f(x)| 6 CMΩ(f)(x)

as in [20], pages 63–64. Thus, Lemma 3.6 implies

(3.7)

∫

Rn

|ψt ∗ f(x)|
2v(x) dx 6 C

∫

Rn

|f(x)|2v(x) dx

for v = w with w ∈ A2/q′ and also for v = w−1 with w ∈ A2/q′ by duality with

a constant C independent of t > 0. From (3.7) we see that (1.8) holds for ψ of

Theorem 1.2 for v = w and v = w−1 with w ∈ A2/q′ .

Also by Lemma 3.4 we have Jε(ψ) < ∞ for ε < min(1/u′, 1/(2q′)). Here we note

that the function h of Theorem 1.2 is bounded on [1,∞). Thus (1.7) follows from

Lemmas 3.1 and 3.3.

Therefore Proposition 1.5 can be applied to get the boundedness of gψ on L
2
w

and L2
w−1 with w ∈ A2/q′ , since A2/q′ ⊂ A2. Thus part (2) of Theorem 1.2 follows.

Also, by the boundedness of gψ on L
2
w, w ∈ A2/q′ , and the extrapolation theorem of

Rubio de Francia [15] we have part (1). �
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4. Proofs of Theorem 1.3 and Corollary 1.4

P r o o f of Theorem 1.3. To prove (α) and (β) of part (1) of Theorem 1.3,

similarly to the proof of Theorem 1.2 in Section 3, it suffices to show that ψ satisfies

conditions (1.7) and (1.8) for v = w, v = w−1 with w ∈ A2/q′ .

To prove (1.7), we first note that B1(ψ) <∞. Without loss of generality, we may

assume that supp(ψ) ⊂ B(0, 1) in what follows. By applying Lemma 3.4 we can see

that Jε(ψ) <∞ if ε < 1/q′. Thus, by Lemmas 3.1 and 3.3 we have (1.7).

Next we deal with condition (1.8). Let q > 2. Then we have

sup
t>0

|ψt ∗ f(x)| 6 CM(|f |q
′

)(x)1/q
′

by Hölder inequality and it implies (3.7) with v = w, w ∈ A2/q′ . To prove (3.7)

when q = 2 and v = w ∈ A1, we may assume that t = 1 by dilation invariance. Now

applying Schwarz inequality, we have

|ψ ∗ f(x)|2 6 ‖ψ‖22

∫

r(y)<1

|f(x− y)|2 dy.

Therefore we see that

∫
|ψ ∗ f(x)|2w(x) dx 6 ‖ψ‖22

∫
|f(y)|2

(∫

r(x−y)<1

w(x) dx

)
dy.

Since w ∈ A1, we have

∫

r(x−y)<1

w(x) dx 6 C[w]A1
w(y) a.e.,

and hence ∫
|ψ ∗ f(x)|2w(x) dx 6 C‖ψ‖22

∫
|f(y)|2w(y) dy.

So (3.7) holds with v = w, w ∈ A2/q′ , q > 2. Inequality (3.7) for v = w−1 follows by

duality. Thus, we have (1.8) for v = w and v = w−1 with w ∈ A2/q′ , q > 2.

We next prove part (2). We apply ideas of [8]. To prove (1.8) for v = w and

v = w−1 with wq
′/2 ∈ A1, it suffices to show estimate (3.7) for v = w and v = w−1

under the condition wq
′/2 ∈ A1 with a constant C independent of t > 0. If we

have (3.7) for v = w, then the result for v = w−1 follows by duality. To prove (3.7)

for v = w with wq
′/2 ∈ A1, we may assume that t = 1 by dilation invariance as
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above. Now, by applying Hölder inequality twice and the condition wq
′/2 ∈ A1, we

have
∫

|f ∗ ψ(x)|2w(x) dx 6

∫ (
‖ψ‖qq

∫
|f(x− y)|2|ψ(y)|2−q dy

)
w(x) dx

= ‖ψ‖qq

∫
|f(y)|2

(∫
|ψ(x− y)|2−qw(x) dx

)
dy

6 ‖ψ‖qq

∫
|f(y)|2‖ψ‖2−qq

(∫

r(y−x)<1

w(x)q
′/2 dx

)2/q′

dy

6 C‖ψ‖2q

∫
|f(y)|2w(y) dy.

Thus, since condition (1.7) also holds when q ∈ (1, 2], Proposition 1.5 implies

that gψ is bounded on L
2
w and L

2
w−1 if wq

′/2 ∈ A1. This completes the proof of

Theorem 1.3. �

P r o o f of Corollary 1.4. The proof of [11], Corollary 3 (ii) can be adapted to

prove the boundedness of gψ on L
p when 2 6 p <∞ and ψ ∈ Lq for some q ∈ (1,∞),

since the proof is based on vector valued inequalities derived from the boundedness

on Lr, 1 < r <∞, of the maximal function

Nψ(f)(x) = sup
k∈Z

|p2k ∗ f(x)|, p(x) =

∫ 2

1

|ψt(x)| dt/t

and the boundedness follows by the methods of [9] together with some Fourier trans-

form estimates in the present context:

∣∣∣∣
∫ 2

1

F (|ψ|)(δ∗t ξ) dt

∣∣∣∣ 6 C|ξ|−ε for some ε > 0,

∣∣∣∣
∫ 2

1

F (|ψ|)(δ∗t ξ) dt− ‖ψ‖1

∣∣∣∣ 6 C|ξ|ε for some ε > 0,

which can be shown by the methods of this note.

Let us assume that 1 < p < 2 and apply the methods of [8]. Let s > q′/2 and

define Ms(f) = M(|f |s)1/s. Then Ms(|f |
2−p)q

′/2 is in A1 (we may assume that

0 < Ms(|f |
2−p) <∞) and Ms is bounded on L

p/(2−p) if s < p/(2− p). So by Hölder

inequality and the L2
w−1 boundedness of gψ of Theorem 1.3 (2) with w =Ms(|f |

2−p),

if q′/2 < s < p/(2− p), we have

∫
gψ(f)(x)

p dx =

∫
gψ(f)(x)

pMs(|f |
2−p)(x)−p/2Ms(|f |

2−p)(x)p/2 dx

6

(∫
gψ(f)(x)

2Ms(|f |
2−p)(x)−1 dx

)p/2(∫
Ms(|f |

2−p)(x)p/(2−p) dx

)1−p/2
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6 C

(∫
|f(x)|2Ms(|f |

2−p)(x)−1 dx

)p/2
‖f‖p(1−p/2)p

6 C

(∫
|f(x)|2|f(x)|p−2 dx

)p/2
‖f‖p(1−p/2)p = C‖f‖pp.

This completes the proof of Corollary 1.4. �
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