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Abstract. For a digraph D, the niche hypergraph NH(D) of D is the hypergraph having
the same set of vertices as D and the set of hyperedges E(NH(D)) = {e ⊆ V (D) : |e| > 2
and there exists a vertex v such that e = N

−

D
(v) or e = N

+

D
(v)}. A digraph is said to be

acyclic if it has no directed cycle as a subdigraph. For a given hypergraph H, the niche
number n̂(H) is the smallest integer such that H together with n̂(H) isolated vertices is the
niche hypergraph of an acyclic digraph. C.Garske, M. Sonntag and H.M.Teichert (2016)
conjectured that for a linear hypercycle Cm, m > 2, if min{|e| : e ∈ E(Cm)} > 3, then
n̂(Cm) = 0. In this paper, we prove that this conjecture is true.
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1. Introduction

All hypergraphs in this note are finite and might have isolated vertices but no loops

or multiple edges. For a hypergaph H, let V (H) denote the set of all vertices and

E(H) denote the set of all hyperedges. Moreover, we let d(H) = min{|e| : e ∈ E(H)}.

For an integer m > 3, a linear hypercycle Cm of length m is the hypergraph induced

by the hyperedges e1, e2, . . . , em−1 and em such that

|ei ∩ ej | =

{

1 if j = i+ 1 for 1 6 i 6 m− 1 or i = m and j = 1,

0 otherwise.

However, a linear hypercycle C2 of length two is induced by the two hyperedges e1 and

e2 such that |e1∩e2| = 2. For a digraph D in this note we assume that D might have

isolated vertices or loops but no multiple edges. Moreover, we let V (D) denote the

set of all vertices and A(D) denote the set of all arcs. The in-neighborhood and the
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out-neighborhood are denoted by N−

D (v) and N+

D (v), respectively. For a digraph D,

the niche hypergraph NH(D) of D is the hypergraph having the same set of vertices

as D and the set of hyperedges

E(NH(D)) = {e ⊆ V (D) : |e| > 2 and there exists a vertex v such that

e = N−

D (v) or e = N+

D (v)}.

A digraph is said to be acyclic if it has no directed cycle as a subdigraph. For

a given hypergraph H, the niche number n̂(H) of H is the smallest integer such

that H together with n̂(H) isolated vertices is the niche hypergraph of an acyclic

digraph. For a vertex x ∈ V (D) and a set of vertices X ⊆ V (D) we use x → X to

denote the set of all arcs from x to every vertex in X and we use X → x to denote

the set of all arcs from every vertex in X to x.

Garske et al. in [1] conjectured that if d(Cm) > 3, then n̂(Cm) = 0 for each integer

m > 2. In this paper, we prove that this conjecture is true.

2. Main results

In this section, for each integer m > 2 we give constructions of acyclic digraphs

having Cm as the niche hypergraph without adding any isolated vertex. First of all,

we set up the notation of a linear hypercycle Cm. In the following, we let Cm be

a linear hypercycle such that

V (Cm) =

m
⋃

i=1

{ai1, a
i
2, . . . , a

i
ni
} and E(Cm) = {e1, e2, . . . , em},

where

|ei| = ni > 2 and ei = {ai1, a
i
2, . . . , a

i
ni

= ai+1

1 } for 1 6 i 6 m− 1

and em = {am1 , am2 , . . . , amnm
= a11}.

From the assumption d(Cm) > 3 we obtain aini−1 6= ai1 for all 1 6 i 6 m. The

following lemma provides constructions of acyclic digraphs having Cm as the niche

hypergraphs when m is small.

Lemma 2.1. For an integer 2 6 m 6 4, let Cm be a linear hypercycle such that

d(Cm) > 3. Then there exists an acyclic digraph D with V (D) = V (Cm) having Cm
as the niche hypergraph.
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P r o o f. For m ∈ {2, 3, 4} we construct an acyclic digraph D = (V,A) having

the niche hypergraph NH(D) = Cm = (V, {e1, e2, . . . , em}). Obviously, it suffices to

give A(D) = A in each case. We let

A(D) =











(e1 → a2n2−1) ∪ (a1n1−1 → e2) if m = 2,

(e1 → a2n2
) ∪ (a11 → e2) ∪ (e3 → a2n2−1) if m = 3,

(e1 → a2n2−1) ∪ (a1n1−1 → e2) ∪ (e3 → a4n4−1) ∪ (a3n3−1 → e4) if m = 4.

Clearly, D is acyclic and has Cm as the niche hypergraph. �

Lemma 2.2. For an odd integer m > 5, let Cm be a linear hypercycle such that

d(Cm) > 3. Then there exists an acyclic digraph D with V (D) = V (Cm) having Cm

as the niche hypergraph.

P r o o f. For m = 5 and m > 7, respectively, we construct an acyclic digraph

D = (V,A) having the niche hypergraph NH(D) = Cm = (V, {e1, e2, . . . , em}).

Case 1 : m = 5. Obviously, it suffices to give A(D) = A. Let

A(D) = (e1 → a3n3−1) ∪ (e2 → a41) ∪ (a21 → e3) ∪ (a31 → e4) ∪ (e3 → a51) ∪ (a41 → e5).

Case 2 : m > 7. Let D be a digraph with V (D) = V (Cm) and A(D) be the union

of the following sets:

(e2i−1 → a2in2i−1) ∪ (a2i−1

n2i−1−1 → e2i) for 1 6 i 6 1

2
(m− 5),

(em−4 → am−2

nm−2−1) ∪ (em−3 → am−1

1 ) ∪ (am−3

1 → em−2)

∪ (am−2

1 → em−1) ∪ (em−2 → am1 ) ∪ (am−1

1 → em).

It is not difficult to see that am−1
1 gives two hyperedges em−3 and em and there are

two vertices am−3

1 and am1 giving a hyperedge em−2. Figure 1 illustrates an example
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Figure 1. A digraph D having C7 as the niche hypergraph.
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of the digraph D whenm = 7. Remark that the hyperedge e7 is obtained by N
+

D (a61).

We remark also that for an odd integer m > 9, the subdigraph induced by e2i−1∪e2i

for 1 6 i 6 1

2
(m− 5) is isomorphic to the subdigraph induced by e1 ∪ e2 in Figure 1.

It is not difficult to see that D is acyclic and has Cm as the niche hypergraph. �

Lemma 2.3. For an even integer m > 6, let Cm be a linear hypercycle such that

d(Cm) > 3. Then there exists an acyclic digraph D with V (D) = V (Cm) having Cm

as the niche hypergraph.

P r o o f. Again, we construct an acyclic digraph D = (V,A) having the niche

hypergraph NH(D) = Cm = (V, {e1, e2, . . . , em}), where now A is the union of the

following sets:

(e2i−1 → a2in2i−1) ∪ (a2i−1

n2i−1−1 → e2i) for 1 6 i 6 1

2
(m− 4)

and

(em−3 → am−1

1 ) ∪ (em−2 → am1 ) ∪ (am−2

1 → em−1) ∪ (am−1

1 → em).

Figure 2 illustrates an example of D when m = 6. �
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Figure 2. A digraph D having C6 as the niche hypergraph.

Summarizing the results of Lemmas 2.1–2.3, we obtain the following theorem.

Theorem 2.1. For an integer m > 2, let Cm be a linear hypercycle with

d(Cm) > 3. Then n̂(Cm) = 0.
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