
Czechoslovak Mathematical Journal

Ramūnas Garunkštis; Andrius Grigutis
The size of the Lerch zeta-function at places symmetric with respect to the line
ℜ(s) = 1/2

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 1, 25–37

Persistent URL: http://dml.cz/dmlcz/147614

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147614
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 25–37

THE SIZE OF THE LERCH ZETA-FUNCTION AT PLACES

SYMMETRIC WITH RESPECT TO THE LINE ℜ(s) = 1/2

Ramūnas Garunkštis, Andrius Grigutis, Vilnius

Received March 29, 2017. Published online April 20, 2018.

Abstract. Let ζ(s) be the Riemann zeta-function. If t > 6.8 and σ > 1/2, then it is
known that the inequality |ζ(1 − s)| > |ζ(s)| is valid except at the zeros of ζ(s). Here we
investigate the Lerch zeta-function L(λ, α, s) which usually has many zeros off the critical
line and it is expected that these zeros are asymmetrically distributed with respect to the
critical line. However, for equal parameters λ = α it is still possible to obtain a certain
version of the inequality |L(λ, λ, 1− s)| > |L(λ, λ, s)|.
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1. Introduction

Let s = σ + it be a complex variable. In 1965 Spira in [20], Theorem 2, proved

that the Riemann hypothesis is true if and only if

(1) |ζ(1 − s)| > |ζ(s)|, t > 10,
1

2
< σ < 1.

Dixon and Schoenfeld in [4] showed that if |t| > 6.8 and σ > 1/2, then |ζ(1− s)| >
|ζ(s)| except at the zeros of ζ(s). Inequality (1) was studied by Saidak and Zven-
growski in [18], Nazardonyavi and Yakubovich in [17], and Trudgian in [25]. Also it

was investigated for other zeta-functions. Berndt in [3] generalized Spira’s inequal-

ity for some functions of the class of general Dirichlet series, Spira in [21] proved

it in the case of the Ramanujan τ -Dirichlet series, Garunkštis and Grigutis in [6]

considered the analog of inequality (1) for the Selberg zeta-functions. We discuss

a monotonicity of the modulus of the Riemann zeta-function. Matiyasevich, Saidak,
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and Zvengrowski in [16] note that “. . . strict decrease of the modulus of any continu-

ous complex function f along any curve in the complex plane clearly implies that f

can have no zero along that curve.” The monotonicity of the modulus of a complex

function |f | is related to the sign of the real part of the logarithmic derivative ℜf ′/f ;

see [16], Lemma 2.3.

The well known Rieman ξ-function is defined as

(2) ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s

2

)

ζ(s).

It satisfies ξ(s) = ξ(1 − s), and it is an entire function, whose zeros coincide with

nontrivial zeros of ζ(s). It is known that

ℜξ′

ξ
(s) > 0 when ℜs > 1

and the Riemann hypothesis is equivalent to

ℜξ′

ξ
(s) > 0 when ℜs > 1

2
.

The proofs of the last two inequalities can be found by Hinkkanen in [13] or Lagarias

in [14]; see also Garunkštis [5]. Sondow and Dumitrescu in [19] also investigated the

relation between the monotonicity of |ξ(s)| and the Riemann hypothesis. Matiyase-
vich, Saidak, and Zvengrowski in [16] showed that

ℜζ′

ζ
(s) < ℜξ′

ξ
(s)

for |t| > 8 and σ < 1. Moreover, they proved that the modulus of the function ζ(s)

is decreasing with respect to σ in the region σ 6 0, |t| > 8; extending this region to

σ 6 1/2 is equivalent to the Riemann hypothesis. The similar modulus monotonicity

properties and the sign of the real part of the logarithmic derivative of the Selberg

zeta-functions are investigated by Grigutis and Šiaučiūnas in [12]. See also Alzer [1]

for the monotonicity of the function Fa(σ) = (1− 1/ζ(σ))1/(σ−a), where a 6 1 and

σ > 1.

In this paper we consider the Lerch zeta-function. We always assume that 0 < λ,

α 6 1 are fixed parameters. The Lerch zeta-function is given by

L(λ, α, s) =

∞
∑

m=0

e2πiλm

(m+ α)s
, σ > 1.
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This function has an analytic continuation to the whole complex plane except for

a possible simple pole at s = 1. Let ζ(s) and L(s, χ) denote the Riemann zeta-

function and the Dirichlet L-function, respectively. We have that

L(1, 1, s) = ζ(s), L(1, 1/2, s) = (2s − 1)ζ(s),

L(1/2, 1, s) = (1− 21−s)ζ(s), and L(1/2, 1/2, s) = 2sL(s, χ),

where χ is an odd Dirichlet charactermod4. For these four cases certain versions of

the Riemann hypothesis can be formulated. For all the other cases, it is expected

that the real parts of zeros of the Lerch zeta-function form a dense subset of the

interval (1/2, 1). This has been proved for any λ and transcendental α and some

other cases; for more details see Laurinčikas and Garunkštis [15], Chapter 8. Only

for these four above mentioned cases the Euler product and a symmetry (for most

zeros) with respect to the critical line is expected.

Next we discus zero free regions and define trivial and nontrivial zeros of L(λ, α, s).

For λ 6= 1/2 and λ 6= 1 let

(3) l : σ =
πt

log 1−λ
λ

+ 1

be a line in the complex plane C. If λ = 1/2 or λ = 1, then let l be a real line of the

complex plane. Denote by h(s, l) the distance from point s to l. Define for ε > 0,

Lε(λ) =
{

s ∈ C : h(s, l) < ε
}

.

Let 0 < λ < 1 and λ 6= 1/2; then L(λ, α, s) 6= 0 if σ < −1 and s 6∈ Llog 4/π
(λ).

Moreover, there exists a constant δ1 6 −1 such that L(λ, α, s) has exactly one zero

with real part between

(4) σk := 1− 2π(α+ k)

π + 1
π
log2 1−λ

λ

and σk+1 for σk 6 δ1 (see Garunkštis and Laurinčikas in [7], Garunkštis and Steu-

ding in [9], Lemma 6, and [10]). For λ = 1/2, 1, from Spira in [22] and [7] we see

that L(λ, α, s) 6= 0 if σ < −1 and |t| > 1. Also, in [7] it is shown that L(λ, α, s) 6= 0

for σ > 1 + α. By this we say that a zero of L(λ, α, s) is nontrivial if it lies in the

strip −1 6 σ < 1+α. If a zero lies outside the strip −1 6 σ < 1+α, then we call it

trivial.

Denote by N(λ, α, T ) the number of nontrivial zeros of the function L(λ, α, s) in

the region 0 < t < T . For 0 < λ, α 6 1 we have [7]

(5) N(λ, α, T ) =
T

2π

log
T

2πeαλ
+O(log T ), T → ∞.
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Let ̺ = ̺(λ, α) = β + iγ always denote a zero of L(λ, α, s). For a positive constant

C we define the following region related to the zeros of L(λ, α, s).

R(λ, α, C) =
⋃

̺(λ,α)
β>1/2

{s : |s− ̺(λ, α)| < e−Cγ/ log γ , t > 2}(6)

∪
⋃

̺(λ,α)
β6−1

{

s : |s− (1− ̺(λ, α))| < 1

γ
, t > 2

}

.

We prove the following theorem.

Theorem 1. Let 0 < λ 6 1. Then there are constants C > 0 and t0 = t0(λ) > 0

such that for σ > 1/2 + e−t, s /∈ R(λ, λ, C), and t > t0,

|L(λ, λ, 1− s)| > |L(λ, λ, s)|.

Theorem 1 implies the following corollary.

Corollary 2. Suppose the conditions of Theorem 1 are satisfied. Then

L(λ, λ, 1− s) 6= 0.

We expect that under the conditions similar to those given in Theorem 1 the

function f(σ) = |L(λ, λ, 1−σ+it)| is increasing, similarly to the case of the Riemann
zeta-function.

In the next section Theorem 1 is proved.

2. Proof of Theorem 1

First we formulate several useful lemmas.

Lemma 3. We have

|Γ(s)| =
√
2π |s|σ−1/2e−σ−t arg s

(

1 + O
( 1

|t|
))

,

as |s| → ∞, uniformly for −π + δ 6 arg s 6 π − δ.

P r o o f. The lemma follows from Stirling’s formula (see Titchmarsh [23], Sec-

tion 4.42)

log Γ(s) =
(

s− 1

2

)

log s− s+
1

2
log 2π +O

( 1

|s|
)

,

as |s| → ∞, uniformly for −π + δ 6 arg s 6 π − δ. �
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Lemma 4. For 1/2 6 σ 6 1 and t > 2π + 1 we have

|Γ(s)| >
√
2π |s|σ−1/2e−πt/2

(

1− 4σ3 − σ

12t2

)

(1− e−πt).

P r o o f. To prove the lemma it is equivalent to show that

(2π)−σ|Γ(s)|eπt/2 >

( |s|
2π

)σ−1/2(

1− 4σ3 − σ

12t2

)

(1− e−πt).

We observe that

(2π)−σ|Γ(s)|eπt/2 =
∣

∣

∣
(2π)−s2Γ(s) cos

πs

2

∣

∣

∣

∣

∣

∣

e−πs/2

2 cos(πs/2)

∣

∣

∣
.

Saidak and Zvengrowski in [18], Theorem 4, proved that

∣

∣

∣
(2π)−s2Γ(s) cos

πs

2

∣

∣

∣
>

( |s|
2π

)σ−1/2(

1− 4σ3 − σ

12t2

)

if 1/2 6 σ 6 1 and t > 2π + 1. By the inequality 1/(1 + x) > 1− x, where x > −1,

we get
∣

∣

∣

e−πs/2

2 cos(πs/2)

∣

∣

∣
=

∣

∣

∣

1

1 + eπis

∣

∣

∣
>

1

1 + e−πt
> 1− e−πt.

The lemma is proved. �

Lemma 5. If f(s) is regular, and

∣

∣

∣

f(s)

f(s0)

∣

∣

∣
< eM

in {s : |s− s0| 6 r} with M > 1, then

∣

∣

∣

f(s0)

f(s)

∏

̺

s− ̺

s0 − ̺

∣

∣

∣
< eCM

for |s− s0| 6 3r/8, where C is some constant and ̺ runs through the zeros of f(s)

that |̺− s0| 6 r/2.

P r o o f. The lemma follows immediately from the proof of Lemma α by Titch-

marsh in [24], Paragraph 3.9. �

Lemma 6. For any σ0 there is a constant A > 0 such that

(7) L(λ, α, σ + it) = O(tA), t → ∞,

uniformly in σ > σ0.
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P r o o f. For 0 < λ < 1, this is Theorem 1.4 in Chapter 3 of Laurinčikas and

Garunkštis [15]. For λ = 1, the lemma follows from the Hurwitz formula (Apos-

tol [2], Theorem 12.6) and the Phragmén-Lindelöf theorem (Titchmarsh [23], Para-

graph 5.65). �

Lemma 7. Let 0 < λ, α 6 1. Let σ0 ∈ R and ℜs > σ0. Let L(λ, α, s) 6= 0 and d

be the distance from s to the nearest zero of L(λ, α, s). Then

1

|L(λ, α, s)| < exp(B(|log d|+ 1) log t),

where B is a positive constant, which depends on σ0 and parameters α and λ.

P r o o f. The lemma is proved by Garunkštis and Tamošiūnas in [11], Proposi-

tion 2. We reproduce the proof here for completeness.

In Lemma 5 we choose f(s) = L(λ, α, s), s0 = 3 + it, and a sufficiently large

but fixed radius r. In view of Lemma 6 we take M = b logT , where b = b(r).

The function 1/L(λ, α, s0) is bounded. By the formula for the number of nontrivial

zeros (5) and in view of the distribution of trivial zeros (see the discussion next to

formula (4)), the number of zeros in the disc |s − s0| < r/2 is less than c logℑs0.
This proves the lemma. �

Lemma 8. Let 0 < λ, α 6 1 and ε > 0. Let s be such that

min
̺(λ,α)

|s− (1− ̺(λ, α))| > 1

γ
.

Then for a sufficiently large t and a sufficiently large σ,

(8) |L(λ, α, 1− s)| > |s|(1−ε)σ.

P r o o f. By the distribution of trivial zeros of the function L(λ, α, s) (see the

discussion next to formula (3)), in the half-plane σ > 2 the zeros of the function

L(λ, α, 1− s) lie near to the line

k :=
{

s : σ =
πt

log λ
1−λ

}

if λ 6= 1

2
, 1,

and

k := {s : ℑs = 0} if λ = 1/2, 1.

First we consider the case 1/2 < λ < 1. Then log(λ/(1− λ)) is positive and the

line k intersects the area {s : σ > 2, t > 0}. We will investigate inequality (8) for
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the following three subcases correspondingly: the value of s is (a) above, (b) below,

and (c) near to the line k.

We start with the functional equation of the Lerch zeta-function (see for example

Laurinčikas and Garunkštis [15], Chapter 2, or Garunkštis, Laurinčikas and Steu-

ding [8], formula (1)), which we write in the form

L(λ, α, 1 − s) = (2π)−sΓ(s)(e−πis/2+2πiαλL(α, λ, s)(9)

+ eπis/2−2πiα(1−{λ})L(1− α, 1− {λ}, s)).

where {λ} denotes the fractional part of number λ. Let ε > 0. By Lemma 3 for any

sufficiently large σ and sufficiently large t,

(10) |Γ(s)|(2π)−σeπt/2 >
( |s|
2π

)σ−1/2

e−σ
(

1 +O
(1

t

))

> |s|(1−ε)σ.

Subcase (a). In view of formula (9) we see that for σ > 0 and any t,

|L(λ, α, 1− s)| = |Γ(s)|(2π)−σeπt/2λ−σ
∣

∣

∣
1 + eπis−2πiα

( λ

1− {λ}
)s

(11)

+

∞
∑

m=1

(( λ

λ+m

)s

+ eπis−2πiα
( λ

1− {λ}+m

)s)∣
∣

∣
.

We consider the function

g(s) := 1 + eπis−2πiα
( λ

1− {λ}
)s

(12)

+

∞
∑

m=1

(( λ

λ+m

)s

+ eπis−2πiα
( λ

1− {λ}+m

)s)

.

This is an analytic function for σ > 1. If s lies on the line k, then

∣

∣

∣
eπis−2πiα

( λ

1− {λ}
)s∣
∣

∣
= 1.

If s ∈ k and t > 0, then there is δ > 0 (independent on s) such that for ℑz > δ+ℑs
(i.e. z is above the line k),

∣

∣

∣
eπiz−2πiα

( λ

1− {λ}
)z∣
∣

∣
6 exp

(

− πδ

log λ
1−{λ}

)

6
1

3
.

Moreover, for sufficiently large σ and any t > 0,

(13)

∣

∣

∣

∣

∞
∑

m=1

(( λ

λ+m

)s

+ eπis−2πiα
( λ

1− {λ}+m

)s)
∣

∣

∣

∣

6
1

3
.
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By the last two inequalities we conclude that there are δ > 0, σ0 > 0 and t0 > 0

such that

(14) |g(s)| > 1

3

if t > t0 and

(15) σ0 6 σ 6
π(t− δ)

log λ
1−{λ}

.

Thus, if s satisfies condition (15), then by formulas (9) and (10) we get for a suffi-

ciently large t and a sufficiently large σ,

(16) |L(λ, α, 1 − s)| > 1

3
|Γ(s)|(2π)−σeπt/2λ−σ > |s|(1−ε)σ.

Subcase (b). Further we consider the half-plane beneath the line k. By the

functional equation (9) we see that

|L(λ, α, 1− s)| > |Γ(s)|(2π)−σe−πt/2(1− {λ})−σ(17)

×
(

1− eπt
( λ

1− {λ}
)−σ

−
∞
∑

m=1

(

eπt
( λ+m

1− {λ}
)−σ

+
(1− {λ}+m

1− {λ}
)−σ)

)

.

Similarly as above, there are δ1 > 0, and t1 > 0 such that

∣

∣

∣

∣

1− eπt
( λ

1− {λ}
)−σ

−
∞
∑

m=1

(

eπt
( λ+m

1− {λ}
)−σ

+
(1− {λ}+m

1− {λ}
)−σ)

∣

∣

∣

∣

>
1

3

if t > t1 and

σ >
π(t+ δ1)

log λ
1−{λ}

.

From the inequalities above, inequality (8) follows for Subcase (b).

Subcase (c). Let δ and δ1 be as in Subcases (a) and (b), respectively. Let s1 =

σ1 + it1 be such that

(18)
π(t1 − δ)

log λ
1−{λ}

6 σ1 6
π(t1 + δ1)

log λ
1−{λ}

and

min
̺(λ,α)

|s1 − (1− ̺(λ, α))| = d > 0.
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We will apply Lemma 5 to prove that there is a constant C1 = C1(λ, α, δ, δ1) > 0

such that

(19) g(s1) > exp(C1(−|log d| − 1)).

First we show that g(s) is bounded in any fixed width neighborhood of the line k.

More precisely, if δ2 > 0 and

(20) σ 6
π(t+ δ2)

log λ
1−{λ}

,

then
∣

∣

∣
eπis−2πiα

( λ

1− {λ}
)s∣
∣

∣
6 exp

(

πδ2

log λ
1−{λ}

)

.

The last inequality, (12) and (13) give that for a sufficiently large t and a sufficiently

large σ satisfying inequality (20),

(21) |g(s)| 6 4

3
+ exp

(

πδ2

log λ
1−{λ}

)

.

Let

(22) s0 = σ1 + i
σ1

π

log
λ

1− {λ} + iδ,

i.e. s0 has the same real part as s1, and s0 lies on the line

k + iδ :=
{

s : σ =
π(t− δ)

log λ
1−{λ}

}

.

Then by (14) we see that

(23) g(s0) >
1

3
.

The functional equation (9) and the definition (12) of the function g(s) imply that

for σ > 2, the set of zeros of g(s) is equal to the set

(24) {1− ̺(λ, α) : ̺(λ, α) is a trivial zero of L(λ, α, s)}.

We apply Lemma 5 with f(s) = g(s), s0 defined by (22), and r = 8(δ + δ1)/3. By

inequalities (21) and (23) we choose

M = 4 + 3 exp
(

π8(δ + δ1)/3

log λ
1−λ

)

.
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In view of the distribution of trivial zeros of L(λ, α, s) (see the discussion next to

formula (4)), and formula (24) we have that the number of zeros of g(s) in the disc

|s − s0| < r/2 is less than or equel to C2 = C2(λ, δ, δ1). Then Lemma 5 gives the

desired inequality (19). Let 1 − ̺(λ, α) be the zero of g(s) nearest to s1. In view

of the distribution of trivial zeros of L(λ, α, s), there is a constant C3 = C3(λ, δ, δ1)

such that γ 6 t1 + C3. Thus, choosing d > 1/γ we obtain from inequality (19) that

for a sufficiently large t1,

g(s1) > exp(C1(− log(t1 + C3)).

Then bound (10) together with (11) gives for large σ1 and large t1,

|L(λ, α, 1− s1)| > |s1|(1−ε)σ.

By this, (16), and Subcase (b) we prove Lemma 8 for 1/2 < λ < 1.

If 0 < λ 6 1/2 or λ = 1, then s with a positive real and a positive imaginary part

lies above the line k. In this case Lemma 8 follows by reasoning similar to that in

Subcase (a). The lemma is proved. �

Now we will prove Theorem 1. It is a consequence of the following more general

proposition.

Proposition 9. Let ε > 0 and 0 < λ, α 6 1. Then there are constants C > 0

and t0 = t0(λ, α, ε) > 0 such that for σ > 1/2 + e−t, s /∈ R(α, λ, C), and t > t0,

|L(λ, α, 1− s)| > |L(α, λ, s)|.

P r o o f. The Dirichlet series of L(α, λ, s) converges absolutely for σ > 1, thus

L(α, λ, s) is bounded for σ > 2. Then in view of Lemma 8 we conclude that there is

σ0 such that for σ > σ0 and a sufficiently large t, Proposition 9 is true.

Let 1/2 < σ 6 σ0. In view of the functional equation (9) and Lemma 4 we obtain

∣

∣

∣

L(λ, α, 1− s)

L(α, λ, s)

∣

∣

∣
= (2π)−σ|Γ(s)|eπt/2

∣

∣

∣
1 + eπi(s−2α(1+[λ]))L(1− α, 1− {λ}, s)

L(α, λ, s)

∣

∣

∣
(25)

>

( t

2π

)σ−1/2(

1− 4σ3 − σ

12t2

)

(1− e−πt)

×
(

1− e−πt
∣

∣

∣

L(1− α, 1− {λ}, s)
L(α, λ, s)

∣

∣

∣

)

.

Let d be the distance from s to the nearest zero of L(α, λ, s). Note that this nearest

zero is a nontrivial zero of L(α, λ, s) if t is large. By Lemma 7, there is a positive
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constant B such that

(26)
1

|L(α, λ, s)| < exp(B(|log d|+ 1) log t).

Moreover, by Lemma 6, we see that L(1 − α, 1 − {λ}, s) = O(tA). This and formu-

las (25), (26) show that there is a positive constant D such that

∣

∣

∣

L(λ, α, 1− s)

L(α, λ, s)

∣

∣

∣
>

( t

2π

)σ−1/2(

1− 4σ3 − σ

12t2

)

(27)

× (1− e−πt)(1 −De−πt+B(|log d|+1) log t+A log t).

Next we will prove that, under conditions of the proposition,

log
∣

∣

∣

L(λ, α, 1− s)

L(α, λ, s)

∣

∣

∣
> 0.

It is easy to see that for 1/2 < σ 6 σ0,

(28) log
(

1− 4σ3 − σ

12t2

)

= O
(σ − 1/2

t2

)

, t → ∞

and

(29) log(1− e−πt) = O(e−πt), t → ∞.

The condition s 6∈ R(α, λ) implies that |log d| 6 Ct/ log t, where C will be chosen

later. Therefore,

(30) log(1−De−πt+B(|log d|+1) log t+A log t) = O(e(−π+(BC+1))t), t → ∞.

We choose 0 < C < (π − 3)/B. Then by the condition σ − 1/2 > e−t and by

formulas (27)–(30) we have

log
∣

∣

∣

L(λ, α, 1 − s)

L(α, λ, s)

∣

∣

∣
>

(

σ − 1

2

)(

log
t

2π

+O
( 1

t2

))

+O(e(−π+(BC+1))t)

> e−t +O(e−2t) > 0, t → ∞.

This proves Proposition 9 for 1/2 < σ 6 σ0 and finishes the proof. �
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