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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 6 , P A G E S 1 2 1 8 – 1 2 3 0

RISK-SENSITIVE AVERAGE OPTIMALITY
IN MARKOV DECISION PROCESSES

Karel Sladký

In this note attention is focused on finding policies optimizing risk-sensitive optimality cri-
teria in Markov decision chains. To this end we assume that the total reward generated by the
Markov process is evaluated by an exponential utility function with a given risk-sensitive coef-
ficient. The ratio of the first two moments depends on the value of the risk-sensitive coefficient;
if the risk-sensitive coefficient is equal to zero we speak on risk-neutral models. Observe that
the first moment of the generated reward corresponds to the expectation of the total reward
and the second central moment of the reward variance.

For communicating Markov processes and for some specific classes of unichain processes long
run risk-sensitive average reward is independent of the starting state. In this note we present
necessary and sufficient condition for existence of optimal policies independent of the starting
state in unichain models and characterize the class of average risk-sensitive optimal policies.

Keywords: controlled Markov processes, finite state space, asymptotic behavior, risk-
sensitive average optimality

Classification: 90C40, 93E20

1. INTRODUCTION

The usual optimization criteria examined in the literature on stochastic dynamic pro-
gramming, such as a total discounted or mean (average) reward structures, may be quite
insufficient to characterize the problem from the point of a decision maker. To this end
it may be preferable if not necessary to select more sophisticated criteria that also re-
flect the variability-risk features of the problem. Perhaps the best known approaches
stem from the classical work of Markowitz (cf. [19, 20]) on mean variance selection rules.
Unfortunately, finding appropriate values of the minimal variance is a difficult problem
in stochastic dynamic programming (cf. e. g. [17, 27]).

On the other hand risky decisions can be also eliminated in so-called risk sensitive
models where expectation of the stream of one stage rewards (or costs) is evaluated by
an exponential utility function. Recall that exponential utility functions are separable
and hence suitable for sequential decisions and observe that the variance can be easily
approximated by expanding exponential utility function if the risk aversion coefficient
is sufficiently small.
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In what follows, we consider Markov decision chain X = {Xn, n = 0, 1, . . .} with
finite state space I = {1, 2, . . . , N} and an infinite (compact) set Ai ≡ [0,Ki] ⊂ R
of possible decisions (actions) in state i ∈ I if the X is unichain1. Supposing that in
state i ∈ I action a ∈ Ai is selected, then state j is reached in the next transition with
a given probability pij(a) and one-stage transition reward rij > 0 will be accrued to
such transition. We assume that each pij(a) is a continuous function of a ∈ Ai.

A (Markovian) policy controlling the chain, π = (f0, f1, . . .), is identified by a se-
quence of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN for every
n = 0, 1, 2, . . ., and fni ∈ Ai is the decision (or action) taken at the nth transition if
the chain X is in state i. Let πk be a sequence of decision vectors starting at the kth
transition, hence π = (f0, f1, . . . fk−1, πk). Policy which selects at all times the same
decision rule, i. e. π ∼ (f), is called stationary; P (f) is transition probability matrix
with elements pij(fi). Stationary policy π̃ is randomized if there exist decision vectors

f (1), f (2), . . . , f (m) ∈ F and on following policy π̃ we select in state i action f
(j)
i with

a given probability κ
(j)
i (of course, κ

(j)
i ≥ 0 with

∑N
j=1 κ

(j)
i = 1 for all i ∈ I).

Let ξn be the cumulative reward obtained in the n first transitions of the considered
Markov chain X. Since the process starts in state X0, ξn =

∑n−1
k=0 rXk,Xk+1

. Similarly
let ξ(m,n) be reserved for the cumulative (random) reward, obtained from the mth up to
the nth transition (obviously, ξn = rX0,X1

+ ξ(1,n), we tacitly assume that ξ(1,n) starts
in state X1).

In this note, we assume that the stream of rewards generated by the Markov processes
is evaluated by an exponential utility function (so-called risk-sensitive models) with
a given risk sensitivity coefficient.

To this end, let us consider an exponential utility function, say ūγ(·), i. e. a separable
utility function with constant risk sensitivity γ ∈ R. Then the utility assigned to the
(random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ 6= 0, risk-sensitive case,

ξ for γ = 0 risk-neutral case.
(1)

Obviously ūγ(·) is continuous and strictly increasing. For γ>0 (risk seeking case) ūγ(·)
is convex, if γ < 0 (risk averse case) ūγ(·) is concave. Finally if γ = 0 (risk neutral
case) ūγ(·) is linear. Observe that exponential utility function ūγ(·) is separable and
multiplicative if the risk sensitivity γ 6= 0 and additive for γ = 0. In particular, for
uγ(ξ) := exp(γξ) we have uγ(ξ1 + ξ2) = uγ(ξ1) ·uγ(ξ2) if γ 6= 0 and uγ(ξ1 + ξ2) ≡ ξ1 + ξ2
for γ = 0.

Moreover, recall that the certainty equivalent corresponding to ξ, say Zγ(ξ), is given
by

ūγ(Zγ(ξ)) = E[ūγ(ξ)] (the symbol E is reserved for expectation). (2)

From (1), (2) we can immediately conclude that

Zγ(ξ) =

{
γ−1 ln{Euγ(ξ)}, if γ 6= 0

E[ξ] for γ = 0.
(3)

1Notice that some problems can arise if no unichain assumption is made (cf. [2, 13]).
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Considering Markov decision process X, then if the process starts in state i, i. e.
X0 = i and policy π = (fn) is followed, for the expectation of utility assigned to
(cumulative) random reward ξn obtained in the n first transitions we get by (1)

Eπi ū
γ(ξn) :=

{
(sign γ) Eπi exp(γξn), if γ 6= 0, risk-sensitive case

Eπi ξn for γ = 0 risk-neutral case.
(4)

In what follows let

Ūπi (γ, n) := Eπi ū
γ(ξn), Uπi (γ, n) := Eπi exp(γξn), V πi (n) := Eπi (ξn). (5)

The paper is organized as follows. Section 2 summarized necessary and sufficient
optimality condition for unichain risk-neutral Markov models with average optimality
criteria where expectation of total reward is based on discrepancy functions. In Section 3
similar approach is developed for the risk sensitive optimality in Markov unichain models.
Unfortunately in contrast to the risk-neutral unichain models if the underlying Markov
chain is not communicating the value of the long run risk-average return need not be
independent of the starting state. Section 4 presents necessary and sufficient condition
for unichain models, as well as for a very specific multi-chain models, based on the
Perron–Frobenius theory guaranteeing that the growth of expected utility is independent
of the starting state. Conclusions are made in Section 5.

2. RISK-NEUTRAL OPTIMALITY IN MARKOV PROCESSES

In this section we focus attention on so called unichain models, i. e. when the underlying
Markov chain contains a single class of recurrent states, and present characterization of
control policies by discrepancy functions. Discrepancy functions were originally intro-
duced in [17] for risk-neutral unichain models, unfortunately they were widely recognized
later (see [18] or the review paper [1], page 319). To this end, on introducing for arbitrary
g, wj ∈ R (i, j ∈ I) the discrepancy function

ϕ̃i,j(w, g) := rij − wi + wj − g (6)

for the random reward obtained up to the nth transition we have

ξn = ng + wX0
− wXn

+

n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g). (7)

Hence by (5) for the expectation of ξn (the risk-neutral case) we get

V πi (n) = ng + wi + Eπi {
n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g)− wXn

}, (8)

In what follows we make
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Assumption 1. There exists state i0 ∈ I that is accessible from any state i ∈ I for
every f ∈ F .

Obviously, if Assumption 1 holds, then the resulting transition probability matrix P (f)
is unichain for every f ∈ F (i. e. P (f) has no two disjoint closed sets).

The following facts are well-known from the dynamic programming literature (cf.
e. g. [15, 21, 22, 23, 24]).
(i) For every f ∈ F there exist numbers g(f) and wi(f), i ∈ I (unique up to additive
constant) such that

wi(f) + g(f) =
∑
j∈I

pij(fi)[rij + wj(f)], (i ∈ I), i. e. (9)

∑
j∈I

pij(fi) ϕ̃i,j(w, g) = 0 where ϕ̃i,j(w, g) := rij − wi(f) + wj(f)− g(f).

(ii) There exists decision f̂ ∈ F (resp. f∗ ∈ F) along with numbers ĝ (resp. g∗),
ŵi, i ∈ I (resp. w∗i , i ∈ I) (unique up to additive constant) such that

ŵi + ĝ = min
a∈Ai

∑
j∈I

pij(a)[rij + ŵj ] =
∑
j∈I

pij(f̂i)[rij + ŵj ], (10)

ϕi(f, f̂) :=
∑
j∈I

pij(f)[rij + ŵj ]− ŵi − ĝ ≥ 0 with ϕi(f̂ , f̂) = 0, (11)

resp.

w∗i + g∗ = max
a∈Ai

∑
j∈I

pij(a)[rij + w∗j ] =
∑
j∈I

pij(f
∗
i )[rij + w∗j ], (12)

ϕi(f, f
∗) :=

∑
j∈I

pij(f)[rij + w∗j ]− w∗i − g∗ ≤ 0 with ϕi(f
∗, f∗) = 0. (13)

From (8),(9),(11),(12) we immediately get that ĝ ≤ g(f) ≤ g∗, and

for stationary policies π̂ ∼ (f̂), π∗ ∼ (f∗)

V π̂i (n) = nĝ + ŵi − Eπ̂i ŵn, V π
∗

i (n) = ng∗ + w∗i − Eπ
∗

i w∗n. (14)

Moreover, for arbitrary policy π = (fn) it holds

ĝ ≤ lim inf
n→∞

1
nV

π
i (n) ≤ lim sup

n→∞
1
nV

π
i (n) ≤ g∗ , and

lim
n→∞

1

n
V πi (n) = ĝ if and only if lim

n→∞

1

n
Eπi

n−1∑
k=0

ϕXk
(fn, f̂) = 0, (15)

lim
n→∞

1

n
V πi (n) = g∗ if and only if lim

n→∞

1

n
Eπi

n−1∑
k=0

ϕXk
(fn, f∗) = 0. (16)

Similarly,

lim
n→∞

|V π̂i (n)− nĝ| resp. lim
n→∞

|V π
∗

i (n)− ng∗| is bounded if and only if

Eπi

n−1∑
k=0

ϕXk
(fn, f̂) resp. Eπi

n−1∑
k=0

ϕXk
(fn, f∗) is bounded.
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Moreover, from (8) we immediately also get

lim
n→∞

1

n
ξn = g a. s. if and only if lim

n→∞

1

n

n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g) = 0 a. s. (17)

3. RISK-SENSITIVE OPTIMALITY IN UNICHAIN MARKOV PROCESSES

In this section we assume that the risk sensitivity coefficient γ 6= 0 and the transition
probability matrix P (f) is unichain for every f ∈ F , i. e. Assumption 1 is fulfilled.
Similarly to the risk-neutral models, let for real g, wi’s (i ∈ I)

ϕ̃ij(w, g) := rij − g + wj − wi, where w′ = min
i∈I

wi, w
′′ = max

i∈I
wi.

Then rXk,Xk+1
= ϕ̃Xk,Xk+1

(w, g) + g − wXk+1
+ wXk

and if policy π = (fn) is followed
we get by (5),(6),(7) for the risk-sensitive case

Uπi (γ, n) = Eπi e
γ

n−1∑
k=0

rXk,Xk+1
= eγ[ng+wi] × Eπi e

γ[
n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−wXn ]

. (18)

The first term on the RHS of (18) is non-random and hence if γ w′′ > 0

Eπi e
γ[

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w′′]

≤ Uπi (γ, n)

eγ[ng+wi]
≤ Eπi e

γ[
n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w′]

(19)

and similarly for γ w′′ < 0

Eπi e
γ[

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w′]

≤ Uπi (γ, n)

eγ[ng+wi]
≤ Eπi e

γ[
n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w′′]

. (20)

Unfortunately, risk-sensitive analogies to (9),(10) and (12) as well as optimality condi-
tions are more complicated and the unichain property itself (cf. Assumption 1) is not
sufficient for the existence of g, wi’s fulfilling (18)–(20).

In what follows we show that under certain conditions it is possible to select wi’s and
g such that for stationary policy π ∼ (f) and any i, j,Xk ∈ I∑

j∈I
pij(fi) eγ[rij+wj ] = eγ[g+wi] or Eπi eγϕ̃Xk,Xk+1

(w,g) = 1. (21)

The first equation, called also the Poissonian equation, was discussed frequently in the
literature and recognized as a sufficient condition for existence of the risk-sensitive op-
timality where the optimality condition does not depend on the starting state.

We shall start our analysis with the following

Lemma 2.1. Let (21) hold for stationary policy π ∼ (f). Then for w̃ = w′, w′′

Eπi e
γ[

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w̃]

= eγ[−w̃] (22)
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and hence

eγ[ng+wi−w′′] ≤ Uπi (γ, n) ≤ eγ[ng+wi−w′] if γw′′ > 0, (23)

eγ[ng+wi−w′] ≤ Uπi (γ, n) ≤ eγ[ng+wi−w′′] if γw′′ < 0. (24)

P r o o f . To verify (22) after some algebra and on employing (21) we conclude that

Eπi e
γ[

n−1∑
k=0

ϕ̃Xk,Xk+1
(w,g)−w′]

= Eπi e
γ

n−2∑
k=0

ϕ̃Xk,Xk+1
(w,g)+γϕ̃Xn−1,Xn (w,g)

· e−γw
′

=
∑
`∈I

pj,`(fj){Eπi [e
γ

n−2∑
k=0

ϕ̃Xk,Xk+1
(w,g)
|Xn−1 = j] · eγ[rj`−wj+w`−g]} · e−γw

′

= Eπi e
γ

n−2∑
k=0

ϕ̃Xk,Xk+1
(w,g)

· e−γw
′

(25)

The proof for w′′ goes on the same lines.
In particular, on iterating the above displayed formula we can conclude that (22) also

holds for w̃ = w′′. Then on inserting (22) into (19),(20) we immediately get (23), (24).
�

Observe that (18),(19),(20) are the risk-sensitive analogies of (8) for the risk-neutral
case.2 Since (cf.(23),(24)) for stationary policy π ∼ (f)

1

γ
lnUπi (γ, n) = ng + wi + h(n)

where h(n) is bounded, in particular |h(n)| ≤ max{|γw′|, |γw′′|}.
In the next section attention is focused on finding necessary and sufficient condition

for existence g(f), wi(f)’s such that for stationary policy π ∼ (f) (21) holds. Further-
more, we are looking for stationary policy with maximal/minimal value of g(f). As we
shall see later, on comparing with the risk neutral case, the problem is more complicated
since the unichain property of the underlying Markov process is not sufficient.

To this end, we shall consider the following sets of linear and nonlinear equations

eγ[g(f)+wi(f)] =
∑
j∈I

pij(fi) eγ[rij+wj(f)] (i ∈ I) (26)

eγ[g
∗+w∗i ] = max

f∈F

∑
j∈I

pij(fi) eγ[rij+w
∗
j ] (i ∈ I) (27)

eγ[ĝ+ŵi] = min
f∈F

∑
j∈I

pij(fi) eγ[rij+ŵj ] (i ∈ I) (28)

for the values g(f), ĝ, g∗, wi(f), w∗i , ŵi (i = 1, . . . , N); obviously, these values depend
on the selected risk sensitivity γ. Eqs. (27),(28) can be called the γ-average reward/cost
optimality equation.

2In particular, from (8) we immediately get

g + 1
n

Eπi {
n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g)} ≤ 1

n
V πi (n) ≤ g + 1

n
Eπi {

n−1∑
k=0

ϕ̃Xk,Xk+1
(w, g)}.
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Necessary and sufficient conditions guaranteeing solutions of (26),(27),(28) are dis-
cussed in the next section. Now we are in a position to formulate necessary and sufficient
average reward optimality conditions for the risk sensitive models if optimality equa-
tions (26),(27),(28) are fulfilled. Recall that the discrepancy function ϕ̃xk,xk+1

(w, g) :=
rij − g + wj − wi.

Theorem 1. Let ĝ ≤ g∗ be the solution of (27) and (28). Then for an arbitrary policy
π = (fn)

ĝ ≤ lim inf
n→∞

1

n
Zπi (γ, n) ≤ lim sup

n→∞

1

n
Zπi (γ, n) ≤ g∗, and

lim
n→∞

1

n
Zπi (γ, n) = g∗ ⇐⇒ lim

n→∞

1

n
ln[Eπi e

γ
n−1∑
k=0

ϕ̃xk,xk+1
(w∗,g∗)

] = 0, (29)

lim
n→∞

1

n
Zπi (γ, n) = ĝ ⇐⇒ lim

n→∞

1

n
ln[Eπi e

γ
n−1∑
k=0

ϕ̃xk,xk+1
(ŵ,ĝ)

] = 0. (30)

P r o o f . Recall that by (3),(4),(5) if the process starts in state i ∈ I and policy π = (fn)
is followed the γ-sensitive average reward

Jπi (γ) := lim inf
n→∞

1

n
Zπi (γ, n) resp. Jπi (γ) := lim sup

n→∞

1

n
Zπi (γ, n)

where Zπi (γ, n) = 1
γ lnUπi (γ, n), if the risk-sensitive minimal, resp. maximal, average

reward is considered. From (19),(20) and Lemma 2.1 considered for policies minimizing
or maximizing average reward it holds:

Zπi (γ, n) = nĝ + ŵi + Φ̂πi (γ, n) + ĥi(n) (31)

Zπi (γ, n) = ng∗ + w∗i + Φ∗,πi (γ, n) + h∗i (n) (32)

where |ĥi(n)| ≤ maxi |ŵi|, |h∗i (n)| ≤ maxi |w∗i |

Φ̂πi (γ, n) = ln Eπi eγ
∑n−1

k=0 ϕ̃Xk,Xk+1
(ŵ,ĝ)

Φ∗,πi (γ, n) = ln Eπi eγ
∑n−1

k=0 ϕ̃Xk,Xk+1
(w∗,g∗).

Since Eπi eγϕ̃Xk,Xk+1
(ŵ,ĝ) ≥ 1 for any policy π = (fn) and equals 1 if policy π̂ ∼ (f̂)

is followed, we can conclude that Φ̂πi (γ, n) ≥ 1 and equals 1 if stationary policy π̂ ∼
(f̂) is followed, i. e. ln Φ̂πi (γ, n) ≥ 0 and equal to 0 for π ∼ (f̂). Similarly, since

Eπi eγϕ̃Xk,Xk+1
(w∗,g∗) ≤ 1 for any policy π = (fn), and equal to 1 if policy π∗ ∼ (f∗) is

followed. Then Φ∗,πi (γ, n) ≤ 1 and equals unity if stationary policy π∗ ∼ (f∗) is followed,

i. e. ln Eπi eγϕ̃Xk,Xk+1
(w∗,g∗) ≤ 0 and for π ∼ (f∗) equal to 0. �
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4. POISSONIAN EQUATIONS AND NONNEGATIVE MATRICES

In what follows we present necessary and sufficient conditions for the existence of a
solution of optimality equations (26)–(28) for unichain models as well as for a very
specific case of multi-chain models.

To this end, on introducing the new variables vi(f) := eγwi(f), ρ(f) := eγg(f), and
on replacing transition probabilities pij(fi)’s by general nonnegative numbers defined by
qij(fi) := pij(fi) ·eγrij (26) can be alternatively written as the following set of equations

ρ(f)vi(f) =
∑
j∈I

qij(fi) vj(f) (i ∈ I) (33)

and (27), (28) can be rewritten as the following sets of nonlinear equations (here v̂i :=
eγŵi , v∗i := eγw

∗
i , ρ̂ = eγĝ, ρ∗ := eγg

∗
)

ρ∗v∗i = max
f∈F

∑
j∈I

qij(fi) v
∗
j , ρ̂ v̂i = min

f∈F

∑
j∈I

qij(fi) v̂j (i ∈ I) (34)

called γ-average reward/cost optimality equation in multiplicative form.
For what follows it is convenient to consider (33), (34) in matrix form. To this end,

on introducing the N×N matrix Q(f) = [qij(fi)] and (column) N -vector v(f) = [vi(f)],
from (33) we get

ρ(f) v(f) = Q(f) v(f). (35)

Since Q(f) is a nonnegative matrix by the well-known Perron–Frobenius theorem (see,
e. g. [14]) ρ(f) is the spectral radius of Q(f) that is equal to the maximum positive
eigenvalue of Q(f). Moreover, the corresponding right and left eigenvectors v(f) and
z(f) (N -row vector), called the Perron eigenvectors, can be selected nonnegative. In
particular, for the left (row) eigenvector z(f) it holds:

ρ(f) z(f) = z(f)Q(f). (36)

Moreover, if Q(f) is irreducible the Perron eigenvectors can be selected strictly positive,
i. e. (35), (36) hold with v(f) > 0, z(f) > 0.3 Using matrix notations the symbol I is
reserved for identity matrix, e denotes unit (column) vector.

Similarly, for v(f∗) = v∗, v(f̂) = v̂ (34) can be written in matrix form as

ρ∗v∗ = max
f∈F

Q(f) · v∗, ρ̂ v̂ = min
f∈F

Q(f) · v̂. (37)

Recall that vectorial maximum and minimum in (37) should be considered compo-
nentwise and that v̂, v∗ are unique up to multiplicative constant and strictly positive if
Q(f̂), Q(f∗) is irreducible.

Moreover, strictly positive Perron eigenvectors still exist for reducible nonnegative
matrices with specific structures. Since every reducible matrix can be written in a
block-triangular form, an irreducible class of Q(f) is called basic if and only if its spectral
radius is equal to ρ(f), else is non-basic.

3In vector inequality a ≥ b denotes that ai ≥ bi for all elements of the vectors a, b, and ai > bi at
least for one i, but not for all i’s, and a > b if and only if and ai > bi for all i’s.
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Since (nonnegative) elements of Q(f), denoted qij(fi) := pij(fi) · eγrij are positive
if and only if pij(fi) is positive, we say that some class of Q(f) (or state i ∈ I) has
access to another class of Q(f) (or state j ∈ I) if and only if the same holds of the
corresponding classes (or states) of the transition probability matrix P (f). The same is
used for communicating classes of Q(f). The class that has no access to any other class
is called final . Observe that in transition probability matrix recurrent classes are the
basic and final classes. Recall that the spectral radius of any eigenvalue of a nonnegative
matrix cannot be non-greater than the Perron eigenvalue.

Supposing that there exist strictly positive Perron eigenvectors the problem is easier
and no partition of the state space is necessary. To this end we start our analysis by
finding conditions guaranteeing existence of strictly positive Perron eigenvectors.

Necessary and sufficient condition for the existence of a strictly positive right eigen-
vector v(f) of a nonnegative matrix Q(f) with f ∈ F can be formulated as follows (see,
e. g. [14]):

Condition A. If for suitable labelling of states of the underlying Markov chain (i. e. on
suitably permuting rows and corresponding columns of Q(f)) it is possible to decompose
Q(f) such that:

Q(f) =

[
Q(NN)(f) Q(NB)(f)

0 Q(BB)(f)

]
(38)

where Q(NN)(f) and Q(BB)(f) (with spectral radius ρ(N)(f) and ρ(B)(f)) are (in general
reducible) matrices such that:

• ρ(N)(f) < ρ(f), i. e. each irreducible class of Q(NN)(f) is non-basic,

• ρ(B)(f) = ρ(f) and Q(BB)(f) is block-diagonal, in particular,

Q(BB)(f) =

 Q11(f) . . . 0
...

. . .
...

0 . . . Qrr(f)

 (39)

where Q(ii)(f) (with i = 1, . . . , r) are irreducible submatrices with spectral radii
ρi(f) = ρ(f) with no access to any other class, i. e. Q(ii)(f) are final basic classes
of Q(f),

• each irreducible class of Q(NN)(f) has access to some basic class of Q(f), hence at
least some elements of Q(NB)(f) must be nonvanishing, in contrast to irreducible
classes of Q(BB)(f) that are the final classes (having no access to any other class).

Using the matrix decomposition according to (38), the right Perron eigenvector v(f) can
be also decomposed as indicated in the next displayed formula

ρ(f)

[
v(N)(f)

v(B)(f)

]
=

[
Q(NN)(f) Q(NB)(f)

0 Q(BB)(f)

][
v(N)(f)

v(B)(f)

]
(40)
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From (40) we conclude that v(N)(f) = [ρ(f)I −Q(NN)(f)]−1Q(NB)(f)v(B)(f).
Similar decomposition can be also used for any column vector of an appropriate dimen-
sion.

To guarantee existence of strictly positive Perron eigenvector for any Q(f) with f ∈ F
we make

Assumption 2. There exists state i0 ∈ I such that for every Q(f) with f ∈ F :

(i) i0 belongs to the basic class of Q(f) that is unique.

(ii) i0 is accessible from any state i ∈ I.

Theorem 2. Let Assumption 2 hold. Then the Poissonian equation (26) holds for any
f ∈ F . Minimal (resp. maximal) values g(f), denoted ĝ (resp. g∗), are the solution of
(27) and (28).

P r o o f . (26) follows immediately from the Perron–Frobenius theorem. Using policy
iterations we can also verify (27) and (28), see [25] for details. �

Remarks.

• If the transition probability matrix P (f) is unichain (i. e. spectral radius is equal
to 1 and the right Perron eigenvector is a unit vector) then the (unique) class of
recurrent states is its basic class and each irreducible class of transient states is a
nonbasic class (with spectral radius less than one) accessible to the recurrent class.

• Since elements qij(f) = pij(f)eγrij , for γ sufficiently close to null each transient
class of P (f) is a nonbasic class of Q(f) (see also [7], Thm.3.1). Obviously, if
Condition A holds and γ 6= 0 the spectral radius of each nonbasic class of Q(f)
must be less than ρ(f).

• From (40) we immediately conclude that

v(N)(f) = [ρ(f)I −Q(NN)(f)]−1Q(NB)(f)v(B)(f)

= (ρ(f))−1
∞∑
k=0

[(ρ(f))−1Q(NN)(f)]kQ(NB)(f)v(B)(f)

hence the total reward earned from a transient state of P (f) up to reaching a
recurrent state of P (f) is finite, and also the expected number of transitions up
to reaching a recurrent state of P (f) must be finite.

• Triangular structure of Q(NN)(f). In this case elements of the main diagonal of
Q(NN)(f) can be considered as nonbasic classes of Q(f) and condition A is fulfilled
if and only if each of diagonal elements is less than ρ(f). Observe that the spectral
radius of ρ(N)(f) of Q(NN)(f) 6= 0 equals null if and only all diagonal elements of
Q(NN)(f) equal null. Then each transient state of P (f) = [pij(fi)] (i. e. each state
of Q(NN)(f)) is absorbed in the recurrent class of P (f) after a finite number of
transitions (at most equal to the number of transient states), see [6, 10].
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• If Assumption 2 holds then Q(BB)(f) contains a single basic class. However, Q(f)
has a strictly positive eigenvector if Q(BB)(f) contains several basic classes with
spectral radii equal to ρ(f) and ρN(f) < ρ(f) (cf. (39),(40)). Of course, Perron
eigenvalue of each basic class equals ρ(f).

5. CONCLUSIONS

In this note necessary and sufficient optimality conditions for discrete time Markov
decision chains are obtained along with equations for average optimal policies both for
risk-neutral and risk-sensitive models. For the risk-sensitive case our analysis is mostly
restricted to unichain models and some additional assumptions are made. Finally, it is
indicated how suitable properties of unichain risk-sensitive models can be employed for
the analysis of a very specific risk-sensitive multichain models.

Equations (26)–(27) were first analyzed by Howard and Matheson in [16] via the
Perron–Frobenius theory of positive matrices under the condition that the state and
action spaces are finite and that under every policy the whole state space is an aperiodic
communicating class. Extension of this result can be found in [3], [7] showing that if the
state space is a communicating class the solution of (26) is unique up to multiplicative
constant. In contrast to the risk-neutral model, if the resulting transition probability
matrix P (f) is unichain and contains also transient states, solution of equations (26)–
(28) can be guaranteed only for the small values of the risk sensitivity coefficient (see
e. g. [7, 8, 9, 25]). Conditions guaranteeing existence of solutions to (26)–(27) were
studied in many papers, see e. g. [3–12, 25–28].

In the present paper via the Perron–Frobenius theory of nonnegative matrices we
presented necessary and sufficient conditions for existence of a solution to the set of
equations (26)–(28) if the transition probability matrix P (f) is unichain, and extended
these result for a very specific class of multi-chain models.
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[25] K. Sladký: Growth rates and average optimality in risk-sensitive Markov decision chains.
Kybernetika 44 (2008), 205–226.
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