
Applications of Mathematics

Jan Brandts; Abdullah Cihangir
On the combinatorial structure of 0/1-matrices representing nonobtuse simplices

Applications of Mathematics, Vol. 64 (2019), No. 1, 1–31

Persistent URL: http://dml.cz/dmlcz/147590

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147590
http://dml.cz


64 (2019) APPLICATIONS OF MATHEMATICS No. 1, 1–31

ON THE COMBINATORIAL STRUCTURE OF 0/1-MATRICES

REPRESENTING NONOBTUSE SIMPLICES

Jan Brandts, Abdullah Cihangir, Amsterdam

Received August 1, 2018. Published online December 21, 2018.

Abstract. A 0/1-simplex is the convex hull of n+1 affinely independent vertices of the unit
n-cube In. It is nonobtuse if none of its dihedral angles is obtuse, and acute if additionally
none of them is right. Acute 0/1-simplices in In can be represented by 0/1-matrices P of
size n× n whose Gramians G = P⊤P have an inverse that is strictly diagonally dominant,
with negative off-diagonal entries.
In this paper, we will prove that the positive part D of the transposed inverse P−⊤ of P

is doubly stochastic and has the same support as P . In fact, P has a fully indecomposable
doubly stochastic pattern. The negative part C of P−⊤ is strictly row-substochastic and
its support is complementary to that of D, showing that P−⊤ = D−C has no zero entries
and has positive row sums. As a consequence, for each facet F of an acute 0/1-facet S there
exists at most one other acute 0/1-simplex Ŝ in In having F as a facet. We call Ŝ the acute
neighbor of S at F .
If P represents a 0/1-simplex that is merely nonobtuse, the inverse of G = P⊤P is only

weakly diagonally dominant and has nonpositive off-diagonal entries. These matrices play
an important role in finite element approximation of elliptic and parabolic problems, since
they guarantee discrete maximum and comparison principles. Consequently, P−⊤ can have
entries equal to zero. We show that its positive part D is still doubly stochastic, but its
support may be strictly contained in the support of P . This allows P to have no doubly
stochastic pattern and to be partly decomposable. In theory, this might cause a nonobtuse
0/1-simplex S to have several nonobtuse neighbors Ŝ at each of its facets.
In this paper, we study nonobtuse 0/1-simplices S having a partly decomposable matrix

representation P . We prove that if S has such a matrix representation, it also has a block
diagonal matrix representation with at least two diagonal blocks. Moreover, all matrix
representations of S will then be partly decomposable. This proves that the combinatorial
property of having a fully indecomposable matrix representation with doubly stochastic
pattern is a geometrical property of a subclass of nonobtuse 0/1-simplices, invariant under
all n-cube symmetries. We will show that a nonobtuse simplex with partly decomposable
matrix representation can be split in mutually orthogonal simplicial facets whose dimensions
add up to n, and in which each facet has a fully indecomposable matrix representation.
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Using this insight, we are able to extend the one neighbor theorem for acute simplices to a
larger class of nonobtuse simplices.

Keywords: acute simplex; nonobtuse simplex; orthogonal simplex; 0/1-matrix; doubly
stochastic matrix; fully indecomposable matrix; partly decomposable matrix
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1. Introduction

A 0/1-simplex is an n-dimensional 0/1-polytope [19] with n + 1 vertices. Equiv-

alently, it is the convex hull of n + 1 of the 2n elements of the set Bn of vertices

of the unit n-cube In whenever this hull has dimension n. Throughout this paper,

we will study 0/1-simplices modulo the action of the hyperoctahedral group Bn of

symmetries of In. As a consequence, we may assume without loss of generality that

a 0/1-simplex S has the origin as a vertex. This makes it possible to represent S by

a non-singular n× n matrix P whose columns are the remaining n vertices of S. Of

course, this representation is far from unique, as is illustrated by the 0/1-tetrahedron

in Figure 1. First of all, there is a choice which vertex of S is located at the origin.

Secondly, column permutations of P correspond to relabeling of the nonzero vertices

of S, and thirdly, row permutations correspond to relabeling of the coordinate axis.
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Figure 1. Matrix representations of the same 0/1-tetrahedron modulo the action of B3.

We will be studying 0/1-simplices with certain geometric properties. These will be

invariant under congruence, and in particular invariant under the action of Bn, which

forms a subset of the congruences of In. Thus, each of the matrix representations

carries the required geometric information of the 0/1-simplex it represents. To be

more specific, we will study the set of acute 0/1-simplices, whose dihedral angles are

all acute, the nonobtuse 0/1-simplices, none of whose dihedral angles is obtuse, and

the set of orthogonal simplices. An orthogonal simplex is a nonobtuse simplex with

exactly n acute dihedral angles and 1
2n(n− 1) right dihedral angles.

It is not difficult to establish that a 0/1-simplex S is nonobtuse if and only if the

inverse (P⊤P )−1 of the Gramian of any matrix representation P of S is a diagonally

dominant Stieltjes matrix. This Gramian is strictly diagonally dominant and has

2



even negative off-diagonal entries if and only if S is acute. See [5], [6], [8] for details.

In this paper we will study the properties of the 0/1-matrices that represent acute,

nonobtuse, and orthogonal simplices.

1.1. Motivation. The motivation to study nonobtuse simplices goes back to their

appearance in finite element methods [3], [11] to approximate solutions of PDEs, in

which triangulations consisting of nonobtuse simplices can be used to guarantee

discrete maximum and comparison principles [9]. We then found that they figure

in other applications, see [10] and the references therein. In the context of 0/1-

simplices and 0/1-matrices, it is well known [15] that the Hadamard conjecture [16]

is equivalent to the existence of a regular 0/1-simplex in each n cube with n − 3

divisible by 4. Note that a regular simplex is always acute. Thus, studying acute

0/1-simplices can be seen as an attempt to study the Hadamard conjecture in new

context, which is wider, but not too wide. Indeed, acute 0/1-simplices, although

present in any dimension, are still very rare in comparison to all 0/1-simplices.

See [6], in which we describe the computational generation of acute 0/1-simplices, as

well as several mathematical properties. This paper can be seen as a continuation

of [6], in which some new results on acute 0/1-simplices are presented, as well as on

the again slightly larger class of nononbtuse 0/1-simplices.

1.2. Outline. We start in Section 2 with some preliminaries related to the hyper-

octahedral group of cube symmetries, to combinatorics, and to the linear algebra

behind the geometry of nonobtuse and acute simplices. We refer to [6] for much

more detailed information on the hyperoctahedral group and combinatorical aspects,

and to [10] for applications of nonobtuse simplices. In Section 3 we present our new

results concerning sign properties of the transposed inverses P−⊤ of matrix repre-

sentations P of acute 0/1-simplices S. These results imply that the matrices P are

fully indecomposable with doubly stochastic pattern [12]. From this follows the so-

called one neighbor theorem, which states that all (n−1)-facets F of S are interior

to the cube, and that each is shared by at most one other acute 0/1-simplex in In.

See [7] for an alternative proof of that fact. If S is merely a nonobtuse 0/1-simplex,

the support of P only contains a doubly stochastic pattern, and moreover, P can

be partly decomposable. In Section 4 we study the matrix representations of such

nonobtuse 0/1-simplices with partly decomposable matrix representations. The main

conclusion is that each of them consists of p with 2 6 p 6 n mutually orthogonal

facets F1, . . . , Fp of respective dimensions k1, . . . , kp that add up to n. Moreover,

each kj × kj matrix representation of each facet Fj is fully indecomposable. In the

case all facets F1, . . . , Fn are one-dimensional, the corresponding 0/1-simplex is a so-

called orthogonal simplex, as it has a spanning tree of mutually orthogonal edges.
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Orthogonal 0/1-simplices played an important role in the nonobtuse cube triangu-

lation problem, solved in [7]. We briefly recall them in Section 5 and put them into

the novel context of Section 4. Finally, in Section 6 we use the insights developed so

far to prove a one neighbor theorem for a wider class of nonobtuse simplices.

2. Preliminaries

Let B = {0, 1}, and write Bn = B
n×1 for the set of vertices of the unit n-cube

In = [0, 1]n, which also contains the standard basis vectors en1 , . . . , e
n
n and their

sum en, the all-ones vector. We denote the 0/1-matrices of size n× k by Bn×k. For

each X ∈ B
n×k, define its antipode X by

(2.1) X = en(ek)⊤ −X,

and write

(2.2) 1(X) = (en)⊤Xek and 0(X) = 1(X)

for the number of entries of X equal to one, and equal to zero, respectively. For any

n× k matrix X define its support supp(X) by

(2.3) supp(X) = {(i, j) ∈ {1, . . . , n} × {1, . . . , k} ; (eni )
⊤Xekj 6= 0}.

We now recall some concepts from combinatorial matrix theory [12], [13].

Definition 2.1. A nonnegative matrix A has a doubly stochastic pattern if there

exists a doubly stochastic matrix D = (dij) such that supp(D) = supp(A).

Definition 2.2. A matrix A ∈ B
n×n is partly decomposable if there exists a k ∈

{1, . . . , n− 1} and permutation matrices Π1,Π2 such that

(2.4) Π⊤

1 AΠ2 =

[
A11 A12

0 A22

]
,

where A11 is a k × k matrix and A22 an (n− k)× (n− k) matrix. If Π1 and Π2 can

be taken equal in (2.4), then A is called reducible. If A is not partly decomposable,

it is called fully indecomposable. If A is not reducible, it is called irreducible.

Note that A ∈ B
n×n is partly decomposable if and only if there exist nonzero

v, w ∈ B
n with 1(v) + 1(w) = n such that v⊤Aw = 0, and that A is reducible if

additionally, w = v.
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Lemma 2.3. Let X ∈ B
n×n be nonsingular and X = [X1 |X2] a block partition

of X , where X1 ∈ B
n×k and X2 ∈ B

n×(n−k) for some 1 6 k < n. Suppose that

X⊤
1 X2 = 0, and hence,

(2.5) X⊤X =

[
X⊤

1 X1 0

0 X⊤
2 X2

]
.

Then there exists a permutation Π such that

ΠX =

[
X11 0

0 X22

]
,

where X11 ∈ B
k×k and X22 ∈ B

(n−k)×(n−k) are nonsingular.

P r o o f. If X⊤
1 X2 = 0, then in particular (ek)⊤X⊤

1 X2e
n−k = 0, hence

(2.6) supp(X1e
k) ∩ supp(X2e

n) = ∅.

Since the rank of X1 equals k, the support of X1e
k consists of at least k indices.

Similarly, the support of X2e
n−k consists of at least n−k indices. Thus, they consist

of exactly k and n− k indices. Now, let Π be a permutation that maps the support

of X1e
k onto {1, . . . , k}. Then ΠX has the required form. �

2.1. Matrix representations of 0/1-simplices modulo 0/1-equivalence.

The convex hull of any subset P ⊂ B
n is called a 0/1-polytope. As a first sim-

ple and intuitive result, we explicitly show that no two distinct subsets of Bn define

the same 0/1-polytope.

Lemma 2.4. Suppose that V ∈ B
n×k has distinct columns and that v ∈ B

n is

not a column of V . Then v is not a convex combination of the columns of V .

P r o o f. Suppose that v is not a column of V and that V w = v for some w > 0.

It suffices to show that w⊤ek 6= 1. If v = 0, then V has no zero column, hence

w = 0 is the only nonnegative vector solving V w = v. If v has an entry equal to

one, say (enl )
⊤v = 1, then (enl )

⊤V w = 1, hence a nonempty subset I ⊂ {1, . . . , k}

of the entries of w sums to one. In order to obtain w⊤ek = 1, it is necessary that

supp(w) = I. Since V w ∈ B
n, this implies that each row of V has either only ones,

or only zeros, as its entries at positions from I. If I has more than one element,

then V has two or more columns that are equal, contradicting its definition. �
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This lemma proves the bijective correspondence between the power set of the 2n

vertices of In and the 0/1-polytopes. Since the cardinality 22
n

of this power set is

doubly exponential, the following concept makes sense. Two 0/1-polyoptes will be

called 0/1-equivalent if they can be transformed into one another by the action of an

element of the hyperoctahedral group Bn of affine isometries B
n → B

n. The group Bn

has n! 2n elements and is generated by:

⊲ the n reflections in the hyperplanes 2xi = 1 for i ∈ {1, . . . , n}, and

⊲ the n− 1 reflections in the hyperplanes xi = xi+1 for i ∈ {1, . . . , n− 1}.

See Figure 2 for the five reflection planes of B3 in I3.

Figure 2. The five reflection planes corresponding to the octahedral group B3.

Note that a reflection of the second type exchanges the values of the ith and

(i + 1)st coordinate. Hence, products of this type can result in any permutation of

the coordinates.

A 0/1-simplex is a 0/1-polytope in In with n+1 affinely independent vertices. We

will study the set Sn of 0/1-simplices in In modulo the action of Bn. Therefore we

can without loss of generality assume that one of its vertices is located at the origin,

after which S can be conveniently represented by any square matrix whose columns

are its remaining n vertices.

Figure 3. The only four 0/1-tetrahedra in I3 modulo the action of B3. In dimension 5
and higher there exist congruent simplices that are not equal modulo Bn (see [4],
Section 3.2).

Modulo the action of Bn, two matrices describe the same 0/1-simplex if and only

if one can be obtained from the other using any combination of the following three

operations:
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(C) Column permutations;

(R) Row permutations;

(X) Select a column c and replace each remaining column d by (c+ d) (mod 2).

Operation (C) does not correspond to any action of Bn, it just relabels the vertices

of S. Operations of type (R) correspond to products of reflections in hyperplanes

xi = xi+1. The operation (X) corresponds to reflecting the vertex c to the origin

(and the origin to c). It is indicated by the letter X because the corresponding

matrix operation can also be interpreted as taking the logical exclusive-or operation

between a fixed column and the remaining ones.

2.2. Dihedral angles of 0/1-simplices. Given a vertex v of a simplex S ∈ S
n,

the convex hull of the remaining vertices of S is the facet Fv of S opposite v. The

dihedral angle α between two given facets of S is the angle supplementary to the

angle γ between two normal vectors to those facets, both pointing into S or both

pointing out of S. In other words, α+ γ = π.

Definition 2.5. A simplex S ∈ S
n will be called nonobtuse if none of its dihedral

angles is obtuse (greater than π/2), and acute if all its dihedral angles are acute (less

than π/2).

If P is a matrix representation of S with columns p1, . . . , pn, then the columns

q1, . . . , qn of the matrix Q = P−⊤ are inward normals to the facets Fp1
, . . . , Fpn

,

respectively, as Q⊤P = I. The vector q satisfying P⊤q = en is orthogonal to each

difference of two columns of P . It is an outward normal to the facet Fp0
opposite

the origin p0 and equals q = P−⊤en = q1 + . . . + qn. This proves the following

proposition.

Proposition 2.6 ([5], [8]). Let F1, . . . , Fn be the facets of S ∈ S
n meeting at

the origin and F0 its facet opposite the origin, and let P be a matrix representation

of S. Then F0 makes nonobtuse dihedral angles with F1, . . . , Fn if and only if for all

i ∈ {1, . . . , n},

(2.7) (eni )
⊤(P⊤P )−1en > 0.

Moreover, each pair of facets Fi and Fj with i 6= 0 6= j makes a nonobtuse dihedral

angle if and only if

(2.8) (eni )
⊤(P⊤P )−1enj 6 0

for all i, j ∈ {1, . . . , n}. Therefore, S is nonobtuse if and only if both (2.7) and (2.8)

hold.
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Property (2.7) translates as diagonal dominance of (P⊤P )−1, and (2.8) is called

the Stieltjes property of (P⊤P )−1, which is then called a Stieltjes matrix.

R em a r k 2.7. Condition (2.7) is equivalent with the statement that the vertex v

of S at the origin orthogonally projects onto its opposite facet Fv. This proves that

the following four statements are equivalent:

⊲ S is nonobtuse;

⊲ each vertex v of S projects orthogonally onto its opposite facet Fv;

⊲ each matrix representation P of S satisfies (P⊤P )−1en > 0;

⊲ each matrix representation P of S satisfies (eni )
⊤(P⊤P )−1enj 6 0 for all i, j ∈

{1, . . . , n}.

In fact, the second and third condition in Remark 2.7 can be slightly relaxed. See

Figure 4.

v0

F0

v1

F1

v2

F2

v3

F3

Figure 4. Dihedral angles are present in different ways in different matrix representations.

For each j ∈ {0, 1, 2, 3} let Pj be a matrix representations of a tetrahedron S ∈ S
3

with its vertex vj located at the origin. If for instance (P⊤
j Pj)

−1en > 0 for j ∈

{1, 2, 3}, then F1, F2 and F3 make only nonobtuse dihedral angles. These include all

the six dihedral angles of S.

R em a r k 2.8. To characterize acute simplices similarly, replace > in (2.7) by >

and 6 in (2.8) by <. Moreover, replace onto by into the interior of its opposite

facet.

The following two simple combinatorial lemmas will be used further on in this

paper.

Lemma 2.9. Let P ∈ B
n×n represent a nonobtuse 0/1-simplex S. Then for all

v ∈ B
n,

(2.9) v⊤(P⊤P )−1v 6 0.
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If S is even acute, then

(2.10) v⊤(P⊤P )−1v < 0

for all v ∈ B
n with v 6∈ {0, en}.

P r o o f. In fact, v⊤(P⊤P )−1v is the sum of 1(v)1(v) of the off-diagonal entries

of (P⊤P )−1. According to Proposition 2.6 these are nonpositive if S is nonobtuse.

According to Remark 2.8 they are negative if S is acute. �

Lemma 2.10. Let P ∈ B
n×n represent a nonobtuse 0/1-simplex S. If for some

v ∈ B
n,

(2.11) v⊤(P⊤P )−1v = 0,

then v = 0 or v = 0 or P⊤P is reducible.

P r o o f. Let v 6= 0 6= v and write k = 0(v). Then 1 6 k 6 n − 1. Let Π

be a permutation such that supp(Πv) = {1, . . . , k}. Writing w = Πv, we have that

w = Πv and

(2.12) 0 = v⊤(P⊤P )−1v = v⊤Π⊤Π(P⊤P )−1Π⊤Πv = wΠ(P⊤P )−1Π⊤w,

which is the sum of the entries of Π(P⊤P )−1Π⊤ with indices (i, j) with k+1 6 i 6 n

and 1 6 j 6 k. Since these entries are non-positive and their sum equals zero, they

are all zero, leading to an (n − k) × k bottom left block of zeros in Π(P⊤P )−1Π⊤.

Thus, (P⊤P )−1 is reducible, and hence, so is its inverse P⊤P . �

A final important observation is the following classical result by Fiedler.

Lemma 2.11 ([14]). All k-facets of a nonobtuse simplex are nonobtuse and all

k-facets of an acute simplex are acute.

It is well known that the converse does not hold. Simplices whose facets are all

nonobtuse or acute were studied recently in [5].
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3. Doubly stochastic patterns and full indecomposability

We start our investigations with some results on matrix representations of acute

0/1-simplices. The first one gives a remarkable connection with doubly stochastic

matrices. It follows from the observation in Remark 2.7 that for an acute 0/1-

simplex, the altitude from each vertex points into the interior of In. This, in turn,

defines the signs of the entries of the normals to its facets in terms of the supports

of their corresponding vertices.

Theorem 3.1. Let P ∈ B
n×n be a matrix representation of an acute 0/1-simplex

S ∈ S
n, and write Q = P−⊤. Then

(3.1) qij > 0 ⇔ pij = 1 and qij < 0 ⇔ pij = 0.

Defining 0 6 C = (cij) and 0 6 D = (dij) by

(3.2) C =
1

2
(|Q| −Q) and D =

1

2
(|Q|+Q),

where |Q| is the matrix whose entries are the moduli of the entries of Q, we have

that

(3.3) Q = D − C,

where D is doubly stochastic and C is row-substochastic.

P r o o f. The jth column qj of Q is an inward normal to the facet Fj of S

opposite the jth column pj of P . Thus, pj − αqj is an element of the interior of I
n

for α > 0 small enough. From this, (3.1) immediately follows. Combining this with

the fact that the inner product between pj and qj equals one, the positive elements in

each column of Q add to one. But since Q⊤P = I, also the inner products between

corresponding rows of P and Q equals one, and thus also the positive elements in

each row of Q add to one. Finally, Qen is the outward normal to the facet of S

opposite the origin and thus it points into the interior of In. Consequently, Qen > 0,

hence Den > Cen > 0, which shows that C is row-substochastic. �

R em a r k 3.2. For n > 7 there exist matrix representations P ∈ B
n×n of acute

0/1-simplices in In for which the matrix C in (3.2) is not column-substochastic. This

shows that Theorem 3.1 cannot be strengthened in this direction. It also proves that

if P represents an acute 0/1-simplex, its transpose P⊤ may not do the same. See

Figure 5 for an example.
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Corollary 3.3. Let P ∈ B
n×n be a matrix representation of an acute 0/1-simplex

S ∈ S
n. Then P has a fully indecomposable doubly stochastic pattern.

P r o o f. Due to (3.1), the matrix D in (3.2) has the same support as P , hence P

has a doubly stochastic pattern. Next, assume to the contrary that P is partly

decomposable, then there exist permutations Π1,Π2 such that

Π⊤

1 PΠ2 =

[
P11 P12

0 P22

]
,

where P11 is a k × k matrix and P22 an (n − k) × (n − k) matrix for some k ∈

{1, . . . , n− 1}. But then Q = P−⊤ has entries equal to zero, which contradicts (3.1)

in Theorem 3.1. �

Theorem 3.1, Corollary 3.3, and Remark 3.2 are all illustrated in Figure 5.
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Figure 5. In an acute 0/1-simplex, each vertex p following the inward normal q to its op-
posite facet Fp (in converse direction) projects as π in the interior of Fp and
hence in the interior of In. This fixes the signs of the entries of q in terms of
those of p. The matrices P and P−⊤ (not related to the depicted tetrahedron)
constitute an example of the linear algebraic consequences. The positions of the
positive entries (boxed) of P−⊤ and P coincide. The positive part D of P−⊤ is
doubly-stochastic. The negated negative part C of P−⊤ is a row-substochastic.
It is not column-substochastic because the third column of C adds to 14

13
. Thus,

even though also P⊤ has a doubly stochastic pattern and is fully indecomposable,
it is not a matrix representation of an acute binary simplex.

R em a r k 3.4. Because each matrix representation P of an acute 0/1-simplex

has a fully indecomposable doubly stochastic pattern, applying to such a matrix P

any operation of type (X), as described below Figure 3, results in another matrix

with a fully indecomposable doubly stochastic pattern. From the linear algebraic

point of view, this is remarkable because generally, both the 0/1-matrix properties

of full indecomposability and of having a doubly stochastic pattern are destroyed

under operations of type (X). See for instance

(3.4)



1 1 1

1 1 1

1 1 1


 (X)

→



1 0 0

1 0 0

1 0 0


 and



1 0 0

0 1 0

0 0 1


 (X)

→



1 1 1

0 1 0

0 0 1


 .
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From the geometric point of view, this is easy to understand, as the fact that each

altitude from each vertex of S points into the interior of In is invariant under the

action of Bn.

The geometric translation of Corollary 3.3 is that if S ∈ S
n is acute, none of its

k-dimensional facets is contained in a k-dimensional facet of In for k ∈ {1, . . . , n−1}.

The geometric proof of this is to note that, given a k-facet C of In, no vertex of In

orthogonally projects into the interior of C. In fact, each vertex of In projects on

a vertex of C. See Figure 6. Thus, if an arbitrary 0/1-simplex S has a k-facet K

contained in C, each remaining vertex of S projects on a vertex of C. Remark 2.8

now shows that S cannot be acute.

C C

Figure 6. For each facet C of In, each vertex of In projects onto a vertex of C. Conse-
quently, no acute 0/1-simplex has a facet contained in a facet of In.

Contrary to an acute 0/1-simplex, a nonobtuse 0/1-simplex S may indeed have

a k-facet K that is contained in a cube facet C of In. If this is the case, then each

remaining vertex of S projects on a vertex of K. Moreover, S has a partly decompos-

able matrix representation. Before discussing this structure, we first formulate the

equivalent of Theorem 3.1 for nonobtuse simplices and discuss some of the differences

with Theorem 3.1 using an example.

Theorem 3.5. Let P ∈ B
n×n be a matrix representation of a nonobtuse 0/1-

simplex S ∈ S
n, and write Q = P−⊤. Then

(3.5) qij > 0 ⇒ pij = 1 and qij < 0 ⇒ pij = 0.

Defining 0 6 C = (cij) and 0 6 D = (dij) by

(3.6) C =
1

2
(|Q| −Q) and D =

1

2
(|Q|+Q),

where |Q| is the matrix whose entries are the moduli of the entries of Q, we have

that

(3.7) Q = D − C,

where D is doubly stochastic and C row-substochastic.

12



P r o o f. The proof differs from the proof of Theorem 3.1 in the sense that pj−αqj

is now an element of In including its boundary. If qij = 0, then pij can be either 0

or 1, hence the weaker result (3.5) remains. �

Theorem 3.5 is rather weaker than Theorem 3.1. First of all, the matrix P−⊤ can

have entries equal to zero. Moreover, it cannot anymore be concluded that P has

a doubly stochastic pattern, only that it contains a doubly stochastic pattern,

(3.8) supp(D) ⊂ supp(P ).

A typical example of this is the following matrix representation P of a nonobtuse

0/1-simplex.

p
q

Fp

π

P =























1 1 0 0 1 1 1

0 1 0 0 1 1 1

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 1























, P−⊤
=

1

2























2 0 0 0 0 0 0

−2 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 −2 2 0 0 0

0 −1 0 0 1 1 −1

0 −1 0 0 1 −1 1

0 −1 0 0 −1 1 1























Figure 7. Analogue of Figure 5 for matrix representations of nonobtuse 0/1-simplices.

Obviously, P is partly decomposable and has no doubly stochastic pattern. It is

only valid that the support of the doubly stochastic matrix D is contained in the

support of P .

4. Partly decomposable matrix representations

We will continue to study nonobtuse 0/1-simplices having a partly decomposable

matrix representation P . Without loss of generality, we may assume that P is

nontrivially block partitioned as

(4.1) P =

[
N R

0 A

]
,

and that A is fully indecomposable.

Theorem 4.1. Let S ∈ S
n be nonobtuse with a matrix representation P as

in (4.1) with N ∈ B
k×k with k ∈ {1, . . . , n − 1} and with A fully indecomposable.

Then:

⊲ N is a matrix representation of a nonobtuse simplex in Ik;

⊲ A is a matrix representation of a nonobtuse simplex in In−k;

⊲ R = ν(ek)⊤, where ν = 0 or ν is a column of N .

13



P r o o f. Lemma 2.11 proves that the first k columns of P together with the

origin form a nonobtuse k-simplex, and obviously its vertices all lie in a k-facet

of In. This proves the first item in the list of statements. Next, we compute

(4.2) P−⊤ =

[
N−⊤ 0

−A−⊤R⊤N−⊤ A−⊤

]
,

and thus,

(4.3) (P⊤P )−1 =

[
(N⊤N)−1 +N−1R(A⊤A)−1R⊤N−⊤ −N−1R(A⊤A)−1

−(A⊤A)−1R⊤N−⊤ (A⊤A)−1

]
.

Due to Proposition 2.6, the matrix (P⊤P )−1 has nonpositive off-diagonal entries (2.8)

and nonnegative row sums (2.7). Both properties are clearly inherited by its trailing

submatrix (A⊤A)−1, possibly even with larger row sums. This proves the second

statement of the theorem. Next, due to (2.8), the top-right block in (4.3) satisfies

(4.4) −N−1R(A⊤A)−1 6 0.

Multiplication of this block from the left by N > 0 and from the right by R > 0

gives that

(4.5) R(A⊤A)−1R
⊤

> 0.

However, by Lemma 2.9, the diagonal entries of R(A⊤A)−1R
⊤

are also nonpositive,

and thus, they all equal zero. We can therefore apply Lemma 2.10. Note that

because A is assumed fully indecomposable, A⊤A is irreducible by Lemma 2.3. Thus,

row-by-row application of Lemma 2.10 proves that each row of R contains only zeros

or only ones. This proves that there exists an r ∈ B
n such that

(4.6) R = r(en−k)⊤.

Next, we will show that r is a column of N , or zero. Substituting (4.6) back into

(4.4) yields that

(4.7) wu⊤ > 0, where w = N−1r and u⊤ = (en−k)⊤(A⊤A)−1.

Due to (2.7) we have u > 0. Because A⊤A is non-singular, u has at least one positive

entry. Thus, also w is nonnegative. This turns r = Nw into a nonnegative linear

combination of columns of N . We continue to prove that it is a convex combination.
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For this, observe that the sums of the last k rows of (P⊤P )−1 are nonnegative due

to (2.7). Thus,

0 6 −(A⊤A)−1R⊤N−⊤ek + (A⊤A)−1en−k = u(1− w⊤ek)

with u,w as in (4.7) and where we have used thatR⊤N−⊤ = en−kr⊤N−⊤ = en−kw⊤.

As we showed already that u > 0 has at least one positive entry, we conclude that

w⊤ek 6 1.

Therefore we now have that Nw = r ∈ B
k for some w > 0 with w⊤ek 6 1. Thus also

(4.8) [0 |N ]

[
1− w⊤ek

w

]
= r.

According to Lemma 2.4, this implies that r is a column of [0 |N ]. This proves the

third item in the list of statements to prove. �

It is worthwhile to stress a number of facts concerning Theorem 4.1 and its non-

trivial proof.

R em a r k 4.2. The assumption that A in (4.1) is fully indecomposable is very

natural, as each partly decomposable matrix can be put in the form (4.1) using

operations of type (C) and (R). But in the proof of Theorem 4.1 we only needed

that A⊤A is irreducible. This is implied by the full indecomposability of A due to

Lemma 2.3, but is not equivalent to it. In fact, if A is fully indecomposable, then

A⊤A > en(en)⊤ + I. See Corollary 6.6.

R em a r k 4.3. The result proved in the third bullet of Theorem 4.1 that R

consists of n − k copies of the same column of N is stronger than the geometrical

observation that each of the last n − k columns of P should project on any vertex

of the k-simplex represented by N . It is the irreducibility of A⊤A that forces the

equality of all columns of R.

R em a r k 4.4. Permuting rows and columns of the block upper triangular matrix

in (4.1) shows that also for

(4.9)

[
A 0

R N

]
,

with A and N as in Theorem 4.1, similar conclusions can be drawn for R.
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Both details in the above remarks will turn out to be of central importance in

Section 6.

Corollary 4.5. Let S ∈ S
n be a nonobtuse 0/1-simplex with matrix representa-

tion P . Then the following statements are equivalent:

⊲ P is partly decomposable;

⊲ S has a block diagonal matrix representation with at least one fully indecompos-

able block;

⊲ each matrix representation of S is partly decomposable.

P r o o f. Suppose that P is partly decomposable. Then Theorem 3.1 shows

that P is of the form

(4.10) P =

[
N ν(en−k)⊤

0 A

]
,

and ν = 0 or ν is a column of N . If ν = 0, then P itself is block diagonal. If ν 6= 0,

apply to P the operation of type (X) as described below Figure 3 with column c

equal to the column (ν, 0)⊤ of P . The simple observation that ν + ν equals zero

modulo 2 proves that the resulting matrix P̃ is block diagonal. As the bottom right

block of P̃ equals A, this shows that at least one block is fully indecomposable. To

show that each matrix representation of S is partly decomposable, simply note that

each operation of type (X) applied to the block-diagonal matrix representation will

leave one of the two off-diagonal zero blocks invariant. �

R em a r k 4.6. The converse of Theorem 4.1 is also valid. Indeed, suppose

that N and A are matrix representations of nonobtuse simplices. Then it is trivially

true that the block diagonal matrix P having N and A as diagonal blocks represents

a nonobtuse simplex. Applying operations of type (X) to P proves that all matrices

of the form (4.10) then represent nonobtuse simplices. Note that this also holds

without the assumption that A is fully indecomposable.

Another corollary of Theorem 4.1 concerns its implications for the structure of the

transposed inverse P−⊤ of a partly decomposable matrix representation of a nonob-

tuse 0/1-simplex.

Corollary 4.7. If ν = Nekj in (4.10) for some j ∈ {1, . . . , k}, then

(4.11) P−⊤ =

[
N−⊤ 0

ae⊤j A−⊤

]
,

where a is the inward normal to the facet opposite the origin of the simplex repre-

sented by A. As a consequence, the sums of the last n − k rows of P−⊤ all add to

zero.
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P r o o f. Substitute R = νen−k with ν = Nekj into the expression for P
−⊤ in

(4.2). �

To illustrate Corollary 4.5, consider again the matrix P ∈ B
7×7 from Figure 7,

now displayed not as 0/1-matrix but as checkerboard black-white pattern, at the

top in Figure 8. Applying an operation of type (X) with the second column results

in the matrix to its right, which is block diagonal. Swapping the first two rows of

that matrix yields one in which the top left block is now in its most reduced form.

Applying an operation of type (X) with the sixth column results in a matrix in which

the bottom left 3 × 4 zero block has been destroyed. Finally, swapping columns 2

and 6, and swapping rows 1 and 2, results in the matrix that could also have been

obtained by applying operation (X) with column 6 directly to P .





















� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �





















(X)(X)

c = 2c = 6

(R), 1 ↔ 2(C), 2 ↔ 6

(R), 1 ↔ 2
(X)

c = 6





















� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �









































� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �








































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� � � � � � �

� � � � � � �
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





































� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �
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� � � � � � �

� � � � � � �
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






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





Figure 8. Illustration of Corollary 4.5 using the matrix P ∈ B
7×7 from Figure 7.

Corollary 4.5 shows that the matrix representations of a nonobtuse 0/1-simplex

are either all partly decomposable, or all fully indecomposable. This motivates to

the following definition.

Definition 4.8. A nonobtuse simplex is called partly decomposable if it has

a partly decomposable matrix representation, and fully indecomposable if it has not.

We will now investigate to what structure the recursive application of Theorem 4.1

leads. For this, assume again that P is a partly decomposable matrix representa-

tion of a nonobtuse 0/1-simplex S ∈ S
n. Then by Corollary 4.5, S has a matrix

representation of the form

(4.12) P =

[
N1 R1

0 A1

]
,

in which A1 is fully indecomposable. According to Theorem 4.1, the k × k matrix

N1 represents a nonobtuse k-simplex K in Ik. If also K is partly decomposable, we
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can block-partition N1 using row (R) and column (C) permutations Π1 and Π2, such

that

(4.13) P̃ = Π1PΠ2 =



N2 R12 R13

0 A2 R23

0 0 A1


 ,

with A2 fully indecomposable and N2 possibly partly decomposable. Theorem 4.1

shows that

R12 consists of copies of a column ν of [0|N2],

and [
R13

R23

]
consists of copies of a column of

[
N2 R12

0 A2

]
.

This means that if R23 is nonzero, then R13 consists of copies of the same column ν

of N as does R12. Thus, the whole block [R12 |R23] consists of copies of a column ν

of [0 |N2]. On the other hand, if R23 is zero, then R13 can either be zero, or consist

of copies of any column of N2, including ν.

By including operations of type (X) it is possible to map the entire strip above one

of the fully indecomposable diagonal blocks to zero. Although this will in general

destroy the block upper triangular form of the square submatrix to the left of that

strip, Corollary 4.7 shows that this submatrix remains partly decomposable. There-

fore, its block upper triangular structure can be restored using only operations of

type (R) and (C), which leave the zero strip intact.

R em a r k 4.9. It is generally not possible to transform P̃ to block diagonal form

with more than two diagonal blocks. See the tetrahedron S in I3 in Figure 9. It is

possible to put a vertex of S at the origin so that facets A and N are orthogonal,

and hence the corresponding matrix representation is block diagonal with two blocks.

The triangular facet however requires a different vertex at the origin for its 2 × 2

matrix representation to be diagonal.

A

N





1 1 0

0 1 0

0 0 1









1 0 0

0 1 1

0 0 1





A

N

Figure 9. Any simplex S with a partly decomposable matrix representation has a pair of
facets A and N of dimensions adding to n and orthogonal to one another.

Summarizing, the above discussion shows that each nonobtuse 0/1-simplex S has

a matrix representation that is block upper triangular, with fully indecomposable
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diagonal blocks (possibly only one). The strip above each diagonal block is of rank

one and consists only of copies of a column to the left of the strip. Any matrix

representation P of S can be brought into this form using only operations of type

(C) and (R). Using an additional reflection of type (X), it is possible to transform

an entire strip above one of the diagonal blocks to zero using a column to the left of

the strip. Although this may destroy the block upper triangular form to the left of

the strip, this form can be restored using operations of type (R) and (C) only.

In view of Corollary 4.7, the transposed inverse P−⊤ of a partly decomposable

matrix representation P of a nonobtuse 0/1-simplex S is perhaps even simpler in

structure than P itself. On the diagonal it has the transposed inverses of the fully

indecomposable diagonal blocks A1, . . . , Ap of P , and each horizontal strip to the

left of such a diagonal block (Aj)
−⊤ has at most one nonpositive column that is not

identically zero. This column has two interesting features. The first is that it nullifies

the sums of the rows in its strip. The second is that its position clearly indicates to

which vertex of which other block Ai the block Aj is related. To illustrate what we

mean by this, see Figure 7 for an example. Above the bottom right 3 × 3 block A

of P we see copies of the second column of P . This fact can also be read from the

position of the nonzero entries to the left of the corresponding block A−⊤ in P−⊤.

0

0 A

P

(C)+(R)

(C)+(R)+(X)
0

0

A

0

Figure 10. A partly decomposable matrix representation P of a nonobtuse 0/1-simplex S
can be brought in the left form using operations of type (C) and (R) only, and
in the right form if using additional operations of type (X). The diagonal blocks
are fully indecomposable.

R em a r k 4.10. The above shows that to each nonobtuse 0/1-simplex S of di-

mension n we can associate a special type of simplicial complex Cp consisting of p

mutually orthogonal fully indecomposable simplicial facets S1, . . . , Sp with respec-

tive dimensions k1, . . . , kp adding to n, where each facet Sj lies in its own kj-facet

of In. Explicitly, let C1 = S1. The complex Cj+1 is obtained by attaching a vertex

of Sj+1 to a vertex v of Cj , such that the orthogonal projection of Sj+1 onto the

(k1 + . . .+ kj)-dimensional ambient space of Cj equals v.
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Remark 4.10 is illustrated by the tetrahedron in Figure 9. It can be built from

three 1-simplices S1, S2, S3 simply by first attaching S2 with a vertex to a vertex

of S1 orthogonally to S1, giving a right triangle C2. Then attaching S3 to the

correct vertex v of C2 such that the projection of S3 onto C2 equals v, gives the

tetrahedron. In Section 5 we will pay special attention to the nonobtuse simplices

whose fully indecomposable components are n-cube edges.

R em a r k 4.11. The 1-simplex in In has a fully indecomposable matrix repre-

sentation with doubly stochastic pattern. It is formally an acute simplex. Indeed,

the normals to its 0-dimensional facets 0 and 1 point in opposite directions. Hence,

its only dihedral angle equals zero. Since there does not exist a fully indecomposable

triangle in I2, matrix representations of a partly decomposable simplex do not have

2× 2 fully indecomposable diagonal blocks.

We would like to stress that although each partly decomposable matrix repre-

sentation of a nonobtuse 0/1-simplex can be transformed into block diagonal form

by operations of types (C), (R) and (X) as depicted on the right in Figure 10, the

bottom right block cannot be any of the fully indecomposable diagonal blocks Aj .

This is only possible if the corresponding simplex Sj is attached to the remainder of

the complex at exactly one vertex. For example, in Figure 11, with 0 as the origin,

the matrix A3 representing a regular tetrahedron in I
3 is a block of a block diagonal

matrix. After mapping vertex 4 to the origin by a reflection of type (X), the block A4

represents a so-called antipodal 4-simplex in I4. However, the block A2 represent-

ing the 1-simplex in I1 is never a block of a block diagonal matrix representation

of S. The only configurations of the three building blocks S1, S2, S3 having a matrix

representation that can be transformed by operations of type (C), (R) and (X) onto

block diagonal form with three diagonal blocks, are those in which S1, S2 and S3

have a common vertex.

S1S3
S2

1

0 4

3

2

5

6

7

8

1 2 3 4 5 6 7 8
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=





A3 0 0

0 A2 R

0 0 A1





Figure 11. A simplicial complex of three mutually orthogonal simplices S1, S2, S3. The
given matrix representation corresponds to choosing the vertex 0 as the origin.
Reflecting vertex 4 to the origin decouples, alternatively, the bottom right 4× 4
block. It is not possible to transform the matrix to block diagonal form with
A2 = [ 1 ] as one of the diagonal blocks. Reflecting any other vertex to the origin
does not even lead to a block diagonal matrix representation.
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In general, the decomposability structure of a nonobtuse 0/1-simplex can be well

visualized as a special type of planar graph, at the cost of the geometrical structure.

For this, assign to each p×p fully indecomposable diagonal block a regular p-gon, and

attach these to one another at the common vertex of the simplices they represent.

See Figure 12 for an example. At the white vertices it is indicated how many p-gons

meet. This number equals the number of diagonal blocks in the matrix representation

when this vertex is reflected onto the origin.

2 3 3

2

2

Figure 12. Schematic representation of a simplicial complex, built from a 5-simplex, a 4-
simplex, two tetrahedra, and four edges, of total dimension 19. With the origin
at a white vertex, the matrix representation decouples into the indicated num-
ber of diagonal blocks. If the vertex is located at another vertex, the matrix
representation does not decouple.

Before studying further properties of partly decomposable nonobtuse 0/1-simplices

in terms of their fully indecomposable components, we will pay special attention to

orthogonal simplices.

5. Orthogonal simplices and their matrix representations

The simplest subclass of nonobtuse simplices is formed by the orthogonal simplices.

These are nonobtuse simplices with
(
n
2

)
− n right dihedral angles. Note that this is

the maximum number of right dihedral angles a simplex can have, as Fiedler proved

in [14] that any simplex has at least n acute dihedral angles. Orthogonal simplices

are useful in many applications, see [7], [10] and the references therein. We restrict

our attention to orthogonal 0/1-simplices.

The orthogonal 0/1-simplices can be defined recursively as follows [7]. The cube

edge I1 is an orthogonal simplex. Now, a nonobtuse 0/1-simplex S in In is orthogonal

if it has an (n−1)-facet F with the properties that:

⊲ F is contained in an (n−1)-facet of In;

⊲ F is an orthogonal (n−1)-simplex.
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Clearly, this way to construct orthogonal 0/1-simplices is a special case of how nonob-

tuse 0/1-simplices were constructed from their fully indecomposable parts in Sec-

tion 4. This is because a vertex v forms an orthogonal simplex S together with an

(n−1)-facet F that is contained in an (n−1)-facet of In if and only if v projects

orthogonally on a vertex of F . This shows in particular that all fully indecomposable

components of any matrix representation of S equal [ 1 ], which limits the number of

their upper triangular matrix representations.

Proposition 5.1. There exist n! distinct upper triangular 0/1 matrices that rep-

resent orthogonal 0/1-simplices in In.

P r o o f. Let P ∈ B
n×n be an upper triangular matrix representing an orthogonal

n-simplex. Then the matrix

P̃ =

[
P r

0 1

]

is upper triangular, and according to Theorem 4.1 it represents a nonobtuse simplex

if and only if r equals one of the n + 1 distinct columns of [0 |P ]. Thus, there are

n+1 times as many orthogonal 0/1-simplices matrix representations of orthogonal

(n+1)-simplices in In+1 as of orthogonal n-simplices in In, whereas [ 1 ] is the only

one in I1. (See Figure 13.) �
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Figure 13. There are n! upper triangular matrix representations of orthogonal 0/1-
simplices.

R em a r k 5.2. Modulo the action of the hyperoctahedral group, there remain as

many orthogonal 0/1-simplices as the number of unlabeled trees on n + 1 vertices.

Indeed, it is not hard to verify that two matrices P and R representing orthogonal

0/1-simplices can be transformed into one another using operations of type (R),

(C) and (X) if and only if the spanning trees of orthogonal edges of the simplices

corresponding to P and R are isomorphic as graphs.
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6. One Neighbor Theorem for a class of nonobtuse simplices

In this section we will discuss the one neighbor theorem for acute simplices [7]

and generalize it to a larger class of nonobtuse simplices. This appears to be a very

nontrivial matter, which can be compared with the complications that arise when

generalizing the Perron-Frobenius theory for positive matrices to nonnegative matri-

ces [1], [2].

6.1. The acute case revisited. The one neighbor theorem for acute 0/1-

simplices reads as follows. We present an alternative proof to the proof in [7], based

in Theorem 3.1.

Theorem 6.1 (One Neighbor Theorem). Let S be an acute 0/1-simplex in In,

and F an (n−1)-facet of S opposite the vertex v of S. Write Ŝ for the convex hull

of F and v. Then:

⊲ F does not lie in an (n−1)-facet of In;

⊲ Ŝ is the only 0/1-simplex having F as a facet that may be acute, too.

In other words, an acute 0/1-simplex has at most one acute face-to-face neighbor at

each facet.

P r o o f. Let q be a normal vector to a facet of F opposite a vertex p of an acute

0/1-simplex S. Then due to Theorem 3.1, q has no zero entries. Therefore, the line

v + αq parametrized by α ∈ R intersect the interior of In if and only if v ∈ {p, p}.

Thus, for other vertices v of In, the altitude from v to the ambient hyperplane of F

does not land in In and in particular not in F . This is however a necessary condition

for the convex hull of F and v to be acute. �

p

p

F

q

−q
p

p̂

q

F

Figure 14. Left: for any facet F of an acute 0/1-simplex there is only one pair of antipodal
vertices p, p that may project onto F . All others end up outside In when follow-
ing the normal q in either direction. Right: in a nonobtuse simplex, there can be
more than two vertices that remain in In when following the normal direction
to an interior facet.

See the left picture in Figure 14 for an illustration of Theorem 6.1 in I3. Only the

pair of white vertices end up inside I3 when following the direction q normal to the
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facet F . All six other vertices, when projected on the plane containing F , end up

outside I3, or on themselves.

The translation of Theorem 6.1 in terms of linear algebra is as follows.

Corollary 6.2. Let P ∈ B
n×(n−1). The matrix [P | v] ∈ B

n×n is a matrix

representation of an acute 0/1-simplex for at most one pair of antipodal points

v ∈ {p, p} ⊂ B
n.

The one neighbor theorem dramatically restricts the number of 0/1-polytopes that

can be face-to face triangulated by acute simplices. For instance, only from dimension

n = 7 onwards there exists a pair of face-to-face acute simplices in In. In I7 it is the

Hadamard regular simplex [15] and its face-to-face neighbor, which is unique modulo

the action of the hyperoctahedral group, and which has the one-but-largest volume

in I7 over all acute 0/1-simplices [6]. Also in [7] the theorem turned out to be useful

in constructing all possible face-to-face triangulations of In consisting on nonobtuse

simplices only, due to the following sharpening of the statement.

Corollary 6.3. Each acute 0/1-simplex S in In has at most one face-to-face

nonobtuse neighbor at each of its facets.

P r o o f. This follows from the fact that in the proof of Theorem 6.1, the altitudes

from v 6= {p, p} intersect In only in v itself. �

A natural question is what can be proved for nonobtuse-0/1 simplices. Theo-

rem 3.5 showed that a normal to a facet of a nonobtuse 0/1-simplex S can have

entries equal to zero. Writing 0(q) for the number of entries of q equal to zero

(see (2.2)), there are 20(q)+1 vertices v of In from which the altitudes starting at v

onto the plane containing F do not leave In. This is illustrated on the right in

Figure 14. The normal vector q to the facet F has one zero entry: 0(q) = 1. The

altitudes from the 22 white vertices of I3 onto the plane containing F lie in I3.

Nevertheless, only the altitudes from p and p̂ land on F itself, and we see that

the interior facet F of S in I3 has exactly one nonobtuse neighbor. It is tempting

to conjecture that the one neighbor theorem holds also for nonobtuse 0/1-simplices.

The only adaption to make is then, based on the example in Figure 14, that instead

of the antipodal p of p in In, the second vertex p̂ such that the convex hull of F

with p̂ is a nonobtuse simplex should satisfy

(6.1) p̂j = 1− pj ⇔ qj 6= 0 and p̂j = 0 ⇔ qj = 0.

In words, p̂ is the antipodal of p restricted to the (n−0(q))-dimensional n-cube facet

that contains both p and q. In Figure 14, p̂ is the antipodal of p in the bottom square

facet of I3.
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R em a r k 6.4. As an attempt to prove this conjecture, one may try to demon-

strate that the remaining white vertices in the top square facet of I3, although their

altitudes lie in I3, cannot land onto F . Although we did not succeed in doing so, the

nonobtusity of S is a necessary condition. To see this, consider the 0/1-simplex S

in I5 with matrix representation

(6.2) P =




1 1 1 0 0

1 1 0 1 0

1 0 0 0 1

0 0 1 1 0

0 1 1 0 1




with q =
1

2




0

1

1

1

1



,

and q is the normal to the facet F of S opposite the origin, as P⊤q = en. Observe

that the line from the origin to the vertex 2q in I5 intersects F in the midpoint of

its edge between the two vertices of S in the last two columns of P . This shows that

both the origin and its antipodal in the bottom 4-facet of I5 as defined in (6.1) land

in F when following their respective altitudes. But also the line between e51 and e5

intersects F in the midpoint of its edge between the two vertices in the first and

third column of P . Thus, also both the vertices e51 and e5 in the top 4-facet of I5

land in F when following their altitudes. We conclude that for a 0/1-simplex that is

not nonobtuse, it can occur that more than two vertices of In project orthogonally

onto F .

6.2. More on fully indecomposable nonobtuse simplices. In Section 6.3 we

will study the one neighbor theorem in the context of partly decomposable nonobtuse

simplices. For this, but also for its own interest, we derive some further results on

fully indecomposable nonobtuse simplices.

Lemma 6.5. Each representation P ∈ B
n×n of a fully indecomposable 0/1-

simplex S satisfies

(6.3) P⊤P > I + en(en)⊤.

In geometric terms this implies that all triangular facets of S are acute.

P r o o f. The proof is a standard type of argument. Write D for the diagonal

matrix having the same diagonal entries as B = (P⊤P )−1, and let C = D−B. Then

C > 0, and

(6.4) B = D − C = D(I −D−1C) and P⊤P = B−1 = (I −D−1C)−1D−1.
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Because B is an M-matrix [17], [18], the spectral radius of D−1C is less than one,

and the following Neumann series converges:

(6.5) (I −D−1C)−1 =

∞∑

j=0

(D−1C)j .

Since P is fully indecomposable, P⊤P is irreducible, and thus B is irreducible. But

then, so are C and D−1C. Because of the latter, for each pair k, l there is a j such

that e⊤k (D
−1C)jel > 0. This proves that B−1 = P⊤P > 0. Since its entries are

integers, P⊤P > en(en)⊤. Thus, each pair of edges of S that meet at the origin

makes an acute angle. As by Theorem 3.1 all matrix representations of S are fully

indecomposable, we conclude that all triangular facets of S are acute. This implies

that any diagonal entry of P⊤P is greater than the remaining entries in the same

row. Indeed, if two entries in the same row would be equal, then p⊤j (pj − pi) = 0,

which corresponds to two edges of S making a right angle. �

Corollary 6.6. Let P be a fully indecomposable matrix representation of a nonob-

tuse 0/1-simplex. If P̂ equals P with one column replaced by its antipodal, then

P̂⊤P̂ > 0.

P r o o f. Without loss of generality, assume that

(6.6) P = [p |P1] and P̂ = [p |P1]

with p ∈ B
n. Then

(6.7) P̂⊤P̂ =

[
p⊤p p⊤P1

P1p P⊤
1 P1

]
,

and P⊤
1 P1 > 0 because P⊤P > 0 as proved in Lemma 2.11. Due to the fact that for

all a, b ∈ B
n,

(6.8) a⊤b = a⊤(en − b) = a⊤(a− b),

we see that also P⊤
1 p > 0. Indeed, a zero entry would contradict that the diagonal

entries of P⊤P are greater than its off-diagonal entries, as proved in Lemma 6.5. �

R em a r k 6.7. The matrix P̂ in Corollary 6.6 is not always fully indecomposable.

See

(6.9) P =



0 1 1

1 0 1

1 1 0


 , P̂ =

1

20



1 1 1

0 0 1

0 1 0


 ,

where the first columns of both matrices are each other’s antipodal. This example

also shows that the top left diagonal entry of P̂⊤P̂ need not be greater than the

other entries in its row.
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We end this section with a theorem which was proved by inspection of a finite

number of cases. We refer to [6] for details on how to computationally generate the

necessary data.

Theorem 6.8. Each fully indecomposable nonobtuse 0/1-simplex in S
n with

n 6 8 is acute. There exist fully indecomposable nonobtuse 0/1-simplices in S
n

with n > 9 that are not acute.

P r o o f. See [6] for details on an algorithm to compute 0/1-matrix representa-

tions of 0/1-simplices modulo the action of the hyperoctahedral group. By inspection

of all 0/1-simplices of dimensions less than or equal to 8, we conclude the first state-

ment. For the second statement, we give an example. The 9 × 9 matrix P given

below represents a nonobtuse simplex S that is not acute. Nevertheless, P is fully

indecomposable.

P =




1 1 0 0 1 1 1 1 0
1 0 1 1 1 0 0 1 1
1 0 1 1 0 1 1 0 1
0 1 1 1 1 0 1 0 1
0 1 1 1 0 1 0 1 1
0 0 1 1 1 1 1 1 0
0 0 1 0 1 1 0 0 1
0 0 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1




and P−⊤ =




6 6 −2−6 2 2 2 2 −2
7−3 1 3 4−6−6 4 1
7−3 1 3−6 4 4−6 1

−3 7 1 3 4−6 4−6 1
−3 7 1 3−6 4−6 4 1
−4−4 8 4 2 2 2 2−12
−2−2 4−8 6 6−4−4 4
−2−2 4−8−4−4 6 6 4
−4−4−12 4 2 2 2 2 8




with normal q to the facet opposite the origin equal to

q⊤ =
1

20
( 10 5 5 5 5 0 0 0 0 ).

Since q has entries equal to zero, S cannot be acute. But (P⊤P )−1 satisfies (2.7)

and (2.8), hence S is nonobtuse. Note that none of the other normals has a zero

entry. �

Thus, Theorem 6.8 proves that the full indecomposability of a matrix representa-

tion of a nonobtuse 0/1-simplex S is, in fact, a weaker property than the acuteness

of S.

Especially since the two concepts coincide up to dimension eight, this came as

a surprise. Citing Günther Ziegler in Chapter 1 of Lectures on 0/1-Polytopes [19]:

“Low-dimensional intuition does not work! ”. See [6] for more such examples in the

context of 0/1-simplices.

6.3. A One Neighbor Theorem for partly decomposable simplices. Let S

be a partly decomposable nonobtuse simplex. Then according to Corollary 4.5, S has

27



a matrix representation

(6.10) P =

[
N 0

0 A

]

in which A is fully indecomposable. We will discuss some cases in which a modified

version of the One Neighbor Theorem 6.1 holds also for nonobtuse simplices that are

not acute.

Case I. To illustrate the main line of argumentation, consider first the simplest

case, which is that S ∈ S
n can be represented by

(6.11) P =

[
A2 0

0 A1

]
with A1 ∈ B

k×k and A2 ∈ B
(n−k)×(n−k)

and in which A1 and A2 represent acute simplices S1 and S2. Then A1 and A2 are

fully indecomposable, and S1 and S2 satisfy the One Neighbor Theorem 6.1. Assume

first that neither A1 or A2 equals the 1× 1 matrix [ 1 ].

Notation. We will write Xj(y) for the matrix X with column j replaced by y.

Now, let v ∈ B
n, partitioned as v⊤ = ( v⊤1 v⊤2 ) with v1 ∈ B

k. Assume that the

block lower triangular matrix P 1(v) represents a nonobtuse simplex. This implies

that its top-left diagonal block A1
2(v1) does so, too, hence v1 = a1 = Aek1 or v1 = a1

by Theorem 6.1. Corollary 6.6 shows that in both cases A1
2(v1)

⊤A1
2(v1) > 0. But

then Theorem 4.1 in combination with the observations in Remarks 4.2 and 4.4

proves that v2 = 0, because all columns in the off-diagonal block must be copies of

one and the same column of A1. Hence, there is at most one v ∈ B
n other than Pen1

such that P 1(v) is nonobtuse. See Figure 15 for a sketch of the proof.

A10

0a1

A10

0v1

v2 A10

0

a1

or

a1

v2 A10

0

a1

or

a1

0

Figure 15. Steps in proving a one neighbor theorem for partly decomposable nonobtuse
simplices with two fully indecomposable blocks representing acute simplices.

Clearly, the same argument can be applied to prove that for all j ∈ {1, . . . , n},

the matrix P j(v) represents a nonobtuse 0/1-simplex for at most one v ∈ B
n other

than Penj . This proves that for each column p of P , the facet Fp of S opposite p has

at most one nonobtuse neighbor. It remains to prove the same for the facet F0 of S
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opposite the origin. But because S1 and S2 are by assumption acute, the normals q1

and q2 to their respective facets opposite the origin, which satisfy A⊤
1 q1 = ekk and

A⊤
2 q2 = en−k

n−k, are both positive. But then so is the normal q of F0, which satisfies

P⊤q = enn, and hence q
⊤ = ( q⊤1 q⊤2 ) > 0. And thus, apart from the origin, only enn

can form a nonobtuse simplex together with F0.

R em a r k 6.9. Note that this last argument does not hold if A1 and A2 are

merely assumed to represent fully indecomposable nonobtuse simplices: the 9 × 9

matrix in Figure 15 shows that the normal of the facet opposite the origin may

contain entries equal to zero.

To finish the case in which S has has a matrix representation as in (6.11), assume

without loss of generality thatA1 = [ 1 ] andA2 6= [ 1 ]. Then the facet F of S opposite

the last column of P lies in a cube facet, and thus it cannot have a nonobtuse face-

to-face neighbor. For the remaining n facets of S, arguments as above apply, and

we conclude that S has at most one nonobtuse neighbor at each of its facets. The

remaining case when A1 = A2 = [ 1 ] is trivial.

Note that if a nonobtuse 0/1-simplex has a block diagonal matrix representation

with p > 2 blocks, each representing an acute simplex, the result remains valid,

based on a similar proof.

Case II. Assume now that the matrix representation P of a nonobtuse 0/1-

simplex S has the form

(6.12) P =

[
N1 0

0 A1

]
,

where A1 ∈ B
(n−k)×(n−k) represents an acute simplex and N1 a merely nonobtuse

simplex. Using similar arguments as in Case I it is easily seen that the only two

choices of v ∈ B
n such that P j(v) with k + 1 6 j 6 n is nonobtuse, are

(6.13) v = Penj =

[
0

aj

]
and v =

[
0

aj

]
,

as no additional properties of N1 need to be known. This changes if we examine the

matrix P j(v) with 1 6 j 6 k, as it is generally not true that N⊤
1 N1 > 0. A way out

is the following. Assume that also N1 is partly decomposable. Then using only row

and column permutations, we can first transform N1 into the form

(6.14) N1
(C)+(R)
−→

[
N2 R

0 A2

]
,
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where we assume that A2 represents an acute simplex. Then reflecting the vertex to

the origin so that the block above A2 becomes zero, we find that

(6.15) P ∼ P̃ =



N2 R12 0

0 A2 0

0 0 A1


 ∼



Ñ2 0 R̃

0 A2 0

0 0 A1


 = P̂ ,

where R̃ has the same columns as R but possibly a different number of them. Now,

select a column of P̂ that contains entries of A2 and replace it by v, partitioned

as v⊤ = ( v⊤1 v⊤2 v⊤3 ). Because the bottom right 2 × 2 block part of P̂ is a matrix

representation of a nonobtuse simplex as considered in Case I, we conclude that

v3 = 0. Because the top left 2 × 2 block part of P̃ is a matrix representation as

in (6.12), we conclude that v3 = 0 and v2 is a column of A2 or its antipodal. Thus,

also the facets of the vertices of S corresponding to its indecomposable part A2 all

have at most one nonobtuse neighbor.

Now, this process can be inductively repeated in the case when Ñ2 is partly de-

composable with a fully indecomposable part that represents an acute simplex, until

a fully indecomposable top left block Ap remains. This block represents vertices for

which it still needs to be proved that their opposite facets have at most one nonob-

tuse neighbor. To illustrate how to do this, consider the case p = 3. Or, in other

words, assume that N2 in (6.15) represents an acute simplex. Replace one of the

corresponding columns of P̃ by v partitioned as v⊤ = ( v⊤1 v⊤2 v⊤3 ). Then v3 = 0

because the (1, 3) block of P̃ equals zero. Similarly, because the (1, 2)-block in P̂

equals zero, we find that v2 = 0. And thus, v3 is a column of N2 or its antipodal.

For p > 3, we can do the same one by one for the blocks at positions (1, p), . . . , (1, 2).

The analysis in this section can be summarized in the following theorem.

Theorem 6.10. Let S be a nonobtuse 0/1-simplex whose fully indecomposable

components are all acute. Then S has at most one face-to-face neighbor at each of

its interior facets.

A c k n ow l e d gm e n t s. Jan Brandts and Abdullah Cihangir are grateful to

Michal Křížek for comments and discussions on earlier versions of the manuscript.
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