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Abstract. In specific fields of research such as preservation of historical buildings, medical
imaging, geophysics and others, it is of particular interest to perform only a non-intrusive
boundary measurements. The idea is to obtain comprehensive information about the mate-
rial properties inside the considered domain while keeping the test sample intact. This paper
is focused on such problems, i.e. synthesizing a physical model of interest with a bound-
ary inverse value technique. The forward model is represented here by time dependent
heat equation with transport parameters that are subsequently identified using a modified
Calderón problem which is numerically solved by a regularized Gauss-Newton method. The
proposed model setup is computationally verified for various domains, loading conditions
and material distributions.

Keywords: Calderón problem; finite element method; diffusion equation; boundary in-
verse value method; Neumann-to-Dirichlet map

MSC 2010 : 65M32, 35K05

1. Introduction

In this paper we propose a non-invasive parameter identification technique based
merely on boundary observations of the object of interest. This idea was initially
inspired by a medical imaging technique named Electric Impedance Tomography
(EIT) which was first rigorously described by the Argentinian mathematician Al-
berto Calderón in his foundational paper [10] in 1980. The ultimate goal of EIT is
to determine the electric conductivity field inside an object of interest using only
boundary measurements. The basic idea of this method lies in the difference of
surface measurements due to variations in the subsurface conductivity distribution.

The financial support of this research by the GA15-07299S and GA16-11473Y is gratefully
acknowledged.

DOI: 10.21136/AM.2018.0323-17 687

http://dx.doi.org/10.21136/AM.2018.0323-17


While a single set of surface measurements for a given loading conditions might result
in a number of possible conductivity fields, Calderón surpassed this problem by se-
quentially implying multiple loading conditions, for which the system responses have
the potential to contain complete information about the underlying conductivity
distribution.
We especially focus on physical models applicable in civil engineering, e.g. prob-

lems mainly governed by elliptic or parabolic partial differential equations (PDEs)
with defined geometry, loading and material properties. Specifically we consider
a single-parameter steady-state heat equation as a direct analogy to the standard
use of Calderón inverse problem paradigm in electrostatics and a time dependent
heat transport as a representative of a multi-parameter model. Such problems have
been studied during past few years from several perspectives. Spatially distributed
thermal conductivity for the steady-state heat equation was first estimated from
boundary measurements in [19]. The defects or inhomogeneities in the thermal con-
ductivity field were presented in [2] and [18]. More complex approach focused on the
transient problem, i.e. identifying the thermal conductivity and the volumetric heat
capacity, was introduced in [3] and [22]. The three dimensional aspects of parameter
estimation for stationary and non-stationary heat problem were proposed in [41]. In
this paper, we present a detailed insight into the concept of parameter identification
and focus on the comparison of steady-state and transient model. Moreover, our
proposed method considering a time dependent heat transport is designed to be an
external loading-free method, i.e., it completely relies on the environmental factors
as a source of changes which are necessary in order to identify the material properties
inside the domain.
The paper is organised as follows: Section 2 comprises a thorough description of

forward models, i.e., the physical meaning of individual elements, measuring tech-
niques, boundary conditions and numerical solutions. In Section 3 we discuss a com-
mon approach to solving an inverse problems with an iterative regularized Gauss-
Newton algorithm. Further, we also comment on implementation details which are
necessary in order to ensure the stability of the solver. In Section 4 we give an
overview of the identification algorithm performance, considering various scenarios,
i.e., domain shapes, material distributions, loading conditions and limited number
of measurement points. Our results are then summarized in the last section.

688



2. Forward models

Throughout this paper, we consider basically three numerical models which are
based on diffusion equation. Computational models play a fundamental role, since
each is repeatedly used in the inverse process and also for simulating the error-less
data. Numerical solutions for each model are always based on the finite element
method. The space and time discretization and other specifications are briefly out-
lined for each model within its section. All relevant information regarding the deriva-
tion, implementation and relationships of FEM principles proposed in this paper can
be for example found in [4] and the literature therein.
Main ideas of employing Calderón’s technique in foregoing models are created

upon the foundational research conducted in [13], which proposed and experimentally
validated so called Complete Electrode Model (CEM). In this model, electrodes are
considered with their actual physical size with a contact impedance layer between
the skin and the electrode.
In order to capture the shift from electrostatics to the heat transfer in terms of

assumptions that lead to unique solutions, it is important to understand the basic
features of the CEM which is defined as [35]

(2.1)






∇ · (σ(x)∇v(x)) = 0, x ∈ Ω,
∫

es

σ(x)
∂v

∂n
(x) dS = Is, s = 1, . . . ,ms,

σ(x)
∂v

∂n
(x) = 0, x ∈ ∂Ω \

ms⋃

s=1

es,

v(x) + zsσ(x)
∂v

∂n
(x) = Vs, x ∈ es, s = 1, . . . ,ms,

where Ω ⊆ R
d, d = 2, is a bounded domain with a piecewise smooth boundary. The

outward unit normal vector to the boundary is denoted by n. A known electrical con-
ductivity σ is given on the closure of Ω. The model consists of ms electrodes (es)

ms

s=1

modelled as a part of the surface ∂Ω, each with known contact impedances (zs)
ms

s=1

that are assumed to be constant. The current pattern applied to the electrodes is
denoted by (Is)

ms

s=1 ∈ R
ms . The electrostatic potential field within the domain is de-

noted by v(x). The model conditions introduced in (2.1) can be translated as follows:
the first term is the governing equation, the second condition indicates that the cur-
rent flux is averaged across each electrode es and gives rise to a known (measured)
constant current Is. The third condition implies that there is no current leakage
through the bare skin, assuming that the air is an insulator and the last term is
a Robin condition, which includes zs, a skin-electrode contact impedance. The prob-
lem in (2.1) determined by the first three equalities is solvable under some natural
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assumptions such as the positiveness of σ and
ms∑
s=1

Is = 0. The latter condition also

has a physical justification as conservation of charge. The fourth equality in (2.1)
shows how the potential v determines the electrode potential Vs on each electrode es.
Motivated by physical considerations, we can expect that Vs are constants. A ques-
tion arises, whether problem (2.1) with unknown constants Vs has a solution. That
is, whether a function v and a vector from R

ms exist such that they solve (2.1).

In [35], the weak formulation of (2.1) was presented and the proof of the existence
of a solution formed by v and V = (V1, . . . , Vms

) was given under the following
assumptions.

Assumption 2.1. The conductivity σ, the contact impedances zs and the cur-
rent pattern Is satisfy

(i) σ ∈ L∞(Ω;R), inf
x∈Ω

σ(x) = σ− > 0,

(ii) 0 < z− 6 zs 6 z+ < ∞, s = 1, . . . ,ms,

(iii)
ms∑
s=1

Is = 0.

However, the solution is only defined up to addition of a constant to both v and V .

It is proved in [35] that the uniqueness of the solution is ensured if
ms∑
s=1

Vs = 0.

By virtue of the linearity of (2.1), this condition can be used (a) for the ex post
normalization of v and V , (b) in the definition of a vector subspace where V is
searched for, or (c) in the setting of the reference potential if the electrode voltages
are measured as in identification problems. A detailed description of the problem
and its treatment can be found in [42], [13], [43], and the literature therein.

The identification algorithm works as follows. Model (2.1) is provided with the
measured input data, i.e., the fluxes Is, impedances zs, along with a chosen estimate
of the conductivity field σ. The part of the output of the model which we are
interested in is primarily the set of electrical potentials Vs for particular choice of
the field σ. The identification algorithm then adjusts the field σ in such a way that
it minimises an appropriate norm of the difference (Vs −Ws), where Ws represents
the error-less (measured) data stemming from an experiment.1

2.1. General Transport Model (GTM). Following the same principles, one
can generalize the concept for arbitrary transport process governed by a diffusion
equation. For the purpose of civil engineering application, we shall consider a steady-

1 In the following text we will denote these variables as: Vs = F (σ) and Ws = um.
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state heat equation with its boundary conditions in the form

(2.2)






∇ · (λs(x)∇uh(x)) = 0, x ∈ Ω,

λs(x)
∂uh

∂n
(x) = fN(x), x ∈ ∂ΩN \ eh,

α(uh(x)− u0(x)) = λs(x)
∂uh

∂n
(x), x ∈ ∂ΩT \ eh,

uh(x) + rhλs(x)
∂uh

∂n
(x) = Th, x ∈ eh, h = 1, . . . ,mh,

∂Ω = ∂ΩT ∪ ∂ΩN .

The formulation of (2.2) considers mh solutions of the governing equation on the
first line, which is a response to mh different boundary conditions, i.e. individual
heaters, represented by the Robin condition on the last line. In contrast to EIT,
the potential uh(x) represents here the temperature field for hth loading condition,
thus the electrodes eh now transform into heaters which are capable of changing
their temperature instead of the electric current2. The other variables include the
thermal conductivity field λs(x), the outward pointing unit normal vector n and
the constants rh and Th representing the heater resistance coefficient and the heater
temperature of the hth loading state, respectively. The environmental factors are:
α the constant heat transfer coefficient, u0(x) the environmental temperature and
fN (x) the prescribed flux. The ∂Ω is a boundary of the domain Ω. Note that Th

is a single constant for the hth out of mh loading states indicating our intention to
utilize a stimulation pattern in which only the hth heater is active while the others
are inactive.
The inputs for this model are then the conductivity field λs(x), the stimulation

temperatures (Th)
mh

h=1, the contact resistances (rh)
mh

h=1 and the environmental factors
α, u0(x) and fN (x). Subsequently, the model output consists of the temperature
field u(x) with its trace on the boundary ∂Ω. In the numerical settings, mh heaters,
which are activated one by one, are attached to the boundary ∂Ω. For each active
heater one captures the temperature in mn measurement nodes on the boundary
Γm ⊆ ∂Ω forming a vector containing mhmn numbers.
By simplifying Assumptions 2.1, the existence and uniqueness of the solution of

the weak form of (2.2) is proved under the following assumptions, see [32].

Assumption 2.2. The conductivity λs(x), the contact resistances rh and the
transfer coefficients α satisfy the following conditions:

2 By using Robin condition together with the heater temperature Th and transfer co-
efficient rh, one can still employ the Neumann-to-Dirichlet map for GTM model, see
Section 3.
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(i) λs ∈ L∞(Ω;R), inf
x∈Ω

λs(x) = λ+
s > 0,

(ii) 0 < r−h 6 rh 6 r+h < ∞, h = 1, . . . ,mh,
(iii) 0 < α− 6 α 6 α+ < ∞.

Note that in comparison to Assumption 2.1 there is no parallel to the condition
for conservation of charge, i.e.,

∑
Is = 0. By application of the second and the

third equation in (2.2) the solution of the problem is unique and there is no need to
introduce an analogy to the condition

∑
Vs = 0 in CEM.

Unlike in EIT, where the measurements are conducted only by passive electrodes,
one can actually choose all accessible parts of the boundary ∂Ω, which can be under-
stood as taking a thermal camera images. Because the stimulation temperatures Th

and resistances rh for each heater are known a priori, the last equation in (2.2) can
be interpreted as a prescribed flux with a reference temperature Th, thus preserving
the principle of loading with flux and measuring the potential at the boundary as
it is common in EIT. The previously mentioned current stimulation pattern from
EIT now translates into the temperature stimulation pattern, which can take nearly
arbitrary form. Unlike in EIT, where at least two electrodes in each loading state
must be active concurrently due to the third condition in Assumption 2.1, GTM is
always provided with the reference temperature due to the third equation in (2.2),
so one can stimulate the construction with just a single heater at time, which is also
the case in our numerical examples.

Numerical solution of the forward model. The solution of (2.2) is obtained
using the finite element method. The domain is discretized intoNe disjoint triangular
elements with Nn nodes. The solution is approximated with ϕi(x) for i = 1, . . . , Nn

linear basis functions. The parameter λs(x) is approximated by an element-wise
constant function and can be identified with a vector λs ∈ R

Ne .
In contrast to Vs in CEM, heater temperatures Th in GTM are given a priori and

the observed nodes on Γm that coincide with active heaters are excluded from the
observation. Let us define the dependence of the nodal temperatures uh|Γm

on the
parameter λs by the forward operator

(2.3) F(λs) = ur, ur ∈ R
mn·mh ,

where ur is the vector containing the temperatures on the boundary Γm ⊆ ∂Ω that
is subjected to measurement, mn is the cardinality of the discrete form of Γm, i.e. the
number of FE nodes located on Γm and mh is the number of heaters.
The full solution vector for the hth active heater uh ∈ R

Nn , containing all tem-
peratures in Ω, is obtained as

(2.4) (K+Kt +Ke,h)uh = ft + fe,h + fn,
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where the particular system matrices and corresponding right-hand side vectors are
computed as

Kjk =

∫

Ω

λs∇ϕj · ∇ϕk dA, j, k = 1, . . . , Nn,(2.5)

Kt,hjk =

∫

∂ΩT \eh

αϕjϕk dS, j, k = 1, . . . , Nn, h = 1, . . . ,mh,(2.6)

Ke,hjk =

∫

eh

1

rh
ϕjϕk dS, j, k = 1, . . . , Nn, h = 1, . . . ,mh,(2.7)

ft,hj =

∫

∂ΩT \eh

αu0ϕj dS, j = 1, . . . , Nn, h = 1, . . . ,mh,(2.8)

fe,h =

∫

eh

1

rh
Th dS, h = 1, . . . ,mh,(2.9)

fn,hj = −

∫

∂ΩN\eh

fNϕj dS, j = 1, . . . , Nn, h = 1, . . . ,mh.(2.10)

2.2. Time dependent heat equation. In real conditions it is, however, not an
easy task to maintain the steady-state conditions. Therefore, we intend to apply
identical principles used in the Calderón problem for the time dependent model. To
capture a time dependent heat transport, we adopt the following set of equations:

(2.11)





̺s(x)cp(x)
∂u

∂t
(x, t)−∇ · (λs(x)∇u(x, t)) = 0, x, t ∈ Ω× (0, ts),

λs(x)
∂u

∂n
(x, t) = fN (x, t), x ∈ ∂ΩN ,

α(u(x, t) − u0(x, t)) = λs(x)
∂u

∂n
(x, t), x ∈ ∂ΩT ,

∂Ω = ∂ΩN ∪ ∂ΩT , u(x, 0) = 0 for x ∈ Ω,

where ̺s(x) is the volumetric mass density, cp(x) is the specific heat capacity, ts is
the final time of the simulation and ∂Ω(N,T ) are the non-intersecting subsets of the
boundary ∂Ω with corresponding environmental factors u0(x, t), α and fN (x, t). The
solution existence and uniqueness of the weak form of (2.11) can be found in [24].
In the definition of this model in (2.11) one can notice that there is no mention

of electrodes or heaters indicating our intention not to consciously intervene in the
system itself, but only to rely on external influences and a natural fluctuation of the
temperature. In situations, where the boundaries ∂Ω are not exposed to different
external influences, one can adapt a similar techniques to GTM and CEM, i.e., to
equip the boundary with a heater or cooler or control the ambient temperature using
the second or the third condition in (2.11). From a practical point of view a special
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feature of this model lies in its independence on the excitation device, i.e. stimula-
tion electrodes or heaters, which manifests itself in a smaller requirements on the
measuring equipment, i.e., the full measurement setup consists only of thermometer
arrays or thermal cameras.

Numerical solution of the forward model. The discretization and approx-
imation corresponds to the previous model with the extension to the volumetric
capacity cv(x) = ̺s(x)cp(x), which is approximated by piecewise constant functions
on each element forming a vector cv ∈ R

Ne . The forward operator F consists of
two independent parameters and solves the system for chosen time steps mt at once,
giving rise to the formulation

(2.12) F(λs, cv) = ur, ur ∈ R
mn·mt ,

where the inputs are the thermal conductivity λs and the volumetric capacity cv.
The output of the forward operator is acquired as a subset of a full solution matrix3

usol = [u1,u2, . . . ,uNt
] ∈ R

Nn×Nt , were Nt is the number of total time steps of the
simulation, obtained from the set of linear equations

KCui+1 = (KC −∆tK̃)ui−1 +∆t((1 − τ)fn,i−1 + τfn,i) + . . .(2.13)

+∆t((1− τ)ft,i−1 + τft,i),

K̃ = K+Kt,(2.14)

KC = C+ τ∆tK̃,(2.15)

where ∆t = ti+1− ti is the time step, τ ∈ 〈0; 1〉 is a parameter4, the system matrices
and right-hand side vectors are computed in the following way:

Kjk =

∫

Ω

λs∇ϕj · ∇ϕk dA, j, k = 1, . . . , Nn,(2.16)

Cjk =

∫

Ω

̺scpϕjϕk dA, j, k = 1, . . . , Nn,(2.17)

Kt,jk =

∫

∂ΩT

αϕjϕk dS, j, k = 1, . . . , Nn,(2.18)

ft,ji =

∫

∂ΩT

αu0,iϕl dS, i = 1, . . . , Nt, j = 1, . . . , Nn,(2.19)

fn,ji = −

∫

∂ΩN

fN (ti)ϕj dS, i = 1, . . . , Nt, j = 1, . . . , Nn.(2.20)

3 From which mn < Nn and mt 6 Nt numbers are utilized in the identification process.
4 The foregoing computations were calculated by the Crank-Nicolson scheme, i.e. τ = 0.5.
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3. Inverse problem

In a classical concept of numerical analysis, one is often provided with an appro-
priate physical model and a certain surrounding environment, i.e., a set of possible
causes with a knowledge of the system behaviour, determining the required model
responses. Such procedure is called a forward model and is opposite to the inverse
problem, for which the main objective is to determine the cause from a given set of
observations. Generally, the majority of forward models for physical situations leads
to well-posed problems in the sense of Hadamard, see [15], for which the conditions
can be stated as:

⊲ for all admissible data the solution exists (existence),
⊲ for all admissible data there is at most one solution of the problem (uniqueness),
⊲ the solution depends continuously on the data (stability).

However, inverse problems do not necessarily have the aforementioned properties.
Solution of such problems might therefore not be unique or stable and even small
changes in the input data can result in large changes in the solution violating the
third condition, thus the problem can be recognised as ill-posed, see [42], [20]. An-
other criterion that comes into consideration is the uniqueness of solution which can
be better understood as a possible information shortage or data insufficiency. Al-
though lack of information cannot be remedied by any mathematical treatment, see
[25], stability of the solution can be treated by various mathematical procedures. In
the case that the instability is intrinsic property of the system itself and the prob-
lem cannot be reformulated, one needs to provide additional assumptions, e.g., some
prior information, enforcing smoothness, preferring solution with the smallest norm,
provide bounds to the unknown entity, etc. Procedures for determining the con-
straints are generally called regularization methods and within this paper we shall
employ a deterministic approach.
Mathematically the Calderón inverse problem represents a non-linear and severely

ill-posed problem (see [29]) of recovering the coefficient of divergence σ in a system of
elliptic partial differential equations. For electrostatic EIT, the problem is modelled
by the generalized Laplace equation with boundary conditions

(3.1)

{
∇ · (σ∇u) = 0 in Ω,

σ∇u · n = f on ∂Ω,

satisfying the conservation of charge
∫
∂Ω f dS = 0 and choice of the reference voltage∫

∂Ω
u dS = 0 providing the solution existence and uniqueness respectively, see [32].

The term f ∈ H−1/2(∂Ω) is a given current flux on the Lipschitz boundary ∂Ω

and the induced potential lying in the Sobolev space u ∈ H1(Ω) uniquely solves
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the Neumann boundary value problem in a bounded domain Ω ⊆ R
2. The electrical

conductivity σ ∈ L∞(Ω) is assumed to be scalar valued, strictly positive and bounded
in Ω and n is the outward pointing unit normal vector.
The knowledge of the resulting trace of the potential u ∈ H1/2(∂Ω) then gives rise

to the Neumann-to-Dirichlet (NTD) Λσ : H−1/2(∂Ω) → H1/2(∂Ω) map, which can
be formally defined as

(3.2) Λσ : (σ∇u) · n|∂Ω 7→ u|∂Ω.

In general, it is also possible to proceed in the opposite way, i.e., to prescribe the
Dirichlet boundary condition u|∂Ω in (3.1) and infer the current flux (σ∇u) · n|∂Ω,
which would refer to the Dirichlet-to-Neumann (DTN) map.
The problem of interest is then to ask whether the Cauchy data, i.e., the pair of

potentials and fluxes on the boundary, determine the conductivity σ in Ω uniquely.
The injectivity of the forward map and uniqueness were proven under variety of
assumptions in [39], [30], [9] and states that

(3.3) Λσ1
= Λσ2

⇒ σ1 = σ2.

For detailed information about DTN and NTD maps, see [40].

3.1. General procedure. Since the numerical procedures for solving ill-posed
and non-linear problems are mathematically identical for various tasks, the bound-
ary inverse problem can therefore be solved in a number of ways. The traditional
approach is to linearize the problem and subsequently use a regularization method
to stabilize the solver. The resulting system can be evaluated iteratively by one of
the family of Newton-type methods. The opportunity to perform regularization of
the problem prior to the linearization or vice versa opens up a wide range of possible
ways to solve such problem. The minimization problem is often stated as follows,
with the first term representing the cost function and the second term being the
regularization penalty:

(3.4) σrec = argmin
σ

‖um − F(σ)‖p +G(σ).

We will call F(σ) a forward operator containing the model responses for all loading
states on the observed part of the boundary, um represents the error-less system
response5, p indicates lp-norm, G(σ) is the regularization functional introducing

5 By this we mean that we utilize only virtual measurements calculated with a given ma-
terial distribution σtrue which is then unknown in the identification procedure, i.e. um =
F (σtrue).
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additional constraints to the solution and σrec is the parameter field being identified,
i.e., σ is a general parameter which in the following text will, for example, represent
conductivity λs or volumetric capacity cv.
Since the identification methods in various fields are pursuing different objectives,

e.g., the interest in non-iterative methods is mostly driven by the necessity of fast
and reliable identification algorithms generating real time visualizations in medical
imaging [16], [36], whereas in geophysics [11], [26], [17], iterative algorithms providing
generally refined solutions are more preferred. From a wide range of identification
techniques used in EIT one can choose, e.g. moment methods [1], Calderón’s approach
[7], back-projection [33], [5], one-step Newton family methods [6], [28], [12], layer
stripping [36], or a more recently developed scattering transform, i.e. ∂ method [34],
[21]. Since our problems are inherently time dependent and relatively slow, we do
not pursue real time imaging, but rather prefer more precise solution which is in our
case provided by iterative Newton-type methods based on the assumption of small
perturbations of the parameter field. A typical choice of the regularization penalty
term in (3.4) has the following form, see [42]:

(3.5) G(σ) = κ2‖L(σ − σr)‖
2
l2 ,

where the hyper-parameter (regularization parameter) κ is controlling the trade-
off between the solution stability, given constraints and the distance from the true
solution. In our implementation it is adjusted in every iteration in order to get
closer to the true solution, see (3.11) and (3.7). Additional prior assumptions are
contained in the reference field σr , which represents some known and possibly non-
smooth transitions of the unknown parameter, see [17]. A straightforward way of
explaining the regularization operator L is such that it draws the solution towards its
null space6, i.e. ker(L). It might take the form of the first and second order differential
operator, a weighted diagonal matrix to promote a sparse solution, see [14], Gaussian
smoothing filter, see [8], or, without any knowledge of the system, the operator is
often an identity.

3.2. Numerical solution of the inverse problem. All results in Section 4
share the same regularized Gauss-Newton (GN) iteration scheme in the form of
(3.7) and (3.6). Also the numerical procedures within this section and Section 4
refer to the situation after discretization. In our settings, both terms in (3.4) are
preferred to be l2-norm due to the convenience for computational purposes and the

6 In our numerical examples we only utilize operators whose null space is a constant field,
i.e. solutions close to σ = σr + c, where c ∈ R is the constant shift of the field, are
preferred in general.

697



preference of smooth solutions, see [27]. In such case, by combining the minimization
scheme equation (3.4) for p = 2, the penalty term equation (3.5) and a Gauss-
Newton approximation of Newton-Raphson multi-variable method, one can obtain
the following iterative formula, see [42]:

σk+1 = σk + δσk,(3.6)

δσk = (JT
k Jk + κ2

kR)−1(JT
k δu− κ2

kR(σk − σr)),(3.7)

where Jk ∈ R
(mn·v)×Ne is the Jacobian evaluated at σk ∈ R

Ne , δu is the vector
containing the difference between the model response and error-less data, see (3.9),
R is the matrix composed from the regularization operator in the form

R = LTL ∈ R
Ne×Ne ,(3.8)

δu = um − F(σk) ∈ R
mn·v,(3.9)

where F(σ) ∈ R
mn·v represents the discrete NTD forward operator with mn being

the number of measurement points, i.e., the number of nodes of the FE mesh on
a subset Γm of the boundary ∂Ω that is being observed, and v is the number of
distinct loading states7. The a priori measured quantity containing the error-less
data is stored in a vector um ∈ R

mn·v. If not mentioned otherwise, the reference
field σr is dropped out by setting it to zero and the iteration starts with a unit
vector σ0 ∈ R

Ne . The matrix L ∈ R
Ne×Ne represents the discrete counterpart of the

operator L from (3.5) and is obtained as

(3.10) Lij =





−N
(i)
e if i = j,

1 if conn(i, j) ∧ i 6= j for i, j = 1, . . . , Ne,

0 otherwise,

where N (i)
e is the number of elements attached by an edge to the ith element and

function conn(i, j) is true if and only if the ith and jth element share the same edge.
From our experience, the most stable choice of the hyper-parameter κk ∈ R>0 is
the one used in the Levenberg-Marquardt regularization (LMR), see [31], which is
gradually decreasing during the iteration and takes the form

(3.11) κk = max
r,s

ĵk,rs for r, s = 1, . . . , Ne,

7 For the steady-state model, v corresponds to the number of heaters mh, whereas for the
transient model, v is equal to the number of chosen time steps mt.
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where ĵk,rs are the elements of the squared Jacobian matrix, i.e. Ĵk = JT
k Jk. The

Jacobian Jk is updated in each iteration and its entries are calculated as

(3.12) J
(emn)
k =

∂F (σk)mn

∂σe
k

=
∂umn

∂σe
k

,

where Jk is numerically calculated for kth iteration, indices m and n correspond to
the measurement nodes and loading states, respectively. Index e identifies a con-
ductivity change on the eth FE element. For convenience of the calculation, the
Jacobian is matricised along indices mn.
Note that for multi-parameter model the vector σ takes the form σ = [σ(1),

σ
(2), . . . ,σ(Np)]T ∈ R

NeNp , where Np is the number of distinct parameters associated
with each of the elements and the matrix R = I ⊗ LLT, where I ∈ R

Np×Np , is the
identity matrix and the symbol ⊗ is the Kronecker product indicating the mutual
spatial independence of parameters.

Additional numerical treatment. As the GN iteration scheme in (3.7) is fairly
simple and does not include any supplementary constraints, we introduce two op-
erators which increased the stability and robustness of the results. The constraint
defined for the strict positivity of the conductivity field during the iteration is treated
with an ad-hoc algorithm which does not allow the occurrence of negative numbers
in the solution and gives rise to a positivity operator Tp. The operator evaluated for
the ith component of the vector σ ∈ R

Ne is of the form

(3.13) Tp(σi) =

{
σi if σi > 0,

ε̂ if σi 6 0,

where ε̂ = 0.01 · σ0 is chosen to be sufficiently small so it does not cause numerical
problems and σ0 is the average value of the starting vector for the parameter be-
ing identified. Since the problem is inherently non-linear and the iteration scheme
proceeds with non-restricted linear steps, we introduce a cap operator Tc as

(3.14) Tc(δσi) =

{
sign(δσi) · c if |δσi| > c,

δσi if |δσi| 6 c,

where the coefficient c represents the maximum step size. In the numerical examples
we set the coefficient to c = 0.5 · σ0. The final modified GN iteration scheme, after
applying (3.13) and (3.14) to (3.6), is expressed as

(3.15) σk+1 = Tp(σk + Tc(δσk)).
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In order to keep the calculation efficient, the identification algorithm stops when the
maximum number of iterations is reached or one of the following convergence criteria
is satisfied:

‖um − F(σk)‖2
‖um‖2

6 ε,(3.16)

‖σk−1 − σk‖2
‖σk‖2

6 ε,(3.17)

where σk is the material field in the kth iteration. From our experience we set the
maximum number of iterations to 40 and the threshold error ε = 10−6.

4. Results

In this section we provide an insight into the performance of the proposed iden-
tification algorithm under various conditions, i.e., considering domains of different
shapes, limited number of measurements or loading conditions, partial data identi-
fication and distinct material properties. In order to enhance the representativeness
and the impartiality of the computational framework, we consider two different finite
element meshes, one for simulating the true temperature field and the second one for
calculating the temperature field based on the identified thermal conductivity field.
The measure of the identification algorithm performance is represented as

(4.1) εp =
‖prec − ptrue‖2

‖ptrue‖2
,

where prec is the vector containing the identified quantity and ptrue is the vector
containing the true, i.e. error-less quantity. However, the difference in FEM meshes
for the error-less data and the identification process might cause the vector dimension
mismatch. In the case of the measured quantity, i.e., the system responses, the
measurement nodes coincide for both meshes. For the parameter being identified,
a known function f , e.g., σ(x) = f(x), is utilized. To obtain the vector of error-
less data σtrue on a mesh, we simply take σi = f(xc,i), where xc,i are the centroid
coordinates for the ith element. The identification algorithm is run on a different,
finer mesh. In order to compare the identified piecewise constant σ with the true
values (see (4.1) for p = σ), f at the centroids of the finer mesh is evaluated.

4.1. General transport model. In order to make the first example easy to
understand, we start with the identification of the thermal conductivity field λs

in the steady-state heat problem, i.e. (2.2). The heat transport is defined by the
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general transport model and fully introduced in Section 2.1. We put emphasis on
the obstacles arising in civil engineering problems such as a limited number of mea-
surement nodes on the boundary, reduced number of heaters or discontinuous or
non-differentiable material fields. We utilize two geometrical domains, i.e., circular
and L-shaped domain, with their finite element discretization, measurement nodes
and positions of heaters are shown in Figure 1. Measurement nodes are marked as
asterisks and three heaters placed on the external side of the boundary are labelled
by numbers from 1 to 3. The boundary conditions for circular domain according to
the third equation in (2.2) are set as

(4.2)
λs(x)

∂u

∂n
(x)|∂Ω1

= 10(u(x)− 30),

λs(x)
∂u

∂n
(x)|∂Ω2

= 10(u(x)− 15),

where ∂Ω =
2⋃

i=1

∂Ωi and the number of observation nodes is mn = 52. For the

L-shaped domain, the boundary conditions are set as

(4.3)

λs(x)
∂u

∂n
(x)|∂Ω1

= 10(u(x)− 30),

λs(x)
∂u

∂n
(x)|∂Ω2

= 10(u(x)− 15),

λs(x)
∂u

∂n
(x)|∂Ω3

= 0,

where ∂ΩT =
2⋃

i=1

∂Ωi is the union of the outer and inner corner segment of the

boundary, ∂Ω3 = ∂Ω \ ∂ΩT and the number of measurement nodes is mn = 74. The
heater properties are expressed as

(4.4)

Ti = 5 [◦C],

ri = 0.01 [mKW−1] for i = 1, 2, 3,

li = 0.1 [m],

where li is the length of the individual heater. In contrast to the classical EIT,
heaters serve one purpose only, i.e., to excite different boundary conditions and do
not collect any kind of data. The collection of error-less data is assumed to be
conducted by a thermal camera or by an array of discrete thermometers with an ap-
propriate interpolation providing continuous surface data. The true parameter fields
in Figure 1(c) and 1(f) represent an artificial material including inhomogeneities.
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Figure 1. (a), (d) Domains utilized for simulating the measurement based on the true ma-
terial field, (b), (e) domains used in the identification framework, (c), (f) the true
material field—thermal conductivity.

In (3.4), the first term um is a vector of the measured quantity containing the
error-less data. For both examples, we consider one observation of Γm for each of
the mh = 3 different heat loads. The measurement nodes representing the boundary
Γm are labelled by asterisks, see Figure 1. The second term in (3.4) is the output of
the forward operator F(λs), i.e., the model response for the same loading conditions
in the measurement nodes for a given thermal conductivity field. The first iteration
starts with a spatially uniform thermal conductivity λs = 1 [Wm−1 K−1].

The resulting fields showing the difference between the true and the identified
thermal conductivity are depicted in Figure 2, where corresponding errors ελs

and
εT obtained from (4.1) are also presented.8 Moreover, the errors εT which are sum-
marized in the same figure are much smaller than ελs

due to the smoothing effect of
the stationary heat model.

8 The error refers to the observed temperatures on the boundary, i.e. u|Γm
.
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Figure 2. (a) Circular domain—comparison of the true (transparent) and the identified

(opaque) thermal conductivity field, ελs
= 0.0811, εT = 0.0038, (b) L-shaped

domain—comparison of the true and the identified thermal conductivity field,
ελs
= 0.1732, εT = 0.0074.

It can be seen that the obtained fields roughly correspond with the true fields.
The most recognizable inaccuracies in the identified thermal conductivity field can
be found in the close neighbourhood of the discontinuities and in general in regions
with high frequency oscillations due to the smoothing effect of the governing equation,
concrete choice of the operator L and the norm p = 2 in (3.4) also preferring smooth
fields. Note that for increasing number of repeated measurements, i.e., sufficient
number of loading states, the identified parameter field numerically converges to the
true material field. However, such study is not the intent of the present paper and
we refer the interested reader to [22]. We can finally conclude that the calculated
results promote the capability of the proposed methodology to identify the material
field from the boundary measurements for steady-state model.

4.2. Time dependent model. From a practical point of view, more interesting
problem is represented by the time dependent heat equation, which can describe
even sudden changes in external factors and loading conditions during the obser-
vation. In order to capture the transition from a steady-state heat transport to
a transient problem, in the following example we put these two physical models in
similar situation in terms of inputs. The examined L-shaped domain with mea-
surement nodes, heaters and discretization9 is depicted in Figure 3(a). The spatial
distribution of the true material shown in Figure 3(b) and 3(c) does not correspond
to a real building material and is deliberately chosen so that it is difficult to identify.
The boundary conditions according to the second and the third equation in (2.11)

9 The finite element mesh used in the identification algorithm is not shown.
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are set as

(4.5)

λs(x)
∂u

∂n
(x, t)|∂Ω1

= 10(u(x, t)− 25),

λs(x)
∂u

∂n
(x, t)|∂Ω2\(e1∪e2) = 10(u(x, t)− 5),

λs(x)
∂u

∂n
(x, t)|∂Ω3

= 0,

where ∂ΩT = ∂Ω1∪∂Ω2 is also used as the observed part of the boundary, i.e. Γm =

∂ΩT , and contains mn = 117 nodes and ∂Ω3 = ∂Ω \ ∂ΩT . The starting fields
in the identification process are set according to the regular building materials
as: λs = 1 [Wm−1 K−1] and cv = 106 [Jm−3 K−1]. The heater properties are set
equivalently for both models. In particular, for steady-state model they are defined
as

(4.6)

Ti = 10 [◦C],

ri = 0.1 [mKW−1] for i = 1, 2,

li = 0.1 [m],

whereas for the transient model they are set as

(4.7)
λs(x)

∂u

∂n
(x, t)|e1 = 10(u(x, t)− T1(t)),

λs(x)
∂u

∂n
(x, t)|e2 = 10(u(x, t)− T2(t)).
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Figure 3. (a) L-shaped domain used for simulating real measurement, (b) the true material

field—thermal conductivity, (c) the true material field—volumetric heat capacity.

The evolution of the temperature of individual heater Ti [
◦C] and the correspond-

ing model response ui [
◦C] in the domain underneath each heater is depicted in
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Figure 4. This graphs primarily describe the temperature stimulation pattern em-
ployed for the transient problem. Each heater is consecutively excited to 10 [◦C] for
a single day with 12 hours shift between each loading condition, while the second
heater is inactive. The collection of data starts from day two when the stationary
state in Ω is approximately reached, i.e., the observation period lasts 3 days and the
measurement of the temperature on the boundary Γm is recorded every two hours,
i.e. mt = 36, which overall yields 36× 117 numbers.
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Figure 4. Prescribed temperatures for (a) the first and (b) the second heater.

Results for the stationary model are shown in Figure 5(a), while the identified fields
for the time dependent model are shown in Figure 5(b) and 5(c). The identified fields
visually correspond to the true fields and the conductivity λs for both models appears
to be similar. However, both errors, i.e. ελs

and εT , are a bit lower in the case of
transient model in comparison to GTM. This is due to the fact that the transient
model includes not only the approximate stationary data as well as GTM, but also
additional data stemming from the transient problem.
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Figure 5. Comparison of the true (transparent) and the identified (opaque) field: (a) sta-

tionary problem—thermal conductivity field, ελs
= 0.0897, εT = 0.0009, (b) tran-

sient problem—thermal conductivity field, ελs
= 0.0755, εT = 0.0006, (c) tran-

sient problem—volumetric heat capacity, εcv = 0.2435.
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In the next example, we will take a look at a situation where the transient model
is subjected to constant boundary conditions given by (4.8) for such a period of
time for which the steady-state in the domain Ω is approximately reached. We will
then gradually add individual time steps from the experiment to the identification
algorithm and monitor the effect of the lack of data on the identified fields. The
experiment is set in the following way: we utilize identical domain10, discretization,
measurement nodes and the true material field distribution as shown in Figure 3.
The observation period starts from day 0 with an initial condition u(x, t = 0) = 0

for x ∈ Ω and lasts 2 days with 2 hour intervals, i.e., the total number of time steps
is Nt = 24,

(4.8)

λs(x)
∂u

∂n
(x, t)|∂Ω1

= 10 (u(x, t)− 25),

λs(x)
∂u

∂n
(x, t)|∂Ω2

= 10 (u(x, t)− 5),

λs(x)
∂u

∂n
(x, t)|∂Ω3

= 0.

As a measure of how close the data are to the stationary state, we utilize the formula

(4.9) cst = 1−
‖us − unt

‖2
‖us‖2

,

where us ∈ R
Nn is the full solution vector calculated for the steady-state heat equa-

tion, Nn is the number of finite element nodes and unt
∈ R

Nn is the solution vector
for the transient model evaluated at time step nt. Most importantly, both vectors
are evaluated for the true, i.e., error-less material parameters. The coefficient cst
serves only as an indication of how close the data from transient model are to the
steady-state.
The following figure shows the relation between the error for both parameter

fields calculated using (4.1) and the number of time steps mt = nt given to the
identification algorithm. It can be seen that involving more time steps into the
identification is beneficial and any additional information leads to a more accurate
identification of both fields. On the other hand, as the temperature develops over
the time and approaches the steady-state, the error decreases more slowly, which
is more pronounced in the error εcv for the volumetric capacity. This is due to
the fact that successful identification of volumetric capacity mainly depends on the
time change of the temperature field, which becomes negligible towards the steady-
state. Moreover, one can notice that even in the early stages of the evolution process,
i.e.mt 6 5, the algorithm performs surprisingly well and despite only limited number

10With exception of heaters, which are not utilized in this example.
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of observationsmt, it is able to identify at least a rough distribution of the true field,
see Figures 6 and 7.
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Figure 6. Material field errors calculated for different number of time steps involved in the
calculation.

nt = 2, cst = 0.2282 nt = 8, cst = 0.7052 nt = 14, cst = 0.8798
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Figure 7. Samples of identified fields for 2, 8, and 14 time steps mt = nt. The second row
shows the difference between the true (see Figure 3(c)) and the identified field.
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The last example presents the capability of the identification framework when
simulating the time dependent problem. We utilize identical domain shape and dis-
cretization as in the previous example, see Figure 3(a). In order to simulate a realis-
tic environmental conditions and capture the temperature fluctuations in the interior
and exterior, the heater elements in Figure 3(a) are omitted and a measurement using
an arduino based weather station is conducted. The environment is in total moni-
tored for eleven consecutive days at minute intervals. For computational purposes,
the data were further sparsified to one hour intervals which satisfy both sufficient
precision in describing the temperature curve and reasonable computational load.
The resulting graphs without any additional processing are displayed in Figure 8.
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Figure 8. Interior (T2) and exterior (T1) temperatures, data included in the calculation
spans from day 2 to 11.

The boundary conditions are set as

(4.10)

λs(x)
∂u

∂n
(x, t)|∂Ω1

= 10 (u(x, t)− T1(t)),

λs(x)
∂u

∂n
(x, t)|∂Ω2

= 10 (u(x, t)− T2(t)),

λs(x)
∂u

∂n
(x, t)|∂Ω3

= 0,

where the environmental temperatures T1(t) and T2(t) are shown in Figure 8. Since
the true material fields are identical to the ones in the previous example, see Fig-
ure 3(b) and 3(c), the starting fields for the first iteration are set in the same way,
i.e. λs = 1 [Wm−1 K−1] and cv = 106 [Jm−3 K−1]. The observation period lasts
9 days and starts from day two with hourly intervals, which yields mt = 216 obser-
vations. The observed part of the boundary Γm coincides with ∂Ω1 and ∂Ω2 and
contains in total mn = 117 nodes. The resulting identified fields are shown in the
following figure.
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Figure 9. (a) Comparison of the true (transparent) and the identified (opaque) thermal

conductivity field, ελs
= 0.2074, εT = 0.0010, (b) comparison of the true and the

identified volumetric heat capacity, εcv = 0.2792.

5. Conclusions

In this paper we have shown the possibilities of identifying material fields by using
only boundary non-invasive measurements. Following the same principles as in the
Calderón’s inverse problem, we developed a steady-state model applicable in civil
engineering, namely the heat transfer problem, which is comparable to a classical
use of the electrical impedance tomography in the medical science. Moreover, we
focused our attention on a more attractive issue which is the transient problem
in heat transport. The identification procedure for non-stationary model is first
compared to a steady-state problem with identical inputs and subsequently subjected
to real climatic environment. The solver never failed. In all computational tests, the
error of the observed temperatures and the identified parameter/s have been steadily
decreasing during the iterations. However, one can spot noticeable inaccuracies in
the identification of the volumetric capacity, which tends to have higher error in
comparison to the conductivity field, see e.g. Figures 5, 7 and 9 and errors εcv
and ελs

in the corresponding captions.
In oppose to electrical impedance tomography, where the crucial part of successful

material field identification is based on a precise position of the measurement elec-
trodes together with the boundary shape and knowledge of the loading conditions11,
in our application the problems might arise from insufficient space-time variability of
environmental factors leading to imperfections and unwanted artefacts in the identi-
fied fields. In continuation of this work we intend to study the mutual ratio of terms

11 Especially in the electrical impedance tomography, where the electrodes are placed on
a human body, the boundary shape and electrodes are in continuous motion due to the
patient breath and movement.
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̺scp∂u/∂t and ∇ · (λs∇u) in (2.11) and its influence on the identified fields. In our
opinion, the representation of both terms, expressed by the mutual ratio, is essential
information when determining the ability to identify individual fields.
A further extension of the presented strategy would be the identification of the

parameter fields for coupled heat and moisture problem. Supported by several suc-
cessful studies of authors in the field of multi-scale simulations [38], uncertainty
propagation [23], and modelling of degradation processes [37], we will adopt Künzel’s
diffusion model, because it is (i) relatively simple as it involves only a handful of ma-
terial parameters, (ii) sufficiently accurate to describe the behaviour of structures
under regular operation conditions, but is still (iii) complex enough to demonstrate
the feasibility of the developed methodology towards the real-world applications.

A c k n ow l e d g em e n t. The authors wish to acknowledge Prof.Hermann
G.Matthies, Ph.D., for providing the knowledge base.
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