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Finitely-additive, countably-additive

and internal probability measures

Haosui Duanmu, William Weiss

To the memory of Bohuslav Balcar

Abstract. We discuss two ways to construct standard probability measures, called

push-down measures, from internal probability measures. We show that the
Wasserstein distance between an internal probability measure and its push-down
measure is infinitesimal. As an application to standard probability theory, we
show that every finitely-additive Borel probability measure P on a separable
metric space is a limit of a sequence of countably-additive Borel probability
measures {Pn}n∈N in the sense that

∫
f dP = lim

n→∞

∫
f dPn for all bounded

uniformly continuous real-valued function f if and only if the space is totally
bounded.

Keywords: nonstandard model in mathematics; nonstandard analysis; nonstan-
dard measure theory; convergence of probability measures

Classification: 03H05, 26E35, 28E05, 60B10

1. Introduction

One of the foundational problems in probability theory is to study the con-
nection between finitely-additive measures and countably additive measures (see,
e.g., [19]). In contrast to Prokhorov’s theorem and the Vitali–Hahn–Saks the-
orem which state that a sequence of countably additive measures converge to
a countably additive measure under regularity conditions, we prove that for ev-
ery finitely-additive probability measure P on a totally bounded separable metric
space, there is a sequence of countably additive probability measures {Pn}n∈N

such that
∫
f dPn →

∫
f dP for every bounded uniformly continuous real-valued

function. On the other hand, unlike the Portmanteau lemma, such convergence
fails for merely bounded continuous functions, showing that the hypothesis of the
Portmanteau theorem is sharp.

In Section 2, we give a gentle introduction to nonstandard analysis as well as
nonstandard measure theory. Nonstandard measure theory provides powerful ma-
chinery to study this problem. On one hand internal measures have the same first-
order logical properties as finitely-additive measures. On the other hand internal
measures can be easily extended to countably additive measures (Loeb measure),
using Loeb’s construction in [13]. We can also reverse the procedure to construct
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finitely-additive probability measures from internal probability measures or Loeb
measures. There is a rich literature on constructing standard measures using
the standard part map and Loeb measures in very general settings (see, e.g., [3],
[12], [15], [1], [17], [2] and [18]). On the other hand, by the transfer principle,
we can construct finitely-additive probability measures from internal probability
measures. In this paper, we establish some connections between finitely-additive
measures and countably-additive measures by studying the relation between these
two forms of push-down, and in doing so, we prove the theorem mentioned in the
first paragraph, which has no known standard proof.

In Section 3, we define the Wasserstein distance between finitely-additive mea-
sures and show that the Wasserstein distance, ∗W (ν, ∗P ), between a finitely addi-
tive measure P and an internal probability measure ν is infinitesimal provided that
the underlying space is a bounded σ-compact metric space and ∗P (∗A) ≈ ν(∗A)
for all Borel sets A. In contrast to this, we give an example of an internal proba-
bility measure ν with ν(∗A) ≈ λ(A) for A ∈ B[[0, 1]] where λ denote the Lebesgue
measure on [0, 1]. Meanwhile, we have

sup
B∈∗B[[0,1]]

|ν(B) − ∗λ(B)| = 1.(1.1)

Given an internal probability measure ν on (∗X, ∗B[X ]), the internal push-
down measure νp is a finitely-additive measure on (X,B[X ]) defined as νp(A) =
st(ν(∗A)) and the external push-down measure νp is a countably additive measure
on (X,B[X ]) defined as νp(A) = ν(st−1(A)) where ν denote the Loeb extension
of ν. H. Duanmu, D.M. Roy and A. Smith (in paper that is in preparation) showed
that ∗W (ν, ∗νp) ≈ 0 if the underlying space is compact. In Section 4, we generalize
this result to bounded σ-compact spaces. We also show that ∗W (ν, νp) ≈ 0. Thus,
the Wasserstein distance is only a pseudometric on the space of all finitely-additive
probability measures.

There exists a rich literature on studying the relationship between finitely-
additive probability measures and countably additive probability measures (e.g.,
see [19] and [10]). For an uncountable σ-algebra F , the set of finitely-additive
probability measures can be viewed as a subset of the compact product space
[0, 1]F . T. Seidenfeld pointed out that the set of finitely-additive probability mea-
sures with finite support forms a dense subset of the set of all finitely-additive
probability measures. Thus, every finitely-additive probability measure is an ac-
cumulation point of a set of countably additive probability measures. However,
no point in [0, 1]F has a countable local base hence we cannot conclude that ev-
ery finitely-additive probability measure is the limit of a countable sequence of
countably additive probability measures under pointwise convergence.

In Section 5 we show that for every finitely-additive probability measure P ,
there is a sequence of countably-additive probability measures {Pn}n∈N such that∫
f dPn converges to

∫
f dP for every bounded uniformly continuous real-valued

function f . We denote such convergence by weak convergence. In Example 5.14,
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we show that our theorem fails if we replace bounded uniformly continuous real-
valued function by merely bounded continuous real-valued function, hence our
result is sharp. We conclude with a nonstandard characterization of weak con-
vergence to finitely-additive probability measures, which is similar in spirit to
Theorem 4 in [4].

2. Preliminaries

In this section, we give a short introduction to nonstandard analysis. A large
part of this introduction is taken from the preliminary section in [11]. For a de-
tailed introduction to nonstandard models, we recommend the first four chapters
of [5].

Given any set S containing R as a subset, the superstructure V(S) over S is
defined as

(1) V1(S) = S;
(2) Vn+1(S) = Vn(S) ∪ P(S);
(3) V(S) =

⋃
n∈N

Vn(S).

The starting point of nonstandard analysis is to construct a set ∗
R ⊃ R and

a mapping ∗ : V(R) 7→ V(∗R) with three basic properties. We first state the
following two basic notions from mathematical logic. A formula is a statement ϕ
built up from equality and ∈ relations x = y, x ∈ y, the connectives ∧,∨,¬ and
bounded quantifiers (∀x ∈ y), (∃x ∈ y). An internal object is an element of the
set

⋃
{∗A : A ∈ V(S)}. A set in V(S) which is not internal is called external. We

now state the three basic properties.

(1) Extension principle: ∗S is a proper extension of S and ∗S = s for all
s ∈ S.

(2) Transfer principle: Let S1, . . . , Sn ∈ V(S). Any formula which is true of
S1, . . . , Sn is true of ∗S1, . . . ,

∗Sn.
(3) κ-saturation principle: Let κ be a cardinal number and let F be a col-

lection of internal sets. If F has the finite intersection property with
cardinality no more than κ, then the total intersection of F is nonempty.

An internal set A is a hyperfinite set if there exists an internal bijection f between
A and {n ∈ ∗

N : n ≤ N0} for some N0 ∈ ∗
N.

In this paper, the nonstandard model is as saturated as it needs to be. Let
(X, T ) be a topological space. The monad of a point x ∈ X is the set

⋂
x∈U∈T

∗U .
An element x ∈ ∗X is near-standard if it is in the monad of some y ∈ X . We
say y is the standard part of x and write y = st(x). We use NS(∗X) to denote
the collection of near-standard elements of ∗X and we say NS(∗X) is the near-

standard part of ∗X . The standard part map st is a function from NS(∗X) to X .
For a metric space X , two elements x, y ∈ ∗X are infinitely close if ∗d(x, y) ≈ 0.
For two elements a, b ∈ ∗

R, we write a / b to mean a < b or a ≈ b.
Let X be a topological space. The σ-algebra on X is always taken to be the

Borel σ-algebra and is denoted by B[X ]. We use M1(X) to denote the collection
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of all countably additive probability measures on (X,B[X ]) and let M(X) denote
the collection of all charges , that is, finitely-additive probability measures, on
(X,B[X ]). An internal probability measure µ on (∗X, ∗B[X ]) is an element of
∗M(X). Namely, an internal probability measure µ on (∗X, ∗B[X ]) is an internal
function from ∗B[X ] → ∗[0, 1] such that

(1) µ(∅) = 0;
(2) µ(∗X) = 1; and
(3) for A,B ∈ ∗B[X ] with A ∩B = ∅, µ(A ∪B) = µ(A) + µ(B).

We use (∗X, ∗B[X ], µ) to denote the Loeb extension of the internal probability
space (∗X, ∗B[X ], µ).

3. Wasserstein metric

Let P be a charge on (X,B[X ]) and let ν be an internal probability measure
on (∗X, ∗B[X ]). Suppose ∗P (∗A) ≈ ν(∗A) for all A ∈ B[X ]. We investigate the
relation between ∗P and ν. Note that if ν = ∗P1 for some charge P1 on (X,B[X ]),
by the transfer principle, it is easy to see that P1 = P . So we are interested in
the case where ν is not the nonstandard extension of any standard charge.

Integration with respect to charges is similar to integration with respect to
countably additive probability measures except that we only have finite additivity.
However, we need to be careful about what functions are integrable. We quote
the following result regarding integrability of charges.

Lemma 3.1 ([6, Corollary 4.5.9]). Let P be a charge on (X,B[X ]). Let f be
a bounded real-valued measurable function on X . Then f is integrable with
respect to P .

The Wasserstein distance is usually defined for countably additive probabil-
ity measures. In this paper we extend the definition of Wasserstein distance to
charges.

Definition 3.2. Let µ and ν be two charges on some bounded metric space (Y, d)
with Borel σ-algebra B[Y ]. The Wasserstein distance between µ and ν is given
by

W (µ, ν) = sup

{∣∣∣∣
∫

f dµ−

∫
f dν

∣∣∣∣ : f ∈ L1(Y )

}
(3.1)

where L1(Y ) denote the set of 1-Lipschitz functions from Y to R, i.e. those func-
tions f such that |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ Y .

As Y is bounded, every f ∈ L1(Y ) is bounded measurable. Thus, by Lem-
ma 3.1, the Wasserstein metric on charges is well-defined. The following two
lemmas provide a sufficient criterion to establish that the Wasserstein distance
between two given internal probability measures is infinitesimal.
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Lemma 3.3. Let (X, d) be a bounded σ-compact metric space. Let P be a count-
ably additive probability measure on (X,B[X ]) and let ν be an internal probability
measure on (∗X, ∗B[X ]). Suppose for every n ∈ N, there is a countable partition
{V n

i : i ∈ N} of X consisting of nonempty Borel sets with diameters no greater
than 1/n such that ∗P (∗V n

i ) ≈ ν(∗V n
i ). Then ∗W (ν, ∗P ) ≈ 0.

Proof: Fix n ∈ N. Let {V n
i : i ∈ N} be a countable partition of X consisting

of nonempty Borel sets with diameters no greater than 1/n such that ∗P (∗V n
i ) ≈

ν(∗V n
i ). For every i ∈ N, let Bi denote the set of all internal functions g : ∗

N 7→
∗B[X ] such that

(1) g(i) = ∗V n
i ;

(2) ∀ k ∈ ∗
N sup{∗d(x, y) : x, y ∈ g(k)} ≤ 1/n;

(3) ∀ k ∈ ∗
N |ν(g(k))− ∗P (g(k))| ≤ 1/i.

Let B be the collection of all Bi. Then B has countable cardinality and the finite
intersection property. By the saturation principle, there is an internal function
g0 which is an element of Bi for all i ∈ N. Note that g0(i) =

∗V n
i for all i ∈ N

and ν(g0(k)) ≈ ∗P (g0(k)) for all k ∈ ∗
N. By overspill, there is a K ∈ ∗

N \N such
that g0(i) 6= ∅ for all i ≤ K + 1. For any i ≤ K, pick xi ∈ g0(i). Pick some
F ∈ ∗L1(X). As F ∈ ∗L1(X) and the diameter of every g0(i) is no greater than
1/n, we have

∀ i ≤ K ∀x ∈ g0(i) |F (xi)− F (x)| ≤
1

n
.(3.2)

Finally, we pick some xK+1 ∈ ∗X \
⋃

i≤K g0(i). As X is bounded and F ∈
∗L1(X), we know that the function |F (x) − F (xK+1)| is bounded by a standard
real number. Define g1 : {1, 2, . . . ,K + 1} → ∗B[X ] to be the internal function
such that g1(i) = g0(i) for all i ≤ K and g1(K + 1) = ∗X \

⋃
i≤K g0(i). Hence we

have

∣∣∣∣
∫

∗X

F (x)ν(dx) −
∑

i≤K+1

∫

g1(i)

F (xi)ν(dx)

∣∣∣∣(3.3)

≤
∑

i≤K

∫

g1(i)

|F (x) − F (xi)|ν(dx) +

∫

g1(K+1)

|F (x)− F (xK+1)|ν(dx)(3.4)

/
1

n
.(3.5)

Similarly, we have

∣∣∣∣
∫

∗X

F (x)∗P (dx)−
∑

i≤K+1

∫

g1(i)

F (xi)
∗P (dx)

∣∣∣∣ /
1

n
.(3.6)
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We now compare
∑

i≤K+1

∫
g1(i)

F (xi)ν(dx) and
∑

i≤K+1

∫
g1(i)

F (xi)
∗P (dx).

Note that
∣∣∣∣

∑

i≤K+1

∫

g1(i)

F (xi)ν(dx) −
∑

i≤K+1

∫

g1(i)

F (xi)
∗P (dx)

∣∣∣∣(3.7)

=

∣∣∣∣
∑

i≤K+1

F (xi)(ν(g1(i))−
∗P (g1(i)))

∣∣∣∣(3.8)

=

∣∣∣∣
∑

i≤K+1

(F (x1) + ki)(ν(g1(i))−
∗P (g1(i)))

∣∣∣∣(3.9)

=

∣∣∣∣
∑

i≤K+1

F (x1)(ν(g1(i))−
∗P (g1(i))) +

∑

i≤K+1

ki(ν(g1(i))−
∗P (g1(i)))

∣∣∣∣(3.10)

=

∣∣∣∣
∑

i≤K+1

ki(ν(g1(i))−
∗P (g1(i)))

∣∣∣∣,(3.11)

where ki is the difference between F (xi) and F (x1).
As X is bounded and F ∈ ∗L1(X), we know that ki ∈ NS(∗R) for all i ≤ K+1.

Suppose
∣∣∑

i≤K+1 ki(ν(g1(i))−
∗P (g1(i)))

∣∣ ≈ 0 then we have

∣∣∣∣
∫

∗X

F (x)ν(dx) −

∫

∗X

F (x)∗P (dx)

∣∣∣∣ /
2

n
.(3.12)

As n is arbitrary, we know that
∫
∗X

F (x)ν(dx) ≈
∫
∗X

F (x)∗P (dx) hence we have
∗W (ν, ∗P ) ≈ 0 by Definition 3.2. Thus, in order to finish the proof, it is sufficient
to prove

∣∣∑
i≤K+1 ki(ν(g1(i))−

∗P (g1(i)))
∣∣ ≈ 0.

Claim 3.4.
∑

i≤K+1 ki(ν(g1(i))−
∗P (g1(i))) ≈ 0.

Proof: Pick some k ∈ N. As P is countably additive, there exists m ∈ N such
that

∑
i≤m ν(g1(i)) ≥ 1− 1/k and

∑
i≤m

∗P (g1(i)) ≥ 1− 1/k. Thus we have

∑

i≤K+1

ki(ν(g1(i))−
∗P (g1(i)))(3.13)

=
∑

i≤m

ki(ν(g1(i))−
∗P (g1(i))) +

∑

m<i≤K+1

ki(ν(g1(i))−
∗P (g1(i)))(3.14)

≈
∑

m<i≤K+1

ki(ν(g1(i))−
∗P (g1(i))) ≤

max{ki : i ≤ K + 1}

k
.(3.15)

As max{ki : i ≤ K + 1} is near-standard and k is arbitrary, we have the desired
result. �

Hence we have completed the proof of Lemma 3.3. �



Finitely-additive, countably-additive and internal probability measures 473

By using a similar argument as in Lemma 3.3, we obtain the following result
for charges.

Lemma 3.5. Let (X, d) be a bounded σ-compact metric space. Let P be a charge
on (X,B[X ]) and let ν be an internal probability measure on (∗X, ∗B[X ]). Suppose
for every n ∈ N, there is a finite partition {V n

i : i ≤ N} of X consisting of
nonempty Borel sets with diameters no greater than 1/n such that ∗P (∗V n

i ) ≈
ν(∗V n

i ). Then ∗W (ν, ∗P ) ≈ 0.

The following example shows that Lemma 3.3 and Lemma 3.5 are sharp.

Example 3.6. Let X = (0, 1) endowed with the standard metric and Borel σ-
algebra B[X ]. Let ν be an internal probability measure concentrating on some
infinitesimal ε. Let P be a charge with P ((0, 1 − 1/n]) = 0 for all n ∈ N and
P ((0, 1)) = 1. Pick n ∈ N. We can pick m ≥ n such that [1/m, 1 − 1/m] is
a nonempty subset of (0, 1). We can partition [1/m, 1 − 1/m] into k Borel sets
with diameter no greater than 1/n for some k ∈ N. We denote these sets by V n

i

for i ≤ k. Let V n
k+j = [1/(2jm), 1/(2j−1m))∪ (1−1/(2j−1m), 1−1/(2jm)]. Thus,

{V n
i : i ∈ N} forms a countable partition of (0, 1) consisting of Borel sets with

diameter no greater than 1/n. Note that ν(∗V n
i ) = ∗P (∗V n

i ) = 0.
On the other hand, let f be the identity function from (0, 1) → (0, 1). Then we

have
∫

∗f(x)ν(dx) ≈ 0 while
∫

∗f(x)∗P (dx) ≈ 1. Hence, we have ∗W (ν, ∗P ) ' 1.

We conclude this section with the following theorem, which is a direct conse-
quence of Lemma 3.5.

Theorem 3.7. Let (X, d) be a bounded σ-compact metric space. Let P be
a charge on (X,B[X ]) and let ν be an internal probability measure on (∗X, ∗B[X ]).
Suppose ν(∗B) ≈ ∗P (∗B) for all B ∈ B[X ]. Then ∗W (ν, ∗P ) ≈ 0.

4. Construction of standard charges

To construct exotic standard objects, in this section, we discuss two procedures
on constructing standard measures/charges on metric spaces. We also establish
some connections between standard objects obtained from these two different
approaches.

We begin with an internal probability measure and then use the transfer prin-
ciple to push it down to get a charge.

Definition 4.1. Let (X,B[X ]) be a measurable space and let ν be an inter-
nal probability measure on (∗X, ∗B[X ]). Its internal push-down is a function
νp : B[X ] 7→ [0, 1] defined by νp(A) = st(ν(∗A)).

The following lemma follows immediately from Definition 4.1.

Lemma 4.2. Let ν be an internal probability measure on (∗X, ∗B[X ]). Then its
internal push-down measure νp is a charge on (X,B[X ]).
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In most cases, νp is not a countably additive probability measure. Moreover,
the nonstandard extension of νp is usually not the same as ν.

The following theorem is a direct consequence of Theorem 3.7.

Theorem 4.3. Let (X, d) be a bounded σ-compact metric space. Let ν be an
internal probability measure on (∗X, ∗B[X ]). Let νp be the internal push-down
of ν. Then ∗W (ν, ∗νp) ≈ 0.

Although the internal push-down of an internal probability measure always
exists, it is merely finitely-additive in most cases. The properties of internal push-
down are closely related to the internal probability measure via transfer principle.
To get a countably additive probability measure, we shall use the standard part
map to push down the Loeb measure.

Definition 4.4. Let X be a Hausdorff space with Borel σ-algebra B[X ], let ν be
an internal probability measure defined on (∗X, ∗B[X ]), and let

C = {C ⊂ X : st−1(C) ∈ ∗B[X ]}.(4.1)

The external push-down measure νp is defined on the set C by νp(C) = ν(st−1(C)).

The following two theorems guarantee that st−1(C) ∈ ∗B[X ] for all C ∈ B[X ]
under moderate assumptions.

Theorem 4.5 ([5, Theorem 4.3.2]). Let X be a regular topological space and let

P be an internal probability measure on (∗X, ∗B[X ]). Suppose NS(∗X) ∈ ∗B[X ].

Then st
−1(A) ∈ ∗B[X ] for all A ∈ B[X ] (i.e., st is Borel measurable).

Theorem 4.6 ([8, Theorem 5.6]). Let X be a Čech-complete Tychnoff space with

Borel σ-algebra B[X ]. Then NS(∗X) ∈ ∗B[X ].

In particular, we have NS(∗X) ∈ ∗B[X ] for regular locally compact spaces; for
complete metric spaces; and for regular σ-compact spaces.

For general Hausdorff Borel measurable space (Y,B[Y ]), the external push-
down measure νp may not be a countably additive probability measure. In fact,
if ν(NS(∗X)) = 0 then νp is a null measure on (X,B[X ]). However, when Y
is compact, the following theorem guarantees that νp is a countably additive
probability measure on (Y,B[Y ]).

Theorem 4.7 ([7, Theorem 13.4.1]). Let X be a Hausdorff space equipped with
Borel σ-algebra B[X ], and let ν be an internal probability measure defined on
(∗X, ∗B[X ]) with ν(NS(∗X)) = 1. Then the external push-down measure νp of ν
is the completion of a countably additive regular Borel probability measure.

Given an internal probability measure ν on (∗X, ∗B[X ]), it is easy to see that
the total variation distance between ν and ∗νp may be large. For example, if
ν is an internal probability measure concentrating on some infinitesimal ε then
νp is a degenerate probability measure at point 0. The total variation distance
between ν and ∗νp is 1 in this case. However, we show that ν and ∗νp are close in
Wasserstein metric. We start by stating the following well-known definition.
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Definition 4.8. Let X be a topological space and let (X,B[X ], P ) be a Borel
probability space. A set A ⊂ X is a P -continuity set if the boundary ∂A is
contained in a measure 0 set.

Recall that a countably additive probability measure P on a Borel measur-
able space (X,B[X ]) is Radon provided that P (E) = sup{P (K) : K compact and
K ⊂ E}. The following result, due to R. Anderson, is the first major result
on representing standard measures using nonstandard measures via the standard
part map.

Lemma 4.9 ([5, Theorem 4.1]). Let (X,B[X ], P ) be a countably additive Radon

probability measure. Then st is measure-preserving from (∗X, ∗B[X ], ∗P ) to (X,
B[X ], P ), i.e. P (A) = ∗P (st−1(A)) for all A ∈ B[X ].

The following result gives a nonstandard characterization of compact sets.

Theorem 4.10 ([5, Theorem 3.5.1]). A set A ⊂ X is compact if and only if for
each y ∈ ∗A, there is an x ∈ A such that y is in the monad of x.

Lemma 4.11 ([5, Exercise 4.27]). If X is a Hausdorff regular space and A is an
internal subset of NS(∗X), then E = st(A) is compact.

The following result is a partial converse of Lemma 4.9. It follows immediately
from the fact that every Borel probability measure on a Polish space is Radon.

Lemma 4.12. Let X be a σ-compact metric space with Borel σ-algebra B[X ].
Let ν be an internal probability measure on (X,B[X ]). Then the push-down
measure νp is a Radon measure on (X,B[X ]).

Lemma 4.13. Let X be a σ-compact metric space with Borel σ-algebra B[X ].
Let ν be an internal probability measure on (∗X, ∗B[X ]). Suppose νp is a count-
ably additive probability measure on (X,B[X ]). For every n ∈ N, there exists
a countable partition {Ai : i ∈ N} of X consisting of Borel sets with diameter no
greater than 1/n such that ν(∗Ai) ≈ ∗νp(

∗Ai) for all i ∈ N.

Proof: Pick n ∈ N. For every x ∈ X , there are uncountably many open balls
containing x with diameter no greater than 1/n. The boundaries of these open
balls form an uncountable collection of disjoint sets. Thus, for every x ∈ X , we
can pick an open ball Ux containing x such that its diameter is no greater than
1/n and it is a νp-continuity set. As X is a Polish space, there is a countable
subcollection of {Ux : x ∈ X} that covers X . Denote this countable subcollection
by Kn = {Uxi

: i ∈ N}.
Pick i, j ≤ m. Note that ∂(Uxi

∩Uxj
) ⊂ ∂Uxi

∪ ∂Uxj
and ∂(Uxi

∪Uxj
) ⊂ ∂Uxi

∪
∂Uxj

. Hence any finite intersection(union) of elements from Kn is a bounded open
νp-continuity set. For any i ∈ N, let

Vi = Uxi
\
⋃

j<i

(Uxj
∩ Uxi

).(4.2)

The following claim shows that {Vi : i ∈ N} is the desired partition.
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Claim 4.14. ν(∗U) ≈ ∗νp(
∗U) for any open νp-continuity set U .

Proof: Pick any open νp-continuity set U . By Lemma 4.12, νp is a countably
additive Radon probability measure. As U is a νp-continuity set, by Lemma 4.9,
we have

∗νp(st
−1(U)) = νp(U) = νp(U) = ∗νp(st

−1(U)).(4.3)

By the construction of νp, we also have ν(st−1(U)) = νp(U) and ν(st−1(U)) =

νp(U). Thus, we have ν(st−1(U)) = ∗νp(st
−1(U)) and ν(st−1(U)) = ∗νp(st

−1(U)).

As U is an open set, we have st
−1(U) ⊂ ∗U ∩ NS(∗X) ⊂ st

−1(U). As νp is
a countably additive probability measure we have ν(NS(∗X)) = 1. Hence ν(∗U) =
ν(∗U ∩ NS(∗X)). Hence

ν(∗U) ≈ ν(∗U ∩NS(∗X)) = ∗νp(
∗U)(4.4)

for all open νp-continuity set U . �

Hence we have completed the proof. �

We obtain the following result from Lemma 3.3 and Lemma 4.13.

Theorem 4.15. Suppose X is a bounded σ-compact metric space. Let ν be an
internal probability measure on (∗X, ∗B[X ]). Suppose νp is a countably additive
probability measure on (X,B[X ]). Then ∗W (ν, ∗νp) ≈ 0.

The compact version of Lemma 4.13 and Theorem 4.15 will be proved in the
paper which is in preparation. The structure of the proofs are similar.

By Theorems 4.3 and 4.15, we immediately obtain the following result.

Theorem 4.16. Suppose X is a bounded σ-compact metric space. Let ν be an
internal probability measure on (∗X, ∗B[X ]). Let νp and νp denote the external
push-down and internal push-down of ν, respectively. Suppose νp is a countably
additive probability measure on (X,B[X ]). Then W (νp, ν

p) = 0.

As νp and νp are different objects, the Wasserstein distance is only a pseudo-
metric on M(X). In summary, we have the following result.

Theorem 4.17. Suppose X is a bounded σ-compact metric space. Let ν and
µ be two internal probability measures on (∗X, ∗B[X ]). Suppose both νp and µp

are countably additive probability measures on (X,B[X ]). Then the following
statements are equivalent:

(1) νp = µp;
(2) ∗W (ν, µ) ≈ 0;
(3) W (νp, µp) = 0;
(4) W (νp, µ

p) = 0.

Proof: As νp and µp are countably additive probability measures on (X,B[X ]),
we have νp = µp if and only if W (νp, µp) = 0. By Theorem 4.15 we know that
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W (νp, µp) = 0 if and only if ∗W (ν, µ) ≈ 0. By Theorem 4.3 we have ∗W (ν, µ) ≈ 0
if and only if W (νp, µp) = 0. By Theorems 4.15 and 4.16, we have ∗W (ν, µ) ≈ 0
if and only if W (νp, µ

p) = 0 hence finishing the proof. �

5. Weak convergence of charges

In this section, we define a notion of weak convergence for charges and show
that every charge is a weak limit of a countable sequence of countably additive
probability measures under moderate conditions.

We start by proving the result when the underlying space is a compact metric
space.

Lemma 5.1. Let X be a compact metric space equipped with Borel σ-algebra
B[X ]. For every charge P on (X,B[X ]), there is a countably-additive probability
measure µ on (X,B[X ]) such that W (P, µ) = 0.

Proof: Fix a charge P on (X,B[X ]). Let µ = (∗P )p. As X is compact, µ defines

a countably additive probability measure on (X,B[X ]). We always have P =
(∗P )

p
, so by Theorem 4.16, we have the desired result. �

To generalize Lemma 5.1 to non-compact spaces, we need several results on
nonstandard integration theory. We start by quoting the following lemma.

Lemma 5.2 ([9, Lemma 6.5]). Let X be a compact Hausdorff space equipped
with Borel σ-algebra B[X ], let ν be an internal probability measure on (∗X, ∗B[X ]),
and let f : X → R be a bounded Borel measurable function. Define g : ∗X → R

by g(s) = f(st(s)). Then we have
∫
f dνp =

∫
g dν.

Theorem 5.3. Let X be a compact Hausdorff space equipped with Borel σ-
algebra B[X ], let ν be an internal probability measure on (∗X, ∗B[X ]), and let
f : X → R be a bounded continuous function. Then we have

∫
f dνp =

∫
∗f dν.

Proof: Since X is compact, we can define g : ∗X → R by g(s) = f(st(s)). By
Lemma 5.2, we have

∫
f dνp =

∫
g dν. As f is continuous, we have ∗f(x) ≈ g(x)

for all x ∈ ∗X. Thus we have
∫
g dν =

∫
∗f dν, completing the proof. �

We now consider the relation between internal integration and integration with
respect to internal push-down measures.

Theorem 5.4. Let X be a metric space equipped with Borel σ-algebra B[X ].
Let ν be an internal probability measure on (∗X, ∗B[X ]) and let f : X 7→ R be
a bounded Borel measurable function. Then we have

∫

∗X

∗f(x)ν(dx) ≈

∫

X

f(x)νp(dx).(5.1)

Proof: Fix ε ∈ R>0. Let {K1,K2, . . . ,Kn} be a partition of a large enough
interval of R containing the range of f such that every Ki ∈ {K1,K2, . . . ,Kn} is
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an interval with diameter not greater than ε. For i ≤ n, let Fi = f−1(Ki). Then
{F1, . . . , Fn} ⊂ B[X ] is a partition of X such that |f(x) − f(x′)| < ε for every
x, x′ ∈ Fi for every i = 1, 2, . . . , n. Pick xi ∈ Fi for every i = 1, 2, . . . , n. Define
g : X 7→ R by letting g(x) = f(xi) if x ∈ Fi for every i = 1, 2, . . . , n. Then g is
a simple bounded measurable real valued function on X . Thus, by Lemma 3.1,
both g and f are integrable with respect to νp.

We now have
∣∣∣∣
∫

∗X

∗f(x)ν(dx) −

∫

X

f(x)νp(dx)

∣∣∣∣ ≤
∣∣∣∣
∫

∗f(x)ν(dx) −

∫
∗g(x)ν(dx)

∣∣∣∣

+

∣∣∣∣
∫

∗g(x)ν(dx) −

∫
g(x)νp(dx)

∣∣∣∣

+

∣∣∣∣
∫

g(x)νp(dx) −

∫
f(x)νp(dx)

∣∣∣∣

where all internal integrals are over ∗X and all standard integrals are over X .
By the transfer principle, we have |∗f(x)− ∗f(x′)| < ε for every x, x′ ∈ ∗Fi and

for every i = 1, 2, . . . , n. Thus, we have |∗f(x)−∗g(x)| < ε for all x ∈ ∗X. Thus, we
have

∣∣ ∫
∗X

∗f(x)ν(dx) −
∫
∗X

∗g(x)ν(dx)
∣∣ ≤

∫
∗X

|∗f(x)− ∗g(x)|ν(dx) < ε. Similarly,

we have
∣∣ ∫

X
g(x)νp(dx) −

∫
X
f(x)νp(dx)

∣∣ < ε. For the term
∣∣ ∫

∗X
∗g(x)ν(dx) −∫

X
g(x)νp(dx)

∣∣, we have:

∫

∗X

∗g(x)ν(dx) =

n∑

i=1

∫

∗Fi

∗g(x)ν(dx)(5.2)

=

n∑

i=1

∗f(xi)ν(
∗Fi) =

n∑

i=1

f(xi)ν(
∗Fi) ≈

n∑

i=1

f(xi)ν
p(Fi)(5.3)

=

n∑

i=1

∫

Fi

g(x)νp(dx) =

∫

X

g(x)νp(dx).(5.4)

Thus, we have
∣∣ ∫

∗X
∗f(x)ν(dx)−

∫
X
f(x)νp(dx)

∣∣ / 2 ε. As ε is arbitrary, we have∫
∗X

∗f(x)ν(dx) ≈
∫
X
f(x)νp(dx). �

The following corollary is a direct consequence of Theorems 5.3 and 5.4:

Corollary 5.5. Let X be a compact Hausdorff space equipped with Borel σ-
algebra B[X ], let ν be an internal probability measure on (∗X, ∗B[X ]), and let
f : X → R be a bounded continuous function. Then we have

∫
f dνp =

∫
f dνp.

Before we establish the main result of this section, we introduce the following
definition.

Definition 5.6. A sequence of charges Pn is said to converge weakly to a charge P
if
∫
f dPn →

∫
f dP for all bounded uniformly continuous real-valued function f .

If {Pn}n∈N and P are countably additive probability measures, we have the
following well-known result.
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Theorem 5.7 (The Portmanteau theorem [16, Theorem 10.1.1]). Suppose that
{Pn}n∈N is a sequence of countably additive probability measures and P is a count-
ably additive measure. Then the following are equivalent:

(1)
∫
f dPn →

∫
f dP for all bounded continuous functions f ;

(2)
∫
f dPn →

∫
f dP for all bounded uniformly continuous functions f ;

(3) Pn(A) → P (A) for all P -continuity sets A.

We also need the following theorem from point-set topology.

Theorem 5.8 ([14, Theorem 1]). Let f be a real-valued function defined on some
closed subset E of a metric space S. Suppose f is M -Lipschitz continuous for
some M ∈ R. Then f can be extended to an M -Lipschitz continuous function
on S.

We are now able to establish the main result of this section.

Theorem 5.9. Let X be a separable metric space equipped with Borel σ-algebra
B[X ]. Let P be a charge on (X,B[X ]). There is a sequence {Pn}n∈N of finitely
supported probability measures that converges to P weakly if and only if X is
totally bounded.

Proof: Suppose X is totally bounded. In the case that X is compact, the result
follows immediately from Corollary 5.5 by letting ν = ∗P .

In the case that X is not compact, let X̂ denote the completion of X . Then

X̂ is a compact space. We can extend P to a charge on (X̂,B[X̂]) by letting

P (A) = P (A ∩ X̂) for A ∈ B[X̂]. As X̂ is compact, by Theorem 4.7, (∗P )p is

a countably additive probability measure on (X̂,B[X̂]). Pick n ∈ N. As X is

totally bounded and dense in X̂, there is a finite collection of open balls such that

their closure covers X̂ . Thus, we can decompose X̂ into finitely many mutually
disjoint Borel sets {Bn

i : i ≤ m} with diameters no greater than 1/n and each Bi

contain at least one element xi from X . Define a finitely supported probability

measure Pn on (X̂,B[X̂]) by letting Pn({xi}) = ∗P p(Bi) for every i ≤ m.

Claim 5.10. The sequence {Pn}n∈N converges to ∗P p weakly.

Proof: Pick a uniformly continuous function f : X̂ → R and a positive ε ∈ R.

There exists j ∈ N such that |f(x) − f(y)| < ε if d(x, y) < 1/j for all x, y ∈ X̂.
Then, for every n ≥ j we have

∣∣∣∣
∫

X̂

f(x) d∗P p−

∫

X̂

f(x) dPn

∣∣∣∣(5.5)

=

∣∣∣∣
∑∫

Bn
i

f(x) d∗P p −
∑∫

Bn
i

f(x) dPk

∣∣∣∣(5.6)
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=

∣∣∣∣
∑∫

Bn
i

f(x) d∗P p −
∑∫

Bn
i

f(xi) d
∗P p

∣∣∣∣(5.7)

≤

∫

Bn
i

|f(x)− f(xi)| d
∗P p < ε.(5.8)

By Theorem 5.7 we have the desired result. �

We now show that the sequence (Pn)n∈N converges to P weakly. Pick a bound-
ed uniformly continuous function f : X → R. We can extend f to a bounded

continuous function f̂ : X̂ → R. By Corollary 5.5 and Claim 5.10, we have∫
X̂
f̂ dPn →

∫
X̂
f̂ d(∗P )p =

∫
X̂
f̂ dP . As the supports of Pn and P are sub-

sets of X , we have
∫
X̂
f̂ dPn =

∫
X
f dPn for all n ∈ N and

∫
X̂
f̂ dP =

∫
X
f dP .

Thus the sequence {Pn}n∈N converges to P weakly.
Now suppose X is not totally bounded.

Claim 5.11. There exists a closed countably infinite discrete subset Y of X such
that for every pair of distinct points y1, y2 ∈ Y , we have d(y1, y2) > ε for some
fixed ε > 0.

Proof: We explicitly construct a countably infinite discrete set. We pick any
element x1 ∈ X in the first step. Suppose we have picked n distinct points
{x1, x2, . . . , xn} up to step n. As X is not totally bounded, there exists ε ∈ R

such that there is no finite cover of X by ε-open balls. Let Ui denote the ε-open
ball centered at xi for i ≤ n. Thus, the set X \

⋃n

i=1 Ui is nonempty. Pick any
element in X \

⋃n

i=1 Ui to be xn+1. Note that d(xn+1, xi) > ε for all i ≤ n. Thus,
we have constructed a countable discrete set Y ⊂ X such that d(y1, y2) > ε for
every pair of distinct points y1, y2 ∈ Y . Hence, Y must be closed. �

Let A be a non-principal ultrafilter and let P be a finitely additive probability
measure concentrated on Y such that P (A) = 1 if and only if A ∈ A. Suppose
there is a sequence {Pn}n∈N of countably additive probability measures converging
to P weakly. As P concentrates on Y , without loss of generality, we can assume
Pn concentrates on Y for every n ∈ N (replace Pn by Pn/Pn(Y ) if necessary).

Claim 5.12. The sequence {Pn(B)}n∈N converges to P (B) on every subset
B ⊂ Y .

Proof: Fix a set B ⊂ Y . Let f : Y → R be the indicator function on B. By
Claim 5.11, f is a Lipschitz continuous function. By Claim 5.11 and Theorem 5.8,
f can be extended to a Lipschitz continuous function from X to R. As {Pn}n∈N

converges to P weakly, we have Pn(B) → P (B) for every B ⊂ Y . �

As P1 is countably additive, there is a finite setB1 ⊂ Y such that P1(B1) > 3/4.
As P (B1) = 0, there exists n2 ∈ N such that Pn2

(B1) < 1/4. We can pick
a finite set B2 ⊂ Y such that B2 ∩ B1 = ∅ and Pn2

(B2) > 3/4. Following
this procedure, we can extract a subsequence {Pni

: i ∈ N} from {Pn}n∈N and
construct a sequence of finite sets {Bi : i ∈ N} such that
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(1) Bi ∩
⋃

j<i Bj = ∅ for all i ≥ 2;

(2) Pni
(Bi) > 3/4 for all i ∈ N;

(3) Pni

(⋃
j<i Bj

)
< 1/4 for all i ≥ 2.

Let A =
⋃

i∈N
B2i. Then P (A) is either 0 or 1 but {Pni

(A)}i∈N is oscillating. �

The Portmanteau theorem (Theorem 5.7) gives three equivalent statements for
countably additive probability measures. It is natural to ask whether the same is
true for charges. The following example shows that it is not the case.

Example 5.13. Consider the unit interval (0, 1] equipped with Borel σ-algebra
B[(0, 1]], let P be the internal push-down of the internal probability measure
concentrating on 1/(2N) where N ∈ ∗

N \N. For n ∈ N, let Pn be the de-
generate measure at 1/n. Note that the sequence (Pn)n∈N converges weakly to
(∗P )p. As (∗P )p({0}) = 1, using the same proof after Claim 5.10, we know that∫
f dPn →

∫
f dP for bounded uniformly continuous f . On the other hand, the

sequence
∫
sin (1/x) dPn does not converge although sin (1/x) is bounded contin-

uous on (0, 1]. Let A = {1/(2n): n ∈ N}. As P ({0}) = 0, we know that A is
a continuity set. Note that Pn(A) = 1 if n is even and Pn(A) = 0 if n is odd. So
the sequence (Pn(A))n∈N does not converge.

In light of Theorem 5.9 and Example 5.13, it is natural to ask the following
two questions. Suppose P is a charge on a locally compact separable metric space
X with Borel σ-algebra B[X ], does there exist a sequence {Pn}n∈N of countably
additive probability measures such that

∫
f dPn →

∫
f dP for every bounded

continuous function f? Does there exist a sequence {Pn}n∈N of countably addi-
tive probability measures such that Pn(A) → P (A) for every P -continuity set A?
These questions are answered by Miklos Laczkovich, who communicated the fol-
lowing example.

Example 5.14 (Communicated by Miklos Laczkovich). Let P be a charge on
all subsets of N such that P ({k}) = 0 for all k ∈ N and P ({N}) = 1 (such P
can be constructed via an ultrafiler on the set of natural numbers). We extend
P to all subsets of R by letting P (A) = P (A ∩ N). We claim that there is
no countable sequence {Pn}n∈N of countably additive measures on R such that∫
f dPn →

∫
f dP for every bounded continuous function f .

Proof: Suppose there exists a sequence of Pn of countably additive probability
measures on R such that

∫
f dPn →

∫
f dP for any bounded function f . We first

show that if k ≥ 1 is an integer and 0 < d < 1, then Pn([k − d, k + d]) → 0
as n → ∞. Indeed, let d < e < 1 and let f ≥ 0 be a continuous function
which equals to 1 in [k − d, k + d] and equals to 0 outside (k − e, k + e). Then
Pn([k − d, k + d]) ≤

∫
f dPn, which converges to

∫
f dP = 0.

We now show that Pn(N) → 1 as n → ∞. Assume that this is not valid.
After passing to a subsequence, we have Pn(N) < 1 − a for all n ∈ N, where
a > 0. Then there exists 0 < d1 < 1 such that P1(U(N, d1)) < 1 − a/2, where
U(N, d1) =

⋃
n∈N

[n− d1, n+ d1]. Let n1 = 1. As Pn([1− d1, 1+ d1]), there exists
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n2 > 1 such that Pn2
([1 − d1, 1 + d1]) < a/4. As Pn2

(N) < 1 − a, there exists
0 < d2 < d1 such that

Pn2
([1− d1, 1 + d1] ∪ U(N, d2)) < 1−

a

4
.(5.9)

As Pn([1− d1, 1 + d1]) → 0 and Pn([2− d2, 2 + d2]) → 0, there exists an n3 > n2

such that

Pn3
([1− d1, 1 + d1] ∪ [2− d2, 2 + d2]) <

a

4
.(5.10)

Since Pn3
(N) < 1− a, there exists 0 < d3 < d2 such that

Pn3
([1− d1, 1 + d1] ∪ [2− d2, 2 + d2] ∪ U(N, d3)) < 1−

a

4
.(5.11)

Continuing this procedure, we get positive numbers dk and indices nk such that
Pnk

(A) < 1 − a/4 for all k, where A =
⋃∞

k=1[k − dk, k + dk]. As there exists
a bounded continuous function f which equals to 1 on N and 0 outside of A, we
have

∫
f(x)Pnk

(dx) ≤ Pnk
(A) < 1−a/4 for all k, contradicting with the fact that∫

f(x)Pnk
(dx) →

∫
f(x)P (dx) = 1.

Thus Pn(N) → 1 as n → ∞. If E ⊂ N, then lim supn→∞ Pn(E) ≤ P (E) for
all n. If 0 ≤ f ≤ 1 is a continuous function which equals to 1 on E and 0 on
N \ E, then

Pn(E) ≤

∫
f(x)Pn(dx) →

∫
f(x)P (dx) = P (E).(5.12)

This implies that Pn(E) → P (E). If lim infn→∞ Pn(E) < P (E), then from

lim sup
n→∞

Pn(N \ E) ≤ P (N \ E)(5.13)

and from additivity it follows that lim infn→∞ Pn(E) < 1, which is impossible.
Thus, we have P (E) = limn→∞ Pn(E) for all E ⊂ N. By Vitali–Hahn–Saks

theorem, P is countably additive, a contradiction. �

By using a similar argument, we can show that there is no countable sequence
{Pn}n∈N of countably additive probability measures on R such that Pn(A) →
P (A) for every P -continuity set A.

Example 5.14 shows that Theorem 5.9 is sharp. This implies that, when we
talk about weak convergence to a charge, it is necessary to restrict ourselves to
bounded uniformly continuous real-valued functions.

We conclude this paper by giving a nonstandard characterization of weak con-
vergence defined in Definition 5.6. The work [4] gave a nonstandard characteriza-
tion of weak convergence of countably additive probability measures. The main
result of [4] is the following:
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Theorem 5.15 ([4, Theorem 4]). Let X be a metric space equipped with Borel
σ-algebra B[X ]. Let {Pn}n∈N be a sequence of countably additive probability
measures on (X,B[X ]). Then the following are equivalent:

(1) The measure {Pn}n∈N converges weakly to some countably additive prob-
ability measure on (X,B[X ]).

(2) For all infinite N1, N2 ∈ ∗
N, we have (∗PN1

)p(X) = 1 and (∗PN1
)p =

(∗PN2
)p.

By using Theorem 5.15, we present the following result.

Theorem 5.16. Let X be a locally compact separable metric space equipped
with Borel σ-algebra B[X ]. Let {Pn}n∈N be a sequence of countably additive
probability measures on (X,B[X ]). Then the following are equivalent:

(1) {Pn}n∈N converges weakly to some charge on (X,B[X ]).
(2) For all infinite N1, N2 ∈

∗
N, we have (∗PN1

)p = (∗PN2
)p.

Proof: Suppose that {Pn}n∈N converges weakly to some charge P on (X,B[X ]).

Let X̂ = X ∪{a0} denote the metric one-point compactification of X . We extend

each Pn and P to X̂ by defining P ({a0}) = 0 and Pn({a0}) = 0 for all n ∈ N.

As X̂ is compact, by Theorem 4.7, we know that (∗P )p is a countably additive

probability measure on (X̂,B[X̂]).

Claim 5.17. The sequence {Pn}n∈N converges weakly to (∗P )p in (X̂,B[X̂]).

Proof: Let f be a bounded continuous function from X̂ to R. Let g be the
restriction of f to X . Then g is a bounded uniformly continuous function from X
to R. By assumption, we have

∫
X
g dPn →

∫
X
g dP . Thus, we have

∫
X̂
f dPn →∫

X̂
f dP . By Corollary 5.5, we have

∫
X̂
f dP =

∫
X̂
f d(∗P )p, completing the proof.

�

By Theorem 5.15, we have (∗PN1
)p = (∗PN2

)p for all infinite N1, N2 ∈ ∗
N.

Now suppose we have (∗PN1
)p = (∗PN2

)p for all infinite N1, N2 ∈ ∗
N. For every

n ∈ ∗
N, ∗Pn can be extended to an internal probability measure on (∗X̂, ∗B[X̂])

by letting ∗Pn({a0}) = 0. By Theorem 5.15, we know that the sequence {Pn}n∈N

converges weakly to a countably additive probability measure µ on (X̂,B[X̂]).
Pick an element y ∈ ∗X such that y is in the monad of a0. Define an internal

probability measure ν on (∗X̂, ∗B[X̂]) as following:

(1) ν(A) = ∗µ(A) for all A ∈ ∗B[X̂] such that {a0, y} ∩ A = ∅;

(2) ν(A) = ∗µ(A) for all A ∈ ∗B[X̂] such that {a0, y} ⊂ A;

(3) ν(A) = ∗µ(A)− ∗µ({a0}) for all A ∈ ∗B[X̂] such that y 6∈ A and a0 ∈ A;

(4) ν(A) = ∗µ(A) + ∗µ({a0}) for all A ∈ ∗B[X̂] such that y ∈ A and a0 6∈ A.

By the internal definition principle and the fact that ν({a0}) = 0, ν defines an
internal probability measure on (∗X, ∗B[X ]). Thus, the internal push-down νp

defines a charge on (X,B[X ]).



484 Duanmu H., Weiss W.

Claim 5.18. νp = µ.

Proof: Pick a set E ∈ B[X̂]. Suppose that y 6∈ st
−1(E). Then we know that

a0 6∈ st
−1(E). By the definition of ν, we have ν(B) = ∗µ(B) for all B ∈ ∗B[X̂]

such that B ⊂ st
−1(E). By Lemma 4.9, we have

µ(E) = ∗µ(st−1(E))(5.14)

= sup{∗µ(B) : B ∈ ∗B[X̂] ∧B ⊂ st
−1(E)}(5.15)

= sup{ν(B) : B ∈ ∗B[X̂] ∧B ⊂ st
−1(E)} = ν(st−1(E)).(5.16)

Now suppose that y ∈ st
−1(E). Then we have a0 ∈ E ⊂ st

−1(E). Thus, we

have ν(B) = ∗µ(B) for all B ∈ ∗B[X̂] such that B ⊃ st
−1(E). By Lemma 4.9, we

have

µ(E) = ∗µ(st−1(E))(5.17)

= inf{∗µ(B) : B ∈ ∗B[X̂] ∧B ⊃ st
−1(E)}(5.18)

= inf{ν(B) : B ∈ ∗B[X̂] ∧B ⊃ st
−1(E)} = ν(st−1(E)).(5.19)

As E is arbitrary, we have the desired result. �

Pick a bounded uniformly continuous function f from X to R. We can extend

f to a bounded continuous function f̂ from X̂ to R. By assumption, we have
∫

X

f dPn =

∫

X̂

f̂ dPn →

∫

X̂

f̂ dµ.(5.20)

By Corollary 5.5, we have
∫

X̂

f̂ dµ =

∫

X̂

f̂ dνp =

∫

X

f dνp.(5.21)

Hence we have shown that {Pn}n∈N converges weakly to νp which is a charge on
(X,B[X ]), completing the proof. �
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