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On continuous self-maps

and homeomorphisms of the Golomb space

Taras Banakh, Jerzy Mioduszewski, S lawomir Turek

To the memory of Bohuslav Balcar (1943–2017)

Abstract. The Golomb space Nτ is the set N of positive integers endowed with the
topology τ generated by the base consisting of arithmetic progressions {a + bn :
n ≥ 0} with coprime a, b. We prove that the Golomb space Nτ has continuum
many continuous self-maps, contains a countable disjoint family of infinite closed
connected subsets, the set Π of prime numbers is a dense metrizable subspace
of Nτ , and each homeomorphism h of Nτ has the following properties: h(1) = 1,
h(Π) = Π, Πh(x) = h(Πx), and h(xN) = h(x)N for all x ∈ N. Here xN :=

{xn : n ∈ N} and Πx denotes the set of prime divisors of x.

Keywords: Golomb space; arithmetic progression; superconnected space; home-
omorphism

Classification: 54D05, 11A41

In the AMS Meeting announcement, see [6], M. Brown introduced an amusing
topology τ on the set N of positive integers turning it into a connected Hausdorff
space. The topology τ is generated by the base consisting of arithmetic progres-
sions a + bN0 := {a + bn : n ∈ N0} with coprime parameters a, b ∈ N. Here by
N0 = {0} ∪ N we denote the set of non-negative integer numbers.

In [18] the topology τ is called the relatively prime integer topology. This
topology was popularized by S. Golomb, see [13], [14], who observed that the
classical Dirichlet theorem on primes in arithmetic progressions is equivalent to
the density of the set Π of prime numbers in the topological space (N, τ). As
a by-product of such popularization efforts, the topological space Nτ := (N, τ) is
known in general topology as the Golomb space, see [21], [22].

The problem of studying the topological structure of the Golomb space was
posed to the first author T. Banakh by the third author S. Turek in 2006. In his
turn, S. Turek learned about this problem from the second author J. Mioduszewski
who listened to the lecture of S. Golomb on the first Toposym in 1961.

In this paper we study continuous self-maps and homeomorphisms of the
Golomb space. In particular, we prove that the Golomb space has continuum
many continuous self-maps and is not topologically homogeneous.
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1. Preliminaries and notations

First let us fix notation. For a point x ∈ N by τx = {U ∈ τ : x ∈ U} we denote
the family of open neighborhoods of x in the topology τ of the Golomb space Nτ .

For two numbers x, y by gcd(x, y) we denote their greatest common divisor,
and by x † y the greatest divisor of x, which is coprime with y.

By Π we denote the set of prime numbers. For a number x ∈ N by Πx we
denote the set of all prime divisors of x. Two numbers x, y ∈ N are coprime if
and only if Πx ∩ Πy = ∅ (which is equivalent to saying that gcd(x, y) = 1).

A number q ∈ N is called square-free if it is not divided by the square p2 of
any prime number p.

For a number x ∈ N and a prime number p let lp(x) be the largest integer

number such that p lp(x) divides x. The function lp(x) plays the role of logarithm
with base p. A number x is square-free if and only if lp(x) ≤ 1 for any prime
number p.

A family F of subsets of a set X is called a filter if

◦ ∅ /∈ F ;
◦ for any A,B ∈ F their intersection A ∩B ∈ F ;
◦ for any sets F ⊂ E ⊂ X the inclusion F ∈ F implies E ∈ F .

In the subsequent proofs we shall exploit the following two known results of
number theory. The first one is a general version of the Chinese remainder theo-
rem, which can be found in [15, 3.12].

Theorem 1.1 (Chinese remainder theorem). For any numbers a1, . . . , an ∈ Z

and b1, . . . , bn ∈ N the following conditions are equivalent:

(1) the intersection
⋂n

i=1(ai + biN) is not empty;

(2) the intersection
⋂n

i=1(ai+biN) contains an infinite arithmetic progression;

(3) for any i, j the number ai − aj is divisible by gcd(bi, bj).

The second classical result is not elementary and is due to Dirichlet [8, Sec-
tion VI], see also [1, Chapter 7].

Theorem 1.2 (Dirichlet theorem). Each arithmetic progression a + bN with

gcd(a, b) = 1 contains a prime number.

2. Superconnectedness of the Golomb space

We define a topological space X to be superconnected if for any nonempty open
sets U1, . . . , Un ⊂ X the intersection of their closures U1 ∩ · · · ∩ Un is not empty.

The proof of the following proposition is straightforward and is left to the
reader as an exercise.

Proposition 2.1. (1) Each superconnected space is connected.

(2) The continuous image of a superconnected space is superconnected.
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(3) A topological space is superconnected if it contains a dense supercon-

nected subspace.

In this section we present some examples of superconnected subspaces of the
Golomb space Nτ . But first describe the closures of arithmetic progressions in Nτ .

Lemma 2.2. For any a, b ∈ N

a+ bN0 = N ∩
⋂

p∈Πb

(pN ∪ (a+ p lp(b) Z)).

Proof: First we prove that a+ bN0 ⊂ pN ∪ (a + pk Z) for every p ∈ Πb and

k = lp(b). Take any point x ∈ a+ bN0 and assume that x /∈ pN. Then x+ pk N0

is a neighborhood of x and hence the intersection (x + pk N0) ∩ (a+ bN0) is not
empty. Then there exist u, v ∈ N0 such that x + pku = a + bv. Consequently,
x− a = bv − pku ∈ pk Z and x ∈ a+ pk Z

Next, take any point x ∈ N ∩ ⋂
p∈Πb

(pN ∪ (a + p lp(b) Z)). Given any basic

neighborhood x+ dN0 of x, we should prove that (x+ dN0) ∩ (a+ bN0) 6= ∅.
Our assumption guarantees that x ∈ ⋂

p∈Πb\Πx
(a + p lp(b) Z) = a + q Z where

q =
∏

p∈Πb\Πx
p lp(b). Since the numbers x and d are coprime, the greatest common

divisor of b and d divides the number q. Since x−a ∈ q Z, the Euclides algorithm
yields two numbers u, v ∈ Z such that x − a = bu − dv, which implies that
(x+ dZ) ∩ (a+ bZ) 6= ∅ and so (x + dN0) ∩ (a+ bN0) 6= ∅. �

The next proposition generalizes the connectedness of subspaces of the form
(1 + pN0) ∪ pN, where p ∈ Π (proved in [22, Lemma 3.2]).

Proposition 2.3. For any sequences {ai}i∈ω ⊂ N0 and {bi}i∈ω ⊂ N with a0 = 0
the subspace

X = N ∩
⋃

i∈ω

(ai + biN0)

of Nτ is superconnected.

Proof: Given nonempty open sets U1, . . . , Un ⊂ X , we should prove that X ∩
U1 ∩ · · · ∩ Un 6= ∅. We can assume that each set Uj is of the form X ∩ (cj + dj N)
for some coprime numbers cj , dj . By the Chinese remainder theorem Uj contains

an arithmetic progression ej + fj N and by Lemma 2.2, Uj contains
⋂

p∈Πfj
pN.

Since a0 = 0 we have

∅ 6= b0N0 ∩
n⋂

j=1

⋂

p∈Πfj

pN ⊂ X ∩ U1 ∩ · · · ∩ Un.

�

Corollary 2.4. The Golomb space is superconnected.
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The superconnectedness of the Golomb space can be also derived from the
following lemma.

Lemma 2.5. A subspace X ⊂ Nτ is superconnected if Π ⊂ X and X ∩ qN 6= ∅
for any square-free number q.

Proof: We need to prove that for any nonempty open sets U1, . . . , Un ⊂ X
the intersection X ∩ ⋂n

i=1 Ui is not empty. Without loss of generality, we can
assume that each set Ui is of basic form Ui = X ∩ (ai + bi N0) for some numbers
ai ∈ X and bi ∈ N with gcd(ai, bi) = 1. Let q be the square-free number equal
to the product of all prime divisors of the number

∏n
i=1 bi. By our assumption,

X ∩ qN contains some number a. We claim that a ∈ X ∩ ⋂n
i=1 Ui. We need

to show that for any number b ∈ N with gcd(a, b) = 1, the basic neighborhood
a+ bN0 of a intersects each set Ui = X ∩ (ai + biN0). Taking into account that
Πbi ⊂ Πq ⊂ Πa and b is coprime with a, we conclude that b and bi are coprime. So,
we can apply the Chinese remainder theorem and conclude that the intersection
(a + bN0) ∩ (ai + biN0) is nonempty and being open in Nτ contains some prime
number p, by the Dirichlet theorem. Then p ∈ (a + bN0) ∩ (ai + biN0) ∩ X =
(a+ bN0) ∩ Ui and hence a ∈ X ∩⋂n

i=1 Ui. �

3. Metrizability of the set of prime numbers in the Golomb space

The main result of this section is the following theorem.

Theorem 3.1. The set Π of prime numbers is a dense metrizable subspace of

the Golomb space Nτ . Moreover, Π is homeomorphic to the space Q of rational

numbers.

Proof: The density of the set Π in the Golomb space Nτ follows from Dirichlet’s
theorem.

Next, we prove that the subspace Π of Nτ is regular. Given any number x ∈ Π
and an open neighborhood Ox ⊂ Nτ of x, we should find a neighborhood Ux ⊂ Nτ

of x such that Π ∩ Ux ⊂ Ox. We lose no generality assuming that Ox = x+ bN0

for some number b such that x /∈ Πb and |Πb| > 1. Choose n ∈ N so large that
bn > x and for any p, r ∈ Πb the difference p− x is not divisible by rn. We claim
that the neighborhood Ux := x+ bnN0 has the required property: Π ∩ Ux ⊂ Ox.

Indeed, take any number p ∈ Π ∩ x+ bn N0. By Lemma 2.2,

x+ bn N0 = N ∩
⋂

r∈Πb

(rN ∪ (x+ rlr(b
n) Z)).

If p ∈ Πb, then for any number r ∈ Πb \ {p}, the choice of n guarantees that
p /∈ rN ∪ (x + r lr(b

n) Z) and hence p /∈ x+ bn N0, which is a contradiction. So,
p /∈ Πb. In this case p ∈ ⋂

r∈Πb
(x + r lr(b

n) Z) = x + bn Z and hence p − x is
divisible by bn. Taking into account that bn > x, we conclude that p ≥ x and
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hence p ∈ x+ bnN0 ⊂ x+ bN0 ⊂ Ox. This completes the proof of the regularity
of Π.

By the Tychonoff–Urysohn metrization theorem, see [9, 4.2.9], the second-
countable regular space Π is metrizable. The Dirichlet theorem implies that the
space Π has no isolated points. By the Sierpiński theorem, see [9, 6.2.A (d)],
Π is homeomorphic to Q (being a countable metrizable space without isolated
points). �

In contrast to the set of prime numbers, basic open sets in the Golomb space
are not regular (but are totally disconnected). We recall that a topological space
X is totally disconnected if for any distinct points x, y ∈ X there exists a closed-
and-open set U ⊂ X such that x ∈ U and y /∈ U .

Proposition 3.2. For any coprime numbers a ∈ N and b ∈ N \ {1} the subspace

X = a+ bN0 of Nτ is totally disconnected but not regular.

Proof: First we show that the space X = a + bN0 is not regular. Choose any
prime number q /∈ Πb ∪Πa and consider the basic neighborhood V = a+ qbN0 ⊂
a+ bN0 of the point a. Each basic neighborhood of a which is contained in V has
form W = a+ qbcN0 for some number c ∈ N, coprime with a. By Lemma 2.2 we
have

W = a+ qbcN0 ⊃
⋂

p∈Πqbc

(pN ∪ (a+ plp(qbc) N0))

=
⋂

p∈Πqbc\Πb

(pN ∪ (a+ plp(qbc) N0)) ∩
⋂

p∈Πb

(pN ∪ (a+ plp(qbc) N0))

⊃
⋂

p∈Πqbc\Πb

pN ∩
⋂

p∈Πb

(a+ plp(qbc) N0).

The set
⋂

p∈Πqbc\Πb

pN ∩
⋂

p∈Πb

(a+ plp(qbc) N0)

is nonempty by the Chinese remainder theorem and is contained in qN ∩
(a + bN0) = qN ∩ X . However, V ∩ qN = (a + qbN0) ∩ qN = ∅ because a
is not divisible by q. So, W ∩X 6⊂ V and the space X is not regular.

To see that the space X = a + bN0 is totally disconnected, take any distinct
points x, y ∈ a + bN0 and choose n ∈ N so large that bn does not divide x − y.
Observe that V = {X ∩ (z + bn Z) : z ∈ a + bN0} is a disjoint open cover of X ,
which implies that each set V ∈ V is open-and-closed in X . Moreover, since bn

does not divide x− y, the points x, y belong to distinct sets of the cover V . This
implies that X is totally disconnected. �

The last proposition gives another example of a space that is totally discon-
nected and not zero-dimensional (cf. [10, Example 1.2.15]).
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4. Continuous self-maps of the Golomb space

In this section we study the structure of the set C(Nτ ) of all continuous self-
maps of the Golomb space Nτ . In the following proposition the set NN of all
self-maps of N is endowed with the (Polish) topology of the Tychonoff product of
discrete spaces N.

Let us observe that a map f : Nτ → Nτ is continuous at a point x ∈ Nτ if and
only if for every number b coprime with f(x) there is a number a coprime with x
such that f(x+ aN0) ⊂ f(x) + bN0.

Proposition 4.1. The set C(Nτ ) is an Fσδ-subset of the Polish space NN.

Proof: It is clear that C(Nτ ) =
⋂

x∈N
Cx(Nτ ) where Cx(Nτ ) denotes the set of

all functions f : Nτ → Nτ which are continuous at x. In its turn, for every x ∈ N

the set Cx(Nτ ) =
⋂

b∈N
Cx,b where

Cx,b = {f ∈ NN : gcd(f(x), b) 6= 1} ∪ C′
x,b

and

C′
x,b := {f ∈ NN : ∃ a ∈ N (gcd(a, x) = 1 ∧ (f(x+ aN0) ⊂ f(x) + bN0))}.

Put Ax := {a ∈ N : gcd(a, x) = 1} and observe that

C′
x,b =

⋃

a∈Ax

{f ∈ NN : f(x+ aN0) ⊂ f(x) + bN0}

is a set of type Fσ in NN and so is the set Cx,b. Then Cx(Nτ ) =
⋂

b∈N
Cx,b is of

type Fσδ and so is the set C(Nτ ) =
⋂

x∈N
Cx(Nτ ). �

Now we give a simple sufficient condition of continuity of a self-map of the
Golomb space.

Definition 4.2. A function f : dom(f) → N defined on a subset dom(f) of N is
called progressive if

(1) Πx ⊂ Πf(x) for every x ∈ dom(f);
(2) for any x < y in dom(f) the number f(y)−f(x) is divisible by (y−x) † f(x).
We recall that for two numbers x, y by x † y we denote the greatest divisor of

x which is coprime with y.

Proposition 4.3. Each progressive function f : Nτ → Nτ is continuous.

Proof: Given a point x ∈ Nτ and a neighborhood Of(x) ∈ τ of f(x), we need to
find a neighborhood Ox ∈ τ of x such that f(Ox) ⊂ Of(x). We lose no generality
assuming that Of(x) is of basic form Of(x) = f(x) + dN0, where the number
d > f(x) is coprime with f(x). Then f(x) + dN0 = N ∩ (f(x) + dZ). Since
Πx ⊂ Πf(x), the numbers x and d are coprime and hence Ox := x + dN0 is
a neighborhood of x in Nτ . It remains to prove that f(Ox) ⊂ Of(x). Given any
y ∈ Ox, we need to show that f(y) ∈ f(x)+dZ. This is trivially true if y = x. So,
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we assume that y 6= x and hence y ∈ x+ dN. Then d divides y − x. Since d and
f(x) are coprime, d divides the number b = (y − x) † f(x). Taking into account
that the function f is progressive, we conclude that f(y)− f(x) ∈ bZ ⊂ dZ. �

For polynomials with nonnegative integer coefficients the equivalence of condi-
tions (1)–(3) in the following theorem was proved by P. Szczuka [22, Theorem 4.3].

Theorem 4.4. For a non-constant polynomial f : N → N, f : x 7→ a0 + a1x +
· · ·+ anx

n with integer coefficients the following conditions are equivalent:

(1) a0 = 0;
(2) f is a continuous self-map of the Golomb space Nτ ;

(3) for any connected subspace C ⊂ Nτ the image f(C) is connected;
(4) for any superconnected subspace C ⊂ Nτ the image f(C) is supercon-

nected;

(5) for any superconnected subspace C ⊂ Nτ the image f(C) is connected.

Proof: To prove the implication (1) ⇒ (2), assume that a0 = 0. In this case the
polynomial f(x) is divisible by x and f(x)−f(y) is divisible by x−y. These obser-
vations imply that the function f is progressive and hence continuous, according
to Proposition 4.3.

The implications (3) ⇐ (2) ⇒ (4) and (3) ⇒ (5) ⇐ (4) follow from Proposi-
tion 2.1. So, it remains to prove that (5) ⇒ (1). To derive a contradiction, assume
that a0 6= 0. Since f is not constant, there exists x ∈ N such that f(x) 6= a0.
Choose any prime number p > max{a0, x, f(x)}. By Proposition 2.3, the sub-
space X = pN∪ (x+pN0) is superconnected. On the other hand, its image f(X)
can be written as the union f(X) = U ∪ V of two nonempty disjoint open sub-
spaces U = f(pN) = f(X)∩ (a0 + pZ) and V = f(x+ pN) = f(X)∩ (f(x)+ pZ)
of f(X). �

The following example shows that Theorem 4.4 cannot be extended to polyno-
mials with rational coefficients.

Example 4.5. The polynomial f : Nτ → Nτ , f : x 7→ (x+x2)/2, is discontinuous.

Proof: It suffices to check that f is discontinuous at x = 2. Assuming that f is
continuous at 2 for the neighborhood 3 + 2N0 of 3 = f(2), we can find a basic
neighborhood 2+ bN0 of 2 such that f(2+ bN0) ⊂ 3+2N0. The number b, being
coprime with 2, is odd and hence can be written as b = 2n− 1 for some n ∈ N.
Consider the number 4n = 2 + 2(2n − 1) = 2 + 2b ∈ 2 + bN0 and observe that
f(4n) = 2n(4n+ 1) /∈ 3 + 2N0, which contradicts the choice of b. �

Let us remind that a connected space is called biconnected if it cannot be
decomposed into a sum of two disjoint connected subsets that contain more than
one point. It is a consequence of Theorem XI of [16] that a space is biconnected
if and only if it is connected and does not contain two disjoint nondegenerate
connected sets. It is known that Golomb space is not biconnected (see Problem 86
in [18, page 185]). It turns out that the Golomb space has a much stronger
property.
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Corollary 4.6. The Golomb space contains a countable family of pairwise disjoint

closed infinite superconnected subspaces.

Proof: By Theorem 4.4, for every n ∈ N the polynomial fn : Nτ → Nτ , fn : x 7→
x2 + nx, is a continuous self-map of the Golomb space Nτ .

By Lemma 4.7 proved below, the set fn(N) is closed in the Golomb space Nτ .
Choose any prime number pn > n2 + n and observe that the set pn N is closed in
the Golomb space Nτ . Then the intersection Xn = pnN ∩ fn(N) is closed in Nτ ,
too. By Proposition 2.3, the set

f−1
n (Xn) = f−1

n (pn N) = {x ∈ N : x(x + n) ∈ pn N} = pn N ∪ (pn − n+ pn N0)

is superconnected and so is its image fn(f
−1
n (Xn)) = Xn.

It remains to prove that for any numbers n < m the sets Xn and Xm are
disjoint. Assuming that Xn ∩ Xm contains some number z, we conclude that
z ∈ Xn ∩Xm ⊂ pn N∩ pm N ⊂ pm N. Find numbers x, y ∈ N such that x2 +nx =
fn(x) = z = fm(y) = y2 +my and observe that

(2x+ n)2 − n2 = 4x2 + 4nx = 4y2 + 4my = (2y +m)2 −m2.

Then (2(y − x) +m− n)(2(y + x) +m+ n) = (2y +m)2 − (2x+ n)2 = m2 − n2

and hence
y ≤ 2(y + x) +m+ n ≤ m2 − n2 < m2.

On the other hand, y(y + m) = z ∈ pm N implies that y or y + m is divisible
by pm and hence y ≥ pm − m > m2 by the choice of prime number pm. This
contradiction shows that Xn ∩Xm = ∅. �

Lemma 4.7. For any n ∈ N0 the set X := {x2 + nx : x ∈ N} is closed in the

Golomb space Nτ .

Proof: Given any a ∈ N \X , it suffices to find a prime number p > a such that
a + pN0 is disjoint with X . Consider the polynomial f(x) := x2 + nx − a and

observe that its positive root (−n+
√
n2 + 4a)/2 is not integer (as a /∈ X). This

implies that f has no rational roots and hence f is irreducible over the field Q.
By the classical Frobenius density theorem (see [20] or [19]), there exist infinitely
many prime numbers p such that the polynomial f has no roots in N/pZ. For
any such prime number p we have (a+ pN) ∩X = ∅. �

Lemma 4.7 implies that the set {x2 : x ∈ N} is closed in Nτ . On the other
hand, we have the following fact.

Proposition 4.8. For any n ∈ N the set X8n := {x8n : x ∈ N} is not closed in

the Golomb space Nτ .

Proof: First we show that the set X8 = {x8 : x ∈ N} is not closed in Nτ . For
this purpose we shall exploit a well-known Wang counterexample, see [23], saying
that the equation x8 = 16 has no integer solutions but has solutions in any field
of odd prime order.
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We shall show that 16 ∈ X8 \X8. Given any neighborhood O16 ⊂ Nτ of 16, we
should prove that O16 ∩X8 6= ∅. By the definition of the topology τ , there exists
an odd number b ∈ N such that 16 + bN0 ⊂ O16. Observe that

x8 − 16 = (x2 − 2)(x2 + 2)(x2 − 2x+ 2)(x2 + 2x+ 2).

Theorems 9.3, 9.4 and 9.5 in [1] imply that for every odd prime number p one of
the numbers 2,−2,−1 is a square in field Z/pZ. If some x ∈ Z/pZ has x2 = ±2,
then x8 = 16. If x2 = −1, then (1+x)2−2(1+x)+2 = 0 and hence (1+x)8 = 16.
In any case, for any odd prime number p the polynomial f(x) := x8−16 has a root
in the field Z/pZ. By induction we shall show that this polynomial has a root
in the residue rings Z/pk Z for all k ∈ N. Assume that for some k ∈ N we have
found a number s ∈ Z such that f(s) ∈ pk Z. We claim that f ′(s) = 8s7 /∈ pZ.
Otherwise s would be divisible by p and then s8 − 16 cannot be divisible by pk,
which is a contradiction. So, f ′(s) /∈ pZ and we can apply Theorem 5.30 in [1]
to find a number r ∈ Z such that f(r) ∈ pk+1 Z, which implies that the equation
x8 − 16 = 0 has a solution in the residue ring Z/pk+1 Z.

So, for every prime divisor p of b we can find a number xp ∈ N such that

x8
p − 16 ∈ p lp(b)N0. Using the Chinese remainder theorem, find a number x ∈ N

such that x ≥ 16 and x ∈ xp + p lp(b) Z for every p ∈ Πb. Then

x8 − 16 ∈
⋂

p∈Πb

x8 − 16 + p lp(b) Z =
⋂

p∈Πb

x8
p − 16 + p lp(b) Z =

⋂

p∈Πb

p lp(b) Z = bZ

and hence x8 ∈ X8 ∩ (16 + bN0). So, (16 + bN0) ∩X8 6= ∅.
Now we prove that for any n ∈ N the set X8n = {x8n : x ∈ N} is not closed

in Nτ . By Theorem 4.4, the polynomial map f : Nτ → Nτ , f : x 7→ xn, is con-
tinuous. Taking into account that this map is injective and f(X8) = X8n, we
conclude that

16n = f(16) ∈ f(X8 \X8) ⊂ f(X8) \ f(X8) = X8n \X8n.

�

Now we show that the set C(Nτ ) of all continuous self-maps of the Golomb
space has cardinality of continuum.

Theorem 4.9. The set C(Nτ ) contains a subset ∂T of cardinality continuum

which is closed in NN.

Proof: For every n ∈ N let Tn be the family of increasing progressive functions
f : [1, n] → N defined on the interval [1, n] := {1, . . . , n}. Let T0 be the singleton
consisting of the unique function f0 : ∅ → N. On the union T =

⋃
n∈ω Tn consider

the partial order “≤” defined by f ≤ g if and only if dom(f) ⊂ dom(g) and
f = g ↾ dom(f). It is clear that this partial order turns T into a tree. The
set ∂T = {f ∈ NN : ∀n ∈ N f ↾ [1, n] ∈ Tn} is closed in NN and can be
identified with the set of branches of the tree T . Since each function f ∈ ∂T is
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increasing and progressive, Proposition 4.3 guarantees that f is continuous and
hence ∂T ⊂ C(Nτ ).

It remains to check that |∂T | = c. This equality will follow as soon as for any
n ∈ N and f ∈ Tn we show that the set succ(f) = {g ∈ Tn+1 : g ↾ [1, n] = f} of
successors of f in the tree T contains more than one point. We shall prove more:
the set succ(f) is infinite.

Observe that a function g : [1, n + 1] → N belongs to succ(f) if and only if
g ↾ [1, n] = f , g(n+ 1) > f(n) and g(n+ 1) belongs to the set

Yf :=
⋂

p∈Πn+1

pN ∩
⋂

k∈[1,n]

(f(k) + ((n+ 1− k) † f(k))Z).

So, it suffices to prove that the set Yf is infinite. By the Chinese remainder
theorem, the set Yf is infinite if and only if

(1) for every p ∈ Πn+1 and k ∈ [1, n] the number f(k) is divisible by
gcd(p, (n+ 1− k) † f(k));

(2) for any numbers k < l in [1, n] the number f(l) − f(k) is divisible by
gcd((n+ 1− k) † f(k), (n+ 1− l) † f(l)).

To verify the first condition, fix any prime number p ∈ Πn+1 and any k ∈ [1, n].
We claim that gcd(p, (n + 1 − k) † f(k)) = 1. If p /∈ Πk, then p does not divide
n+ 1− k and hence gcd(p, (n+ 1− k) † f(k)) = 1. If p ∈ Πk, then p ∈ Πf(k) and
hence gcd(p, (n+ 1− k) † f(k)) = 1. In both cases gcd(p, (n+ 1− k) † f(k)) = 1
divides f(k).

To verify the second condition, fix any numbers k < l in [1, n]. Let d be the
largest common divisor of (n + 1 − k) † f(k) and (n + 1 − l) † f(l). Then d is
coprime with f(k) and divides both the numbers n + 1 − k and n + 1 − l, so d
divides their difference (n+ 1− k)− (n+ 1− l) = l− k. Consequently, d divides
(l− k) † f(k). Since f is progressive, f(l)− f(k) is divisible by (l− k) † f(k) and
hence is divisible by d. �

Problem 4.10. Is the set C(Nτ ) dense in NN (or in NN
τ )?

5. Homeomorphisms of the Golomb space

In this section we study homeomorphisms of the Golomb space Nτ and prove
the following main theorem.

Theorem 5.1. Each homeomorphism h : Nτ → Nτ of the Golomb space has the

following properties:

(1) h(1) = 1;
(2) h(Π) = Π;
(3) Πh(x) = h(Πx) for every x ∈ N;

(4) there exists a multiplicative bijection µ of N such that h(xn) = h(x)µ(n)

for all x, n ∈ N.
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We recall that for a number x ∈ N by Πx the set of all prime divisors of x
is denoted. Also by τ we denote the topology of the Golomb space Nτ and by
τx the family of open neighborhoods of a point x ∈ N in the Golomb space Nτ .
A function µ : N → N is multiplicative if µ(xy) = µ(x)µ(y) for any x, y ∈ N.

The four items of Theorem 5.1 are proved in Lemmas 5.4, 5.11, 5.12, and 5.15,
respectively. Moreover, in Lemma 5.16 we shall prove that the multiplicative
bijection µ appearing in Theorem 5.1 (4) is a homeomorphism of N endowed
with the Furstenberg topology (generated by the base consisting of all possible
arithmetic sequences a+ bN0).

The superconnectedness of the Golomb space implies that the family

F0 =

{
F ⊂ N : ∃U1, . . . , Un ∈ τ \ {∅} with

n⋂

i=1

Ui ⊂ F

}

is a filter on N.
The definition of F0 implies that this filter is preserved by any homeomorphism

h of Nτ (which means that the filter h[F0] := {h(F ) : F ∈ F0} coincides with F0).

Lemma 5.2. The filter F0 is generated by the base consisting of the sets qN for

a square-free number q ∈ N.

Proof: Lemma 2.2 implies that each element F ∈ F0 contains the set qN for
some square-free number q. It remains to show that for each square-free number
q > 1 the set qN is contained in the filter F0. This is proved in the following
lemma. �

Lemma 5.3. For two distinct numbers x, y ∈ N and a square-free number q the

following conditions are equivalent:

(1) q is coprime with x and y;
(2) there are open sets Ux ∈ τx and Uy ∈ τy such that Ux ∩ Uy = qN;

(3) there are open sets Ux ∈ τx and Uy ∈ τy such that Ux ∩ Uy ⊂ qN.

Proof: To prove the implication (1) ⇒ (2), assume that a square-free number
q is coprime with x and y. Choose n ∈ N so large that for any prime number
p ∈ Πq the difference x − y is not divided by pn. Then for the neighborhoods
Ux = x+ qn N0 and Uy = y + qn N0 we get

Ux ∩ Uy = x+ qn N0 ∩ y + qn N0

= N ∩
⋂

p∈Πq

(pN ∪ (x+ pn Z)) ∩ (pN ∪ (y + pn Z))

= N ∩
⋂

p∈Πq

pN = qN.

The implication (2) ⇒ (3) is trivial. To prove the implication (3) ⇒ (1), choose
two open sets Ux ∈ τx and Uy ∈ τy with Ux ∩ Uy ⊂ qN. We can assume that
the open sets Ux and Uy are of basic form Ux = x + bN0 and Uy = y + dN. To
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derive a contradiction, assume that q has a common prime divisor p with x or y.
Without loss of generality p ∈ Πx and hence p /∈ Πb. If also p /∈ Πd, then by the
Chinese remainder theorem and Lemma 2.2,

∅ 6= (1 + pN) ∩
⋂

r∈Πb∪Πd

rN ⊂ Ux ∩ Uy \ qN.

If p ∈ Πd, then p /∈ Πy and by the Chinese remainder theorem and Lemma 2.2,

∅ 6= (y + plp(d)N) ∩
⋂

r∈Πb∪Πd\{p}

rN ⊂ Ux ∩ Uy \ qN.

In both cases we obtain a contradiction with our assumption Ux ∩ Uy ⊂ qN. �

Lemma 5.4. The number 1 is a fixed point of any homeomorphism h of the

Golomb space Nτ .

Proof: To derive a contradiction, assume that x = h(1) is not equal to 1. Fix
any p ∈ Πx. By Lemma 5.2, the set pN belongs to the filter F0. Since the filter F0

is invariant under homeomorphisms of Nτ , h
−1(pN) ∈ F0. By Lemma 5.2, there

exists a square-free number q such that qN ⊂ h−1(pN). Choose any z ∈ N \ {1}
coprime with q. By Lemma 5.3, the Golomb space Nτ contains open sets Uz ∋ z
and U1 ∋ 1 such that Uz ∩ U1 ⊂ qN. Then for the point y = h(z), the sets
Vy = h(Uz) ∋ y and Vx = h(U1) ∋ x have the property Vy ∩ Vx ⊂ h(qN) ⊂ pN.
Now Lemma 5.3 implies that p /∈ Πx, which contradicts the choice of p. �

For any point x ∈ N consider the filter

Fx = {F ⊂ N : ∃Ux ∈ τx ∃U1 ∈ τ1 such that Ux ∩ U1 ⊂ F}.

The definition of the filter Fx and Lemma 5.3 imply

Lemma 5.5. For any point x ∈ N \ {1} we get

(1) Πx = {p ∈ Π: pN /∈ Fx};
(2) Fx = {F ⊂ N : ∃ a, b ∈ N such that Πb ∩ Πx = ∅ and 1 + aN0 ∩

x+ bN0 ⊂ F}.
The interplay between Πx and Fx from Lemma 5.5 implies

Lemma 5.6. For two numbers x, y ∈ N \ {1} the following conditions are equiv-

alent:

(1) Fx ⊂ Fy;

(2) Πy ⊂ Πx.

Lemma 5.7. For every homeomorphism h of the Golomb space Nτ , and any

numbers x, y ∈ N \ {1} with Πx ⊂ Πy we get Πh(x) ⊂ Πh(y).

Proof: Assume that Πx ⊂ Πy . By Lemma 5.6, Fy ⊂ Fx. Lemma 5.4 and the
(topological) definition of the filters Fx and Fh(x) imply that h[Fx] = Fh(x) where



On continuous self-maps and homeomorphisms of the Golomb space 435

h[Fx] = {h(F ) : F ∈ Fx}. By analogy we can show that h[Fy] = Fh(y). Then
Fh(y) = h[Fy] ⊂ h[Fx] = Fh(x) and by Lemma 5.6, Πh(x) ⊂ Πh(y). �

Lemma 5.8. For every homeomorphism h : Nτ → Nτ there exists a unique bijec-

tive map σ : Π → Π of the set Π of all prime numbers such that Πh(p) = {σ(p)}
and Πh−1(q) = {σ−1(q)} for any p, q ∈ Π.

Proof: By Lemma 5.4, for every prime number p the image h(p) is not equal
to 1, which implies that the set Πh(p) is not empty and hence contains some prime
number σ(p). We claim that Πh(p) = {σ(p)}. Since Πσ(p) = {σ(p)} ⊂ Πh(p),
we can apply Lemma 5.7 and conclude that Πh−1(σ(p)) ⊂ Πp = {p} and hence
Πh−1(σ(p)) = {p}. Since Πp = {p} ⊂ Πh−1(σ(p)), we can apply Lemma 5.7 once
more and conclude that Πh(p) ⊂ Πσ(p) = {σ(p)} and hence Πh(p) = {σ(p)}.

Next, we show that the map σ is bijective. The injectivity of σ follows from
the equality Πh−1(σ(p)) = {p} holding for every p ∈ Π. To see that σ is surjective,
take any prime number q and choose any prime number p ∈ Πh−1(q). Since Πp ⊂
Πh−1(q), we can apply Lemma 5.7 and conclude that {σ(p)} = Πh(p) ⊂ Πq = {q}
and hence q = σ(p). Then

Πh−1(q) = Πh−1(σ(p)) = {p} = {σ−1(q)}.

The equality Πh(p) = {σ(p)} holding for every p ∈ Π witnesses that the map
σ : Π → Π is uniquely determined by the homeomorphism h. �

Lemma 5.8 admits a self-improvement:

Lemma 5.9. For every homeomorphism h : Nτ → Nτ there exists a unique bi-

jective map σ : Π → Π such that Πh(x) = σ(Πx) and Πh−1(x) = σ−1(Πx) for any
x ∈ N.

Proof: By Lemma 5.8 for every homeomorphism h : Nτ → Nτ there exists
a unique bijective map σ : Π → Π of such that Πh(p) = σ(p) and Πh−1(p) = σ−1(p)
for any p ∈ Π.

We claim that Πh(x) = σ(Πx) for any number x ∈ N. If x = 1, then this follows
from Lemma 5.4. So, we assume that x 6= 1. For every prime number p ∈ Πx

the inclusion Πp = {p} ⊂ Πx and Lemma 5.7 imply {σ(p)} = Πh(p) ⊂ Πh(x). So,
σ(Πx) ⊂ Πh(x).

On the other hand, for any prime number q ∈ Πh(x), we can apply Lemma 5.8

to the homeomorphism h−1 and conclude that the set Πh−1(q) coincides with the
singleton {p} of some prime number p. Taking into account that Πp = {p} =
Πh−1(q) and applying Lemma 5.7, we conclude that {σ(p)} = Πh(p) = Πq =
{q} ⊂ Πh(x). Applying Lemma 5.7 to the inclusion Πq ⊂ Πh(x), we get the
inclusion {p} = Πh−1(q) ⊂ Πh−1(h(x)) = Πx and finally q = σ(p) ∈ σ(Πx). So,

Πh(x) ⊂ σ(Πx) and hence Πh(x) = σ(Πx). Also Πh−1(q) = {p} = {σ−1(q)}. �

For a number x ∈ N we shall denote by xN := {xn : n ∈ ω} the multiplicative
semigroup in N generated by x. In this case we say that xN is the monogenic
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semigroup generated by x. For x, k ∈ N the monogenic semigroup (xk)N generated
by xk will be denoted by xk N.

Lemma 5.10. Each homeomorphism h of the Golomb space Nτ preserves mono-

genic semigroups in the sense that

h(aN) = h(a)N for any a ∈ N.

Proof: Fix any point a ∈ N and put b := h(a). First we show that h(aN) ⊂ bN.
To derive a contradiction, assume that h(an) /∈ bN for some n ≥ 2.

By Lemma 5.9, there exists a bijective function σ : Π → Π such that Πh(x) =
σ(Πx) for all x ∈ N. By Theorem 4.4, the polynomial f : Nτ → Nτ , f : x 7→ xn, is
continuous. Then the map ϕ = h ◦ f ◦ h−1 : Nτ → Nτ is continuous, too. Observe
that ϕ(b) = h ◦ f(a) = h(an) and

Πϕ(b) = Πh(an) = σ(Πan) = σ(Πa) = Πh(a) = Πb.

Then for every k ∈ N the numbers h(an) and bk−1 are coprime. Choose a number
k ∈ N such that bk−1 > h(an) and consider the neighborhood h(an)+(bk−1)N0

of h(an) = ϕ(b). By the continuity of the map ϕ, the point b has a neighborhood
b+ dN0 ∈ τb such that ϕ(b + dN0) ⊂ h(an) + (bk − 1)N0.

By Dirichlet theorem the arithmetic progression b+(bk−1)dN0 contains a prime
number p. Lemma 5.9 implies that ϕ(p) = p l for some l ≥ 1. Then

ϕ(p) = p l ∈ ϕ(b+dN0)∩(b+(bk−1)N0)
l ⊂ (h(an)+(bk−1)N0)∩(b l+(bk−1)N0)

and hence h(an) ∈ b l + (bk − 1)Z. Write l as l = ki+ j where j ∈ [0, k). If i = 0,
then l = j and hence h(an) ∈ b l + (bk − 1)Z = b j + (bk − 1)Z. If i > 0, then
b l−b j = b j((bk)i−1) ∈ (bk−1)Z and again h(an) ∈ b l+(bk−1)Z = b j+(bk−1)Z.
In both cases we obtain the inclusion h(an) ∈ b j+(bk−1)Z, which is not possible
as 0 < |b j − h(an)| ≤ max{h(an), bk−1} < bk − 1. This contradiction completes
the proof of the inclusion h(aN) ⊂ h(a)N.

By analogy, for x := h(a) we can prove that h−1(xN) ⊂ (h−1(x))N and hence
h(a)N = xN ⊂ h(aN), which, combined with h(aN) ⊂ h(a)N, yields the equality
h(aN) = h(a)N. �

Lemma 5.11. The set h(Π) = Π for any homeomorphism h of the Golomb

space Nτ .

Proof: It suffices to show that h(p) ∈ Π for every p ∈ Π. By Lemma 5.9, there
exists a bijective map σ : Π → Π such that Πh(x) = σ(Πx) and Πh−1(x) = σ−1(Πx)
for all x ∈ N. In particular, Πh(p) = {q} for q = σ(p) and Πh−1(q) = {p}.
This implies that h(p) = qn and h−1(q) = pm for some n,m ∈ N. Applying
Lemma 5.10, we obtain

q N = h(pm)N = h(pmN) ⊂ h(pN) = h(p)N = qnN

and hence n = 1. �
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Lemma 5.12. For any homeomorphism h of the Golomb space Nτ we have

Πh(x) = h(Πx) for every x ∈ N.

Proof: By Lemma 5.9, there exists a bijective function σ : Π → Π such that
Πh(x) = σ(Πx) for all x ∈ N. By Lemma 5.11 for every prime number p we get
{h(p)} = Πh(p) = {σ(p)}. Therefore, σ = h ↾ Π and Πh(x) = σ(Πx) = h(Πx) for
every x ∈ N. �

Next, we investigate the restrictions of homeomorphisms of Nτ to monogenic
subsemigroups of N.

A function µ : N → N is called multiplicative if µ(xy) = µ(x)µ(y) for all
x, y ∈ N. It is easy to see that a function is multiplicative if and only if

◦ µ(pn) = µ(p)n for every prime number p ∈ Π and every n ∈ N;
◦ µ(xy) = µ(x)µ(y) for any coprime numbers x, y ∈ N.

This implies that each multiplicative function µ is uniquely determined by its
restriction µ ↾ Π to the set Π of prime numbers. If a multiplicative function
µ : N → N is bijective, then µ(Π) = Π and the inverse function µ−1 is multiplica-
tive, too.

Lemma 5.13. Let h be a homeomorphism of the Golomb space Nτ . For every

a ∈ N \ {1} there exists a multiplicative bijection µa of N such that h(an) =
h(a)µa(n) for any n ∈ ω.

Proof: Given any a ∈ N, let b := h(a). By Lemma 5.10, we have a function
µa : N → N such that h(an) = bµa(n) for every n ∈ N. Let us consider the families
X := {anN : n ∈ N} and Y := {bnN : n ∈ N} of monogenic subsemigroups of N.
We endow N with the partial order of divisibility andX,Y with the partial order of
inclusion. The maps n 7→ anN and n 7→ bnN are lattice-isomorphisms. We consider

the map h̃ : X → Y , h̃ : anN 7→ bµa(n)N = h(an)N = h(anN). Since h̃ is taking
the image under the homeomorphism h and since the same construction may be

performed for h−1, we have that h̃ and so µa are lattice isomorphisms. We are done
since a bijection of N is multiplicative if and only if it is a lattice isomorphism. The
implication we need holds since any lattice isomorphism preserves coprimeness and
the product and the join of coprime numbers are the same, and since the chains
{pn : n ∈ N0} for p ∈ Π are the only maximal chains made of join-irreducible
elements in N. �

Next, we shall prove that µa = µb for any elements a, b ∈ N. For this we
use the following lemma, proved by joint efforts of MathOverflow users François
Brunault and so-called friend Don, see [4].

Lemma 5.14. For any numbers b ∈ Π and a ∈ N \ {xb : x ∈ N} there exist

infinitely many prime numbers p ∈ 1 + bN such that a(p−1)/b 6= 1 mod p.

Proof: The choice of a ensures that the equation xb = a has no solutions in Q.
Then we can apply the Grunwald–Wang theorem, see [2, Chapter X], and conclude
that the set P of prime numbers p for which the equation xb = a mod p has no
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solutions is infinite. We claim that P \ Πa ⊂ 1 + bZ. In the opposite case, we
could find a prime number p ∈ P with p /∈ Πa ∪ (1 + bZ) and conclude that p− 1
is not divisible by the prime number b and hence b is coprime with p − 1. It
is well-known that the multiplicative group Z∗

p of the finite field Zp := Z/pZ is

cyclic of order p − 1. Since b is coprime with p − 1, the map Z∗
p → Z∗

p, x 7→ xb,

is bijective, which implies that the equation (xb = a mod p) has a solution. But
this contradicts the choice of p ∈ P . This contradiction completes the proof of
the inclusion P \Πa ⊂ 1 + bZ.

It remains to prove that for each p ∈ P ∩(1+bZ) we have a(p−1)/b 6= 1 mod p.
Since the group Z∗

p is cyclic, there exists a positive number g < p such that the

coset g+pZ is a generator of Z∗
p. Then a = gk mod p for some k < p. Assuming

that a(p−1)/b = 1 mod p, we would conclude that gk(p−1)/b = 1 mod p and hence
k(p − 1)/b ∈ (p − 1)Z. Then k/b is integer and hence a = gk = (gk/b)b mod p,
which contradicts the choice of p ∈ P . �

Lemma 5.15. For any homeomorphism h of the Golomb space Nτ there exists

a multiplicative bijection µ : N → N such that h(an) = h(a)µ(n) for any a, n ∈ N.

Proof: By Lemma 5.13 for every a ∈ N\{1} there exists a multiplicative bijection
µa of N such that h(an) = h(a)µa(n) for all n ∈ N. Let P := {nk+1 : n, k ∈ N} be
the set of all nontrivial powers of natural numbers.

First we prove that for every a ∈ N \P and n ∈ Π there exists a neighborhood
Ua ⊂ Nτ of a such that µa(n) = µr(n) for every prime number r ∈ Ua.

Observe that the image q := µa(n) of the prime number n under the multi-
plicative bijection µa of N is prime. Taking into account that a /∈ P , we can apply
Lemma 5.13 and conclude that h(a) /∈ P .

By Lemma 5.14, there exists a prime number p ∈ (1+qN)\(Πh(a)∪Πh(an)) such

that h(a)(p−1)/q 6= 1 mod p. By the continuity of the maps h and f : Nτ → Nτ ,
f : x 7→ h(xn), the point a has a neighborhood Ua ∈ τa such that h(Ua) ⊂ h(a) +
pN0 and f(Ua) ⊂ f(a) + pN0 = h(an) + pN0. We claim that the neighborhood
Ua has the required property.

For every prime number r ∈ Ua we have h(r) = h(a) mod p and hence
h(r)µr(n) = h(a)µr(n) mod p. Also, h(a)µa(n) = h(an) = f(a) = f(r) = h(rn) =
h(r)µr(n) mod p. Together, we have h(a)µa(n) = h(a)µr(n) mod p. Since h(a) is
coprime with p, we have h(a) ∈ Z∗

p, and hence h(a)|µa(n)−µr(n)| = 1 in Z∗
p. Let

k ∈ N be the smallest number such that h(a)k = 1 in Z∗
p. Clearly, k divides p− 1.

Since h(a)(p−1)/q 6= 1 in Z∗
p and q is prime, we have that µa(n) = q divides k,

which divides µa(n)−µr(n). Hence, µa(n) divides µr(n), and since both numbers
are prime, they are equal.

Now we can prove that µa(n) = µb(n) for arbitrary n ∈ Π and a, b ∈ N\P . By
Lemma 2.5, the subspace N \ P of Nτ is connected. Then there exists a chain of
points a = a0, a1, . . . , am = b in N \ P such that for every i < m the intersection
Uai

∩Uai+1
is not empty and hence contains some prime number ri. Then µai

(n) =
µri(n) = µai+1

(n) for all i < m and hence µa(n) = µa0
(n) = µan

(n) = µb(n).
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Since the functions µa and µb are multiplicative, the equality µa(n) = µb(n)
holding for all prime n ∈ Π implies the equality µa = µb. Choose any number
c ∈ N \ P and put µ := µc.

Finally, we prove that µa = µ for any a ∈ N. This equality has been proved
for any a ∈ N \P . So, assume that a ∈ P . In this case a = αk for some α ∈ N \P
and some k ∈ N. Lemma 5.13 implies that h(α) /∈ P . Then for any n ∈ N we get

h(a)µa(n) = h(an) = h(αkn) = h(α)µα(kn) = h(α)µ(kn)

= h(α)µ(k)µ(n) = (h(α)µ(k))µ(n) = h(αk)µ(n) = h(a)µ(n).

�

Finally, we show that the multiplicative bijection µ appearing in Lemma 5.15
is continuous in the Furstenberg topology on N. This topology is generated by
the base consisting of all possible arithmetic progressions a+ bN0 where a, b ∈ N.
This topology was introduced by H. Furstenberg, see [11], in his famous topological
proof of the Euclides theorem on infinitude of prime numbers. It is clear that the
Furstenberg topology on N is stronger than the Golomb topology. It is easy to
see that the space N endowed with the Furstenberg topology is regular, second-
countable and has no isolated points. By Sierpiński theorem [9, 6.2.A (d)], it is
homeomorphic to the space Q of rational numbers.

A bijective function f : N → N will be called a Furstenberg homeomorphism if
f is a homeomorphism of the space N endowed with the Furstenberg topology.

Lemma 5.16. For any homeomorphism h of the Golomb space Nτ there exists

a unique multiplicative Furstenberg homeomorphism µ : N → N such that h(an) =
h(a)µ(n) for any a, n ∈ N.

Proof: Fix a homeomorphism h of the Golomb space Nτ . By Lemma 5.15, there
exists a multiplicative bijection µ : N → N such that h(an) = h(a)µ(n) for all
a, n ∈ N. It is clear that the latter formula uniquely determines µ. So, it remains
to prove that the map µ : N → N is continuous with respect to the Furstenberg
topology on N. It is clear that the Furstenberg topology is generated by a subbase
consisting of the arithmetic progressions N ∩ (a + pk Z) where a, k ∈ N and p is
prime. So, fix any n ∈ N and a subbasic neighborhood N∩ (µ(n)+ pk Z) for some
p ∈ Π and k ∈ N. Consider the group Z∗

pk+2 of invertible elements of the ring

Zpk+2 := Z/pk+2 Z and fix an element b + pk+2 Z ∈ Z∗
pk+2 of the highest possible

order. By the classical result of C. F. Gauss, see [12, pages 52–56], if p is odd,
then the group Z∗

pk+2 is cyclic of order pk+1(p− 1). If p = 2 then the group Z∗
pk+2

is isomorphic to Z2 × Z2k . This implies that b + pk+2 Z has order pk+1(p − 1)
or pk. Let a := h−1(b) and observe that h(a)µ(n) + pk+2 N0 is a neighborhood of
bµ(n) = h(a)µ(n) = h(an) in the Golomb topology.

By the continuity of the map h at an, the point an has a neighborhood an+dN0

in the Golomb topology such that h(an+dN0) ⊂ h(an)+pk+2 N0. Let ϕ(d) denote
the cardinality of the group Z∗

d of invertible elements of the ring Zd. We claim that
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µ(n+ϕ(d)N0) ⊂ µ(n)+pk Z, (so n+ϕ(d)N0 is a required neighborhood of n in the
Furstenberg topology, witnessing that the map µ is continuous at n). Given any
number m ∈ n+ ϕ(d)N0, observe that am − an = an(am−n − 1) = 0 mod d and
hence am ∈ an+ dN0. Then choice of d guarantees that h(am) ∈ h(an)+ pk+2 N0

and hence

h(am)− h(an) = h(a)µ(m) − h(a)µ(n)

= h(a)min{µ(n),µ(m)}(h(a)|µ(m)−µ(n)| − 1)

∈ pk+2 N0.

Since h(a) = b is coprime with p, this implies that h(a)|µ(m)−µ(n)| = 1 mod pk+2.
Taking into account that b+pk+2 Z has order pk+1(p−1) or pk in the group Z∗

pk+2 ,

we conclude that µ(m)− µ(n) ∈ pk Z. �

Remark 5.17. Answering a problem, see [5], posed by the first author on the
MathOverlow, Y. de Cornulier proved that any multiplicative bijection µ : N → N

with finite support suppΠ(µ) := {p ∈ Π: µ(p) 6= p} is a Furstenberg homeomor-
phism, and also that there exist multiplicative Furstenberg homeomorphisms of
N which have infinite support. Also he constructed a multiplicative bijection of
N which is not a Furstenberg homeomorphism. On the other hand, the density of
the set Π in Nτ implies that any non-identity homeomorphism h of the Golomb
space Nτ has infinite support suppΠ(h).

We do not know if the multiplicative bijection µ in Lemmas 5.15 and 5.16 is
always equal to the identity map of N. So, we ask

Question 5.18. Let h be a homeomorphism of the Golomb space Nτ . Is it true
that h(xn) = h(x)n for any x ∈ N?

Theorem 5.1 implies that the Golomb space Nτ is not topologically homoge-
neous. On the other hand, we do not know the answer to the following intriguing
problem (posed also in [3]).

Problem 5.19. Is the Golomb space rigid?

We recall that a topological spaceX is rigid if each homeomorphism h : X → X
is equal to the identity map of X .

The affirmative answer to the following problem would imply a negative answer
to Problem 5.19.

Problem 5.20. Let µ be a multiplicative bijection of N. Is µ a homeomor-
phism of Nτ if the restriction µ ↾ Π is a homeomorphism of the (metrizable
zero-dimensional) subspace Π of Nτ?

Remark 5.21. A counterpart of the Golomb topology on domains (= commuta-
tive rings without zero divisors) was introduced and studied by J. Knopfmacher
and Š. Porubský, see [17]. In their recent preprint [7] P. L. Clark, N. Lebowitz-
Lockard and P. Pollack extended some results of this paper to the Golomb topol-
ogy on domains.
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