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To the memory of my beloved father, Atanasie

Abstract. The question whether a hyponormal weighted shift with trace class self-
commutator is the compression modulo the Hilbert-Schmidt class of a normal operator,
remains open. It is natural to ask whether Putinar’s construction through which he proved
that hyponormal operators are subscalar operators provides the answer to the above ques-
tion. We show that the normal extension provided by Putinar’s theory does not lead to the
extension that would provide a positive answer to the question.
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1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space, and denote by

L(H) the algebra of all bounded linear operators on H and by C1(H) and C2(H) (or

simply C1 and C2) the trace class and the Hilbert-Schmidt class, respectively. For

an operator S ∈ L(H), DS will denote the self-commutator of S, that is [S
∗, S].

An operator S ∈ L(H) is called almost normal when DS ∈ C1(H) and is called

hyponormal when DS > 0. The class of operators defined on H which are almost

normal will be denoted by AN(H).

Voiculescu’s Conjecture 4 (C4) (cf. [4] or [5]) states that for T ∈ AN(H) there

exists S ∈ AN(H) such that T ⊕ S = N +K, where N is a normal operator and K

is a Hilbert-Schmidt operator. The conjecture remains unsolved even for arbitrary

almost normal weighted shifts. The only result in this direction was obtained by

Pasnicu in [2] that states that hyponormal weighted shifts Ten = wn+1en+1, n > 0,

such that wn ↑ w and
∑

(w − wn)
p converges for some p > 0, satisfy (C4).
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Putinar in [3] proved that a hyponormal operator is a subscalar of order two, and

particularly, it is a compression to a semi-invariant subspace of a normal operator.

It is natural to ask whether Putinar’s construction leads to proving that weighted

shifts operators that are simultaneously hyponormal and almost normal satisfy (C4),

see [1].

We review briefly Putinar’s construction of how a hyponormal operator T in L(H)

is a compression of a normal operator to a semi-invariant subspace, that is, there

exists a normal operator N ∈ L(K) with H ⊂ K such that the matrix representation

of N is

N =




∗ ∗ ∗

0 T ∗

0 0 ∗


 .

Let D be an open disc that includes the spectrum σ(T ) of a hyponormal operator

T ∈ L(H). Let

L2(D,H) = {f : D → H : ‖f‖22,D :=

∫

D

‖f(z)‖2 dλ(z) < ∞},

where dλ is the planar Lebesgue measure. Let W 2(D,H) consist of those f in

L2(D,H) such that ∂f and ∂
2
f, in the sense of distributions, belong to L2(D,H),

where ∂ is the operator ∂/∂z. Endowed with the norm

‖f‖2W 2 :=

2∑

k=0

‖∂
k
f‖22,D,

W 2(D,H) becomes a closed subspace of L2(D,H) in which C∞(D,H) is a dense sub-

space. Let N : L2(D,H) → L2(D,H) be the normal operator defined by (Nf)(z) =

zf(z) and letM be the restriction of N to the invariant subspace W 2(D,H). Let H1

be (T − z)W 2(D,H), where

T − z : W 2(D,H) → W 2(D,H)

is defined by

((T − z)f)(z) = T (f(z))− zf(z)

and it is a bounded operator whose range is invariant for operator M. Let

M̃ : W 2(D,H)/(T − z)W 2(D,H) → W 2(D,H)/(T − z)W 2(D,H)

be defined by M̃ f̃ = M̃f, where f̃ ∈ W 2(D,H)/(T − z)W 2(D,H) is the equivalence

class of an f in W 2(D,H). Relative to the orthogonal decomposition of

L2(D,H) = H1 ⊕H(D)⊕H′,
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where

H(D) = W 2(D,H)/(T − z)W 2(D,H)

and

H′ = L2(D,H)⊖W 2(D,H),

the matrix representation of N is

N =




A ∗ ∗

0 M̃ ∗

0 0 ∗


 .

The initial space H and the operator T can be recuperated from M̃. More precisely,

H(D) = H ⊕H′′ and relative to this decomposition, the operator M̃ has represen-

tation M̃ =

(
T ∗

0 ∗

)
. Denoting H2 = H′ ⊕H′′, then relative to the decomposition

of

L2(D,H) = H1 ⊕H ⊕H2,

the matrix representation of N is

N =




A B C

0 T D

0 0 E


 .

The following theorem (Theorem 2.1, [1]) makes use of the above notation.

Theorem 1.1. Let T be a hyponormal operator in AN(H). If the operator A

belongs to AN(H1), then T satisfies (C4).

2. Application

Although it is a negative statement, it is relevant to provide the proof that the

subnormal operator A cannot be almost normal when T is a hyponormal weighted

shift. Indeed, let {en}n>0 be an orthonormal basis of H such that Ten = wn+1en+1,

n > 0. A weighted shift operator is hyponormal if and only if the sequence {|wn|}n>1

is nondecreasing. We can further assume that wn > 0 since such weighted shifts are

unitarily equivalent, and that wn → w, w > 0. We can further assume that D is

a disc centered at the origin since the space H(D) is not dependent on the open

set D that includes σ(T ). Let

Ei,j,k(z, z) = zizjek, i, j, k > 0
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and let

Fi,j,k = (T − z)Ei,j,k = wk+1Ei,j,k+1 − Ei+1,j,k.

With the disc D centered at the origin, we have

Ei,j,k ⊥ Er,s,t when (i, j, k) 6= (r, s, t);

recall that the inner product in L2(D,H) is defined by

〈f, g〉L2(D,H) =

∫

D

〈f(z), g(z)〉
H
dλ(z).

Let Gn = {Fi,j,k : i+ j + k = n} listed in the following order

Fn,0,0, Fn−1,1,0, . . . , F0,n,0;Fn−1,0,1, Fn−2,1,1, Fn−3,2,1, . . . , F0,n−1,1; . . . ;F0,0,n.

Any vector of Gm is orthogonal on any vector of Gn whenm 6= n (Lemma 3.1, [1]),

and thus the space H1 can be decomposed as

H1 =
⊕

n>0

span(Gn),

where span(Gn) denotes the linear span of all vectors in Gn.

Since the operator A is the restriction of the operator of multiplication by vari-

able z,

AFi,j,k = zFi,j,k = z(wk+1Ei,j,k+1 − Ei+1,j,k) = Fi+1,j,k,

and consequently A(span(Gn)) ⊆ span(Gn+1). Relative to the above decomposition

of H1, the operator A can be written

A =




0 0 0 . . .

A10 0 0
. . .

0 A21 0
. . .

...
. . .

. . .
. . .




with each An+1,n : span(Gn) → span(Gn+1).

After orthonormalization of each subspace span(Gn) and redenoting its new vec-

tors by

Gn,0,0, Gn−1,1,0, . . . , G0,n,0;Gn−1,0,1, Gn−2,1,1, Gn−3,2,1, . . . , G0,n−1,1; . . . ;G0,0,n,

each operator An+1,n has a matrix representation Ãn+1,n.
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The operator A is almost normal if and only if

tr(Ã∗

n+1,nÃn+1,n) 6 m < ∞, n > 0

(see [1], Theorem 3.2).

Relative to conjecture (C4), one can assume that the operator T has the norm less

than 1 since multiplication by a constant preserves both hyponormality and (C4),

and thus one can choose the disc D to have radius 1.

Let the orthonormalized vectors of Gn be split into subgroups L
n
0 , L

n
1 , . . . , L

n
n,

with each Ln
k consisting of

Gn−k,0,k, Gn−k−1,1,k, . . . , G0,n−k,k.

Since all vectors Fn−k,k,0 of the group L
n
0 are orthogonal on each other,

Gn−k,k,0 =
Fn−k,k,0

‖Fn−k,k,0‖2
, k = 0, 1, . . . , n.

Thus, for k = 0, 1, . . . , n,

AGn−k,k,0 = z
Fn−k,k,0

‖Fn−k,k,0‖2
=

Fn−k+1,k,0

‖Fn−k,k,0‖2
=

‖Fn−k+1,k,0‖2
‖Fn−k,k,0‖2

Gn−k+1,k,0,

that is, the kth vector of subgroup Ln
0 is mapped into the kth vector of the sub-

group Ln+1
0 .

Theorem 2.1. With above notation, tr(Ã∗
n+1,nÃn+1,n) → ∞, n → ∞, and con-

sequently the operator A is not almost normal.

P r o o f. According to the above calculations,

tr(Ã∗

n+1,nÃn+1,n) =

n∑

k=0

n−k∑

j=0

‖An+1,nGn−k−j,j,k‖
2
2

>

n∑

j=0

‖An+1,nGn−j,j,0‖
2
2 =

n∑

j=0

‖Fn−j+1,j,0‖
2
2

‖Fn−j,j,0‖22
.

On other hand,

‖Fi,j,0‖
2
2 =

∫

D

‖w1z
izje1 − zi+1zje0‖

2 dλ(z) =

∫

D

(w2
1 |z

izj |2 + |zi+1zj |2) dλ(z)

= 2π

∫ 1

0

[w2
1r

2(i+j) + r2(i+1+j)]r dr = 2π

[
w2

1

1

2(i+ j + 1)
+

1

2(i+ j + 2)

]
,

thus
‖Fn−j+1,j,0‖

2
2

‖Fn−j,j,0‖22
=

n+ 1

n+ 3

n(w2
1 + 1) + 3w2

1 + 2

n(w2
1 + 1) + 2w2

1 + 1
→ 1,

and consequently, tr(Ã∗
n+1,nÃn+1,n) → ∞. �
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