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Abstract. Let Z+ be the semiring of all nonnegative integers and A an m × n matrix
over Z+. The rank of A is the smallest k such that A can be factored as an m× k matrix
times a k×n matrix. The isolation number of A is the maximum number of nonzero entries
in A such that no two are in any row or any column, and no two are in a 2× 2 submatrix
of all nonzero entries. We have that the isolation number of A is a lower bound of the rank
of A. For A with isolation number k, we investigate the possible values of the rank of A
and the Boolean rank of the support of A. So we obtain that the isolation number and
the Boolean rank of the support of a given matrix are the same if and only if the isolation
number is 1 or 2 only. We also determine a special type of m× n matrices whose isolation
number is m. That is, those matrices are permutationally equivalent to a matrix A whose
support contains a submatrix of a sum of the identity matrix and a tournament matrix.

Keywords: rank; Boolean rank; isolated entry; isolation number

MSC 2010 : 15A23, 15A03, 15B34

1. Introduction and preliminaries

A semiring is a set S with two binary operations, “+” and “·” such that (S,+) is

an abelian monoid with identity 0, (S, ·) is a monoid with identity 1, such that “·”

distributes over “+” from both sides and such that 0 · s = s · 0 = 0 for all s ∈ S. We

use juxtaposition for “·” for convenience. Let B be the binary Boolean semiring, that

is, B = {0, 1} with addition and multiplication defined as in the real numbers except

that 1 + 1 = 1. The set, Z+, of nonnegative integers and B, the binary Boolean

semiring, are examples of combinatorially interesting semirings.

LetMm,n(Z+) denote the set of all m×n matrices with entries in Z+ with matrix
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addition and multiplication following the usual rules. LetMn(Z+) = Mm,n(Z+) if

m = n, let Im denote the m×m identity matrix, Om,n denote the m×n zero matrix,

Jm,n denote the m× n matrix of all ones. The subscripts are usually omitted if the

order is obvious, and we write I, O, J .

The matrix A ∈ Mm,n(Z+) is said to be of rank k, see [2], if there exist matrices

B ∈ Mm,k(Z+) and C ∈ Mk,n(Z+) such that A = BC and k is the smallest positive

integer that such a factorization exists. We denote rZ+
(A) = k.

Now letMm,n(B) denote the set of all m× n Boolean matrices with entries in B.

The matrix A ∈ Mm,n(B) is said to be of Boolean rank k (see [5]) if there exist

matrices B ∈ Mm,k(B) and C ∈ Mk,n(B) such that A = BC and k is the smallest

positive integer that such a factorization exists. We denote b(A) = k. Then rZ+
(O) =

b(O) = 0, and O is the only matrix of (Boolean) rank 0.

The Boolean rank has many applications in combinatorics, especially the graph

theory, for example, if A ∈ Mm,n(B) is the adjacency matrix of a bipartite graph G

with bipartition (X,Y ), the Boolean rank of A is the minimum number of bicliques

that cover the edges of G, called the biclique covering number (see [6]). If A ∈

Mm,n(Z+), define a Boolean m× n matrix Ā = (āi,j) such that āi,j = 1 if and only

if ai,j 6= 0. We call Ā the support of A. Then “¯” mapsMm,n(Z+) ontoMm,n(B),

and preserves matrix addition, multiplication, and multiplication by scalars. That

is, “¯” is a homomorphism.

We say that a matrix A dominates a matrix B if ai,j = 0 implies bi,j = 0.

Given a matrix X , we let x(j) denote the jth column of X and x(i) denote the ith

row. Now if rZ+
(A) = k and A = BC is a factorization of A ∈ Mm,n(Z+), then A =

b
(1)

c(1)+b
(2)

c(2)+. . .+b
(k)

c(k). Since each of the terms b
(i)
c(i) is a rank one matrix,

the rank of A is also the minimum number of rank one matrices whose sum is A.

Given a matrix A ∈ Mm,n(Z+), a set of isolated entries (see [6]) is a set of

locations, usually written as I = {ai,j} such that ai,j 6= 0, no two entries in I are

in the same row, no two entries in I are in the same column, and, if ai,j , ak,l ∈ I,

then ai,l = 0 or ak,j = 0. That is, isolated entries are independent entries and no

two isolated entries ai,j and ak,l lie in a submatrix of A of the form
[

ai,j ai,l

ak,j ak,l

]

with

all entries nonzero. The isolation number of A, ι(A), is the maximum size of a set

of isolated entries. Note that ι(A) = 0 if and only if A = O.

Example 1.1. Let

A =















1 1 2 0 0

2 1 0 1 0

1 0 0 0 2

0 2 0 1 1

0 0 1 2 1














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and S = {(1, 3), (2, 1), (3, 5), (4, 2), (5, 4)}. The entries (2’s) of A with positions in S

are isolated entries and hence ι(A) = 5. But the entries of A in the position in

T = ((1, 1), (2, 2), (3, 5), (4, 4), (5, 3)) are not isolated.

Suppose that A ∈ Mm,n(Z+) and rZ+
(A) = k. Then there are k rank one matri-

ces Ai such that

(1.1) A = A1 +A2 + . . .+Ak.

Because each rank one matrix can be permuted to a matrix of the form
[

B O

O O

]

with

B = J , it is easily seen that the matrix consisting of two isolated entries of A cannot

be dominated by any Ai among the rank one summand of A in (1.1). Thus

(1.2) ι(A) 6 rZ+
(A).

For A = A1 + A2 + . . . + Ak, let Ri denote the indices of the nonzero rows of Ai

and Cj denote the indices of the nonzero columns of Aj , i, j = 1, . . . , k. Let ri = |Ri|,

the number of nonzero rows of Ai and cj = |Cj |, the number of nonzero columns

of Aj .

Many functions, sets and relations concerning matrices do not depend upon the

magnitude or nature of the individual entries of a matrix, but rather only on whether

the entry is zero or nonzero. These combinatorially significant matrices have become

increasingly important in recent years. Of primary interest is the Boolean rank.

Finding the Boolean rank of a (0, 1)-matrix is an NP-Complete problem (see [8]),

and consequently finding bounds on the Boolean rank of a matrix is of interest to

those researchers that would use Boolean rank in their work. If the (0, 1)-matrix

is the reduced adjacency matrix of a bipartite graph, the isolation number of the

matrix is the maximum size of a non-competitive matching in the bipartite graph.

This is related to the study of such combinatorial problems as the patient hospi-

tal problem, the stable marriage problem, etc. An additional reason for studying

the isolation number is that it is a lower bound on the rank of a matrix over Z+.

While finding the isolation number as well as finding the rank of a matrix is an

NP-Complete problem (see [7]), for some matrices finding the isolation number can

be easier than finding the rank especially if the matrix is sparse. As the following

example shows, the isolation number can be helpful to determine the rank of a given

matrix.
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Example 1.2. Let

B =

































1 1 1 3 0 1 1 1 1

1 1 1 1 3 1 1 1 1

1 1 1 0 0 3 1 1 1

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

0 3 1 0 0 0 0 0 0

1 0 3 0 0 0 0 0 0

































.

Then we can easily see rZ+
(B) 6 6 from the first 3 rows and columns, however

to find that it is not 5, requires much calculation if the isolation number is not con-

sidered. However, the isolation number is easily seen to be 6, both computationally

and visually, the 3’s in the matrix represent a set of isolated entries. Thus we have

rZ+
(B) = 6 by (1.2).

Note that if any of the 1’s in B are replaced by zeros, the resulting matrix still

has rank 6 as well as isolation number 6.

Terms not specifically defined here can be found by Brualdi and Ryser, see [4], for

matrix terms, or Bondy and Murty, see [3], for graph theoretic terms.

Beasley and Pullman in [2] introduced rank of a matrix in Mm,n(Z+) and com-

pared it with Boolean rank of its support. Gregory et al. in [6] introduced the set of

isolated entries and compared Boolean rank with biclique covering number. Beasley

in [1] introduced isolation number of Boolean matrix and compared it with Boolean

rank.

In this paper, we investigate the question: Given a fixed k, if the isolation number

of A is k what are some of the possible values of the rank of A and the Boolean rank

of the support of A? So we obtain that the isolation number and the Boolean rank of

the support of a given matrix are the same if and only if the isolation number is 1 or 2

only. We also obtain a special type of m× n matrices whose isolation number is m.

That is, those matrices are permutationally equivalent to a matrix A whose support

contains a submatrix of a sum of the identity matrix of order m and a tournament

matrix.

In the extensive researches on isolation numbers of matrices over Z+ we shall apply

this research to characterize the linear operators that preserve the isolation numbers

of matrices over Z+.
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2. Possible bounds for isolation numbers of a matrix in Mm,n(Z+)

In this section, we compare the isolation number with rank of a matrix in

Mm,n(Z+), and we compare the isolation number with Boolean rank of the support

of a matrix inMm,n(Z+).

Lemma 2.1. For A,B ∈ Mm,n(Z+), rZ+
(A + B) 6 rZ+

(A) + rZ+
(B). And for

A,B ∈ Mm,n(B), b(A+B) 6 b(A) + b(B).

Lemma 2.2. For A,B ∈ Mm,n(Z+), A+B = Ā+B inMm,n(B).

P r o o f. It follows from the facts that all the entries of A,B ∈ Mm,n(Z+) are

nonnegative and 1 + 1 = 1 in B. �

Lemma 2.3 ([6]). For A ∈ Mm,n(Z+), b(Ā) 6 rZ+
(A).

P r o o f. If rZ+
(A) = k, then A has a rank-one factorization such that A =

b
(1)

c(1) + b
(2)

c(2) + . . . + b
(k)

c(k) with B = [b(1)
b
(2) . . .b(k)] ∈ Mm,k(Z+) and

C = [c(1)c(2) . . . c(k)]
t ∈ Mk,n(Z+). Therefore

b(Ā) = b(b(1)c(1) + b(2)c(2) + . . .+ b(k)c(k))

= b(b(1)c(1) + b(2)c(2) + . . .+ b(k)c(k)) 6 k,

from Lemma 2.2.

Hence b(Ā) 6 rZ+
(A). �

We may have b(Ā) < rZ+
(A) for some A ∈ Mm,n(Z+).

Example 2.4. Consider

A =

[

1 2

3 4

]

and B =

[

1 2

3 6

]

inM2,2(Z+). Then rZ+
(A) = 2 but b(Ā) = b

([ 1 1

1 1

])

= 1. Hence b(Ā) < rZ+
(A). But

rZ+
(B) = b(B) = 1.

Lemma 2.5. For A = [ai,j ] ∈ Mm,n(Z+), ι(A) = ι(Ā).

P r o o f. If ai,j and ak,l are any isolated entries in A, then i 6= k and j 6= l, and

then ai,l = 0 or ak,j = 0. Hence āi,j and āk,l are isolated entries in Ā, so we have

ι(A) 6 ι(Ā).

Conversely, if āi,j and āk,l are any isolated entries in Ā, then ai,j 6= 0 and ak,l 6= 0

and then ai,l = āi,l = 0 or ak,j = āk,j = 0. Hence ai,j and ak,l are isolated entries

in A, so we have ι(Ā) 6 ι(A). �
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Theorem 2.6. If A ∈ Mm,n(Z+), then ι(A) = 1 if and only if b(Ā) = 1.

P r o o f. Let A ∈ Mm,n(Z+). If b(Ā) = 1 then A 6= O so that ι(A) 6= 0 and since

ι(A) = ι(Ā) 6 b(Ā) by (1.2), we have ι(A) = 1.

Conversely, suppose that ι(A) = 1 and that b(Ā) > 2. Then, for some permutation

matrices P and Q of the appropriate orders, PĀQ =
[

Jr,s O

O O

]

+ Ā2 for some r, s with

either r < m or s < n. Partition Ā2 as Ā2 =
[

Ā2,1 Ā2,2

Ā2,3 Ā2,4

]

, where Ā2,1 is r × s. Since

b(PĀQ) = b(Ā) > 2, we have Ā 6= J , and hence, one of Ā2,2, Ā2,3, Ā2,4 has a zero

entry. Further, one of Ā2,2, Ā2,3, Ā2,4 has an entry of 1 since PĀQ 6=
[

Jr,s O

O O

]

. Thus,

in PĀQ, there is some zero entry, say āi,j = 0, which lies in a nonzero column j and

a nonzero row i. Then, any of the ones in that column j together with a one in the

nonzero row i form a set of two isolated entries, a contradiction, thus b(Ā) = 1. �

It follows that the subset ofMm,n(Z+) of matrices with isolation number one is

the same as the set of matrices whose support has Boolean rank one.

Lemma 2.7. Let A ∈ Mm,n(Z+). Then if rZ+
(A) > b(Ā) = 2 then ι(A) = 2,

and if ι(A) = 2 then b(Ā) 6= 3.

P r o o f. If b(Ā) = 2, then ι(A) > 1 by Theorem 2.6. Since ι(A) = ι(Ā) 6 b(Ā)

from Lemma 2.5 and (1.2), we have that ι(A) = ι(Ā) = 2.

Now, suppose that ι(A) = 2 and that b(Ā) = 3. Let Ā = Ā1 + Ā2 + Ā3 where

b(Āi) = 1.

Permute the rows of Ā so that R1 = {1, 2, . . . , r1} and permute the columns of Ā

so that C2 = {1, 2, . . . , c2} and C3 = {k + 1, k + 2, . . . , k + c3} where k 6 c2.

Note that Ri 6= Rj and Ci 6= Cj unless i = j, otherwise Āi + Āj would be rank 1.

Suppose that R1 ⊂ R2. Permute the remaining rows so that R2 = {1, 2, . . . , r2},

and R3 = {a + 1, a + 2, . . . , a + b + c, r2 + 1, r2 + 2, . . . , r2 + e} where a + b 6 r1,

r1 6 a+ b+ c 6 a+ b+ c+ d 6 r2 and r2 6 a+ b+ c+ d+ e.

Thus, we have that

Ā =



















Ja,k Ja,g Ja,h Oa,u Ja,v Oa,w

Jb,k Jb,g Jb,h Jb,u Jb,v Ob,w

Jc,k Jc,g Jc,h Jc,u Oc,v Oc,w

Jd,k Jd,g Od,h Od,u Od,v Od,w

Oe,k Je,g Je,h Je,u Oe,v Oe,w

Of,k Of,g Of,h Of,u Of,v Of,w



















,
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for some a, b, c, d, e, f , g, h, k, u, v and w. Thus, with this notation,

Ā1 =





Ja,k Ja,g Ja,h Oa,u Ja,v O

Jb,k Jb,g Jb,h Ob,u Jb,v O

O O O O O O



 , Ā2 =















Ja,k Ja,g O

Jb,k Jb,g O

Jc,k Jc,g O

Jd,k Jd,g O

O O O















,

and

Ā3 =



















Oa,k Oa,g Oa,h Oa,u Oa,v+w

Ob,k Jb,g Jb,h Jb,u Ob,v+w

Oc,k Jc,g Jc,h Jc,u Oc,v+w

Od,k Od,g Od,h Od,u Od,v+w

Oe,k Je,g Je,h Je,u Oe,v+w

Of,k Of,g Of,h Of,u Of,v+w



















.

Now, if

Ā[r1 + 1, . . . ,m | 1, . . . , n] = Ā2[r1 + 1, . . . ,m | 1, . . . , n]

+ Ā3[r1 + 1, . . . ,m | 1, . . . , n]

has Boolean rank 1 then d = e = 0 and hence Ā has the form

Ā =









Ja,k Ja,g Ja,h Oa,u Ja,v Oa,w

Jb,k Jb,g Jb,h Jb,u Jb,v Ob,w

Jc,k Jc,g Jc,h Jc,u Oc,v Oc,w

Of,k Of,g Of,h Of,u Of,v Of,w









=





Ja,k Ja,g Ja,h Oa,u Ja,v O

Jb,k Jb,g Jb,h Ob,u Jb,v O

O O O O O O



+









O O O O O O

Jb,k Jb,g Jb,h Jb,u Ob,v O

Jc,k Jc,g Jc,h Jc,u Oc,v O

O O O O O O









,

so that b(Ā) = 2, a contradiction to the assumption b(Ā) = 3. Thus, Ā[r1 + 1, . . . ,

m|1, . . . , n] must have Boolean rank 2, and hence it has two isolated entries, say

i2 and i3. If C1 6⊆ C2 ∪ C3 then without loss of generality we have that ā1,x 6= 0

for x = k + g + h + u + 1, but then {ā1,x, i2, i3} is a set of three isolated entries,

a contradiction to ι(Ā) = ι(A) = 2. Thus, v = 0 and hence, C1 ⊆ C2 ∪ C3. Further,
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C1 6= C2 ∪ C3, otherwise Ā can be expressed as

Ā =















Ja,k Ja,g O

Jb,k Jb,g O

Jc,k Jc,g O

Jd,k Jd,g O

O O O















+



















Oa,k Ja,g Ja,h O

Ob,k Jb,g Jb,h O

Oc,k Jc,g Jc,h O

Od,k Od,g Od,h O

Oe,k Je,g Je,h O

Of,k Of,g Of,h O



















,

so that b(Ā) = 2, contradiction to the assumption b(Ā) = 3.

Note that a, u, d 6= 0, for otherwise b(Ā) = 2. If e = 0 then b + c 6= 0 so that

{ā1,c1, āa+1,k+c3 , ār2,1} is a set of three isolated entries, a contradiction to ι(Ā) =

ι(A) = 2. If e 6= 0, then {ā1,c1 , ār2,1, ār2+e,k+c3} is a set of three isolated entries,

contradicting that ι(Ā) = ι(A) = 2. Thus, R1 6⊂ R2.

By renumbering or transposing we have proved that Ri 6⊂ Rj and Ci 6⊂ Cj for any

pair i and j.

Now, permute the rows and columns of Ā so that

R1 = {1, 2, . . . , r1},

R2 = {a+ 1, a+ 2, . . . , a+ b,

a+ b+ c+ 1, a+ b + c+ 2, . . . ,

a+ b+ c+ d+ e+ f},

and

R3 = {a+ b+ 1, a+ b+ 2, . . . , a+ b+ c+ d+ e,

a+ b+ c+ e+ f + 1,

a+ b+ c+ e+ f + 2, . . . , a+ b+ c+ e+ f + g}

for some a, b, c, d, e, f , g where a+ b+ c+ d = r1, so that Ā has the form

(1) Ā =





























Ja,k Oa,l Ja,p Oa,q Ja,r Oa,s Ja,v Oa,w

Jb,k Jb,l Jb,p Jb,q Jb,r Ob,s Jb,v Ob,w

Jc,k Oc,l Jc,p Jc,q Jc,r Jc,s Jc,v Oc,w

Jd,k Jd,l Jd,p Jd,q Jd,r Jd,s Jd,v Od,w

Je,k Je,l Je,p Je,q Je,r Je,s Oe,v Oe,w

Jf,k Jf,l Jf,p Jf,q Of,r Of,s Of,v Of,w

Og,k Og,l Jg,p Jg,q Jg,r Jg,s Og,v Og,w

Oh,k Oh,l Oh,p Oh,q Oh,r Oh,s Oh,v Oh,w





























,
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for some a, b, c, d, e, f , g, h, k, l, p, q, r, s, v, and w, so that

Ā1 =















Ja,k Oa,l Ja,p Oa,q Ja,r Oa,s Ja,v Oa,w

Jb,k Ob,l Jb,p Ob,q Jb,r Ob,s Jb,v Ob,w

Jc,k Oc,l Jc,p Oc,q Jc,r Oc,s Jc,v Oc,w

Jd,k Od,l Jd,p Od,q Jd,r Od,s Jd,v Od,w

O O O O O O O O















,

Ā2 =























Oa,k Oa,l Oa,p Oa,q O

Jb,k Jb,l Jb,p Jb,q O

Oc,k Oc,l Oc,p Oc,q O

Jd,k Jd,l Jd,p Jd,q O

Je,k Je,l Je,p Je,q O

Jf,k Jf,l Jf,p Jf,q O

O O O O O























,

and

Ā3 =





























Oa,k Oa,l Oa,p Oa,q Oa,r Oa,s O

Ob,k Ob,l Ob,p Ob,q Ob,r Ob,s O

Oc,k Oc,l Jc,p Jc,q Jc,r Jc,s O

Od,k Od,l Jd,p Jd,q Jd,r Jd,s O

Oe,k Oe,l Je,p Je,q Je,r Je,s O

Of,k Of,l Of,p Of,q Of,r Of,s O

Og,k Og,l Jg,p Jg,q Jg,r Jg,s O

Oh,k Oh,l Oh,p Oh,q Oh,r Oh,s O





























.

Suppose that v 6= 0 and Ā[r1 + 1, . . . ,m|1, . . . , n] = Ā2[r1 + 1, . . . ,m|1, . . . , n] +

Ā3[r1 + 1, . . . ,m|1, . . . , n] has Boolean rank 1. Then f = g = 0 and we must have

l, s 6= 0, for otherwise b(Ā) = 2, a contradiction. Further, if b = c = 0 then b(Ā) = 2,

again a contradiction. Thus, using a 1 from each of the blocks subscripted (a, v),

(b, l) and (e, s) of Ā or a 1 from each of the blocks subscripted (a, v), (e, l) and (c, s)

of Ā we have three isolated entries, a contradiction since ι(A) = ι(Ā) = 2. Thus the

Boolean rank of Ā[r1 + 1, . . . ,m|1, . . . , n] must be 2, and hence it has two isolated

entries, say i2 and i3. If C1 6⊆ C2∪C3 then ā1,x 6= 0 for x = k+ l+p+q+r+s+1 and

then {ā1,x, i2, i3} is a set of three isolated entries, a contradiction to ι(A) = ι(Ā) = 2.

Thus, C1 ⊆ C2 ∪ C3. Further, C1 6= C2 ∪ C3, otherwise, Ā would have Boolean rank 2.

Thus, v = 0, and hence, C1 ⊂ C2 ∪ C3.

Since the choice of rows versus columns can be changed by transposition and the

index of Ri and Cj by renumbering, we have shown that if {i, j, k} = {1, 2, 3} then

Ri ⊂ Rj ∪Rk and Ci ⊂ Cj ∪ Ck.
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Consider the matrix (1). Since R1 ⊂ R2 ∪ R3 we have that a = 0; since R2 ⊂

R1 ∪ R3 we have that f = 0; since C2 ⊂ C1 ∪ C3 we have that l = 0; and since

C3 ⊂ C1 ∪ C2 we have that s = 0. That is, since a = f = l = s = v = 0, Ā has the

form

Ā =



















J J J J O

J J J J O

J J J J O

J J J J O

O J J J O

O O O O O



















,

where the indices have been omitted. Thus b(Ā) = 2, a contradiction. Thus, if

ι(A) = 2 then b(Ā) 6= 3. �

Theorem 2.8. Let A ∈ Mm,n(Z+). Then ι(A) = 2 if and only if b(Ā) = 2.

P r o o f. From Lemma 2.7, we have the sufficiency. So we only need to show the

necessity.

Suppose there exists A ∈ Mm,n(Z+) with ι(A) = ι(Ā) = 2 and b(Ā) > 2. By

Lemma 2.7, b(Ā) 6= 3, and hence b(Ā) > 4. Thus we choose A such that if b(Ā) >

rB(C) > 2 then ι(C) > 2. Suppose that Ā = Ā1 + Ā2 + . . . + Āk for k = b(Ā)

where each Āi is Boolean rank one, i.e., k is the minimum k such that b(Ā) = k and

ι(A) = 2. Suppose that Ā1 has the fewest number of nonzero rows of the Āi’s. As

in the proof of the above Lemma 2.7, permute the rows of Ā so that Ā1 has nonzero

rows 1, 2, . . . , r1. For j = 1, . . . , r1, let Bj be the matrix whose first j rows are the

first j rows of Ā and whose last m− j rows are all zero. Let Cj be the matrix whose

first j rows are all zero and whose last m − j rows are the last m − j rows of Ā.

Then Ā = Bj + Cj . Further, any set of isolated entries of Cj is a set of isolated

entries for Ā. Now, b(Ā) 6 b(Bj) + b(Cj), and the fact that b(Cj) = b(Cj−1) or

b(Cj) = b(Cj−1) − 1 imply that there is some t such that b(Ct) = b(Ā) − 1. Since

b(Ct) < k by the choice of Ā, for this t, we have that ι(Ct) > 2 since b(Ct) > 3.

That is, ι(A) = ι(Ā) > 2, a contradiction. �

Now, as we can see in the following example, there is a matrix A ∈ Mm,n(Z+)

such that ι(Ā) = 3 and b(Ā) is relative large, depending on m and n.

Example 2.9. For n > 3, let Dn = J \ I ∈ Mn(B). Then it is easily shown that

ι(Dn) = 3 while b(Dn) = k where k = min
{

k : n 6
(

k
k/2

)}

, see [5], Corollary 2. So,

ι(D20) = 3 while b(D20) = 6.

A tournament matrix [T ] ∈ Mn(B) is the adjacency matrix of a directed graph

called a tournament, T . It is characterized by [T ] ◦ [T ]t = O and [T ] + [T ]t = J − I.
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Now, it is natural to ask the following: How much difference can there be between

the isolation number of a matrix inMm,n(Z+) and the Boolean rank of its support

matrix? For each k = 1, 2, . . . ,min{m,n} characterizes the matrices in Mm,n(Z+)

for which ι(A) = b(Ā). Of course this is done if k = 1 or k = 2 in the above theorems,

but only in those cases. For k = m we can also find a characterization:

Theorem 2.10. Let 1 6 m 6 n and A ∈ Mm,n(Z+). Then ι(A) = b(Ā) = m

if and only if there exist permutation matrices P ∈ Mm(B) and Q ∈ Mn(B) such

that PAQ = [B|C] where B = Im + T ∈ Mm(B) and T ∈ Mm(B) is dominated by

a tournament matrix. (There are no restrictions on C.)

P r o o f. Suppose that ι(A) = m. Then we permute A by permutation matrices P

and Q so that the isolated entries are in the (d, d) positions, d = 1, . . . ,m. That

is, if X = PAQ then I = {x1,1, x2,2, . . . , xm,m} is the set of isolated entries in X.

Therefore X = [B|C], with b̄i,i = x̄i,i = 1 and b̄i,j · b̄j,i = 0 for every i and j 6= i from

the definition of the isolated entries. Thus, B = Im + T where T is an m square

matrix which is dominated by a tournament matrix. Thus, PAQ = [B|C] where

B = Im + T and clearly there are no conditions on C.

Conversely, if PAQ = [B|C] and B = Im + T where T is an m square matrix

which is dominated by a tournament matrix, then the diagonal entries of B form

a set of isolated entries for PAQ and hence A has a set of m isolated entries. Thus

ι(A) = b(Ā) = m. �

Corollary 2.11. Let 1 6 m 6 n and A ∈ Mm,n(Z+). If there exist permutation

matrices P ∈ Mm(B) and Q ∈ Mn(B) such that PAQ = [B|C] where B ∈ Mm(Z+)

is a diagonal matrix or a triangular matrix with nonzero diagonal entries, then ι(A) =

b(Ā) = m.

3. Conclusion

We considered the isolation number of a matrix A over Z+ and compared it with

the Boolean rank of the support Ā of A. We determined that the isolation number

and the Boolean rank of the support of a matrix A are the same if and only if the

isolation number is 1 or 2 only. We also determined a special type of m×n matrices

whose isolation number is m. That is, those matrices are permutationally equivalent

to a matrix A whose support contains a submatrix of a sum of the identity matrix

and a tournament matrix.

In further research on isolation numbers of matrices over Z+ we will apply these

results to characterize the linear operators that preserve the isolation numbers of

matrices inMm,n(Z+).
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