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Abstract. We first introduce new weighted Morrey spaces related to certain non-negative
potentials satisfying the reverse Holder inequality. Then we establish the weighted strong-
type and weak-type estimates for the Riesz transforms and fractional integrals associated
to Schrodinger operators. As an application, we prove the Calderén-Zygmund estimates
for solutions to Schrodinger equation on these new spaces. Our results cover a number of
known results.
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1. INTRODUCTION

It is well known that Morrey first introduced the classical Morrey spaces to in-
vestigate the local behavior of solutions to second-order elliptic partial differential
equations in [21]. In recent years there has been an explosion of interest in studying
the boundedness of operators on Morrey-type spaces. It was found that many prop-
erties of solutions to PDEs are concerned with the boundedness of some operators on
Morrey-type spaces. In fact, the better inclusion between Morrey and Holder spaces
permits to obtain higher regularity of the solutions to different elliptic and parabolic
boundary problems.

Weighted inequalities arise naturally in Fourier analysis, but their use is best
justified by the variety of applications in which they appear. For example, the
theory of weights is of great importance in the study of boundary value problems for
Laplace equations on Lipschitz domains. Other applications of weighted inequalities
include extrapolation theory, vector-valued inequalities, and estimates for certain
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classes of nonlinear mathematical physics equations. Therefore, it is worth pointing
out that many authors are interested in the weighted norm inequalities when the
weight function belongs to the Muckenhoupt classes.

In the last decade many results in classical harmonic analysis have been devoted
to norm inequalities involving classical and non-classical operators in the setting of
weighted Morrey spaces. The results obtained are mostly the extensions of well-
known analogues in the weighted Lebesgue spaces. It has been proved by many
authors that most of the operators are bounded on not only a weighted Lebesgue
space but also an appropriate weighted Morrey space. In this paper we show that
these results are valid on a larger family of functional spaces including weighted
Morrey spaces.

In recent years the problem related to Schrédinger operator has attracted a great
deal of attention of many mathematicians; see [3], [4], [5], [6], [8], [11], [12], [20],
[27], [34] and references therein. In this paper we consider a Schrédinger operator
L=—-A+YVonR" n >3, where the potential V belongs to RH, for some ¢ > n/2
and RH, is the reverse Holder class defined in Section 2.

For x € R™, we define the functions gy (z), my(x) by:

1 1
= = M g 1 .
ov(x) my(x) igg {r rn—2 /B(x,r) Vi) dy }

It follows from the above conditions on V that 0 < my(z) < occ.

Throughout the paper, for simplicity, we denote by B the ball with the center xp
and radius rp. Next, we will introduce our new Morrey type spaces.

Let w, v be two weights and 6 € [0,1), 1 < p < s < 00, @ € (—00,0). We
define the space M(’;:Z(w,v) as the space of all measurable functions f satisfying

HfHMQ;(w,U) < 0o, where

1/s
”f”Mﬁ’Z(w,v) = Sglg |:/ ((1 + va(x))aU(B(l‘, r))_erXB(z,r)HLP(w))s dz < Q.

If w = v, then we will denote M7 (w,v) by M, (w) for brevity.

In particular, when o = 0 or V = 0 and w = v = 1, we recover the space (L?, L*)°
defined in [15] by Fofana (see also [13], [14]). In the case « = 0 or ¥V =0 and w =
v =1, s = oo, the space M}"j(w,v) is the Morrey space Mg/p([R”) first introduced
in [23]. Some new properties of M} (R™) have been studied in [1], [10], [32].

Komori and Shirai (in [19]) introduced a version of the weighted Morrey space
MP(w,v), which is a natural generalization of the weighted Lebesgue space LP(w).
The space M 5:;(11), v) could be viewed as an extension of the weighted Morrey space
MP(w,v) when a = 0 or V = 0 and s = oo, § = 1/¢q — 1/p. Meanwhile, when
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v=dz,s=o00and a =0,0 =1/q—1/p, we have M(’;:Z(w,v) corresponds to the
weighted Morrey space M (w, dr) introduced by Samko in [25]. In the case s = oo

and w = v = 1, the space M}’;(w,v) is the Morrey space LZ’;?}’(R") defined in [30]

by Tang and Dong.
The main purpose of this article is to study the following operators associated
to L:

> the Riesz transforms associated to £ given by: VL'V | VL£~1/2 and £71/2V;
> the L-fractional integral operator defined by:

Isf(x) =LA f(z) = /Oooe_wf(x)tﬁﬂ_1 dt for 0 < f < n.

The following theorems are the main results of this paper.

Theorem 1.1. Suppose that V € RH,,. Let T be one of the Riesz transforms
VL'V, VL2 and L7V/2V. Let 1 < p < s < 00, a € (—00,00), 8 € [0,1/p) and
w € Ap.

(i) Ifp > 1, then T is bounded on M};(w).
(ii) If p =1, then for every t > 0,

w(B) (1 + rpmy(zs)) w({z € B: [Tf(z) > 1}) < %IIfIIM;;w)

holds for all balls B.

Theorem 1.2. Suppose that V € RH,, and b € BMO. Let T be one of the Riesz
transforms VL'V, VL /2 and L71/?V. Let 1 < p < 5 < 00, a € (—00,00),
0 €[0,1/p) and w € A,.

(i) If p > 1, then [b,T] is bounded on M} (w).
(ii) If p =1, then for every t > 0,

W(B) 1+ ramye) il € B: b1 > < ce (D]

holds for all balls B C R™.

Theorem 1.3. Suppose that V € RH,, /5. Let f € (O,n), 1 <p < n/B, a €
(—00,00) and 1 < s < 0.

(i) If1/qg = 1/p— B/n, 6 € [0,1/q) and w € A, ,, then Iz is bounded from
M5 (wP, w) to M25(w9).
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(ii) Ifg=n/(n—p), 0 €[0,1/q) and w? € Ay, then for every t > 0,

. . C
w9(B) 9(]_ +rgmy(zg))*wi({z € B: |I5f((£)| > t})l/q < ?||f||Mi:69(w’wq)

holds for all balls B.

Theorem 1.4. Suppose that V € RH,,/, and b € BMO. Let § € (0,n), 1 <p <
n/B, a € (—oo,00) and 1 < s < 0.
(i) If1/g = 1/p— B/n, 6 € [0,1/q) and w € A, 4, then [b,Ig] is bounded from
M5 (wP, w) to MJ5(w9).
(ii) Ifg=n/(n—p), 0 €[0,1/q) and w? € Ay, then for every t > 0,

wh(B) (1 + rmmy(an))"w({x € B: | 151 () > Ve < oo (Y|

L'log (@)
holds for all balls B.

In [30] Tang and Dong established the boundedness of Schrodinger type operators
as Riesz trasform, fractional integral and their commutators on the weighted Morrey
space LZ’;?,”(R”). In [16], [27], [34] the authors proved the boundedness of singular
integrals related to Schrédinger operators on R™ and their commutators with BMO
functions. In this sense, our results in Theorems 1.1, 1.2 and 1.3 improve those in [30]
for Riesz transforms, L-fractional integral and their commutators in our new space
M 5:;(11), v). Moreover, our results extend those of Samko and Komori-Shirai to new
Morrey spaces; see Theorems 1.1, 1.2, 1.3, 1.4. It is worth noticing that our endpoint
inequalities are new even in the particular case w =v = 1.

The paper is organized as follows. First, we introduce some preliminary results
in Section 2. Next, Section 3 and Section 4 are devoted to proving the main the-
orems. Finally, the Calderén-Zygmund inequalities for Schrodinger type equations
are established in Section 5 as the applications of the main theorems.

2. PRELIMINARIES

We begin this section by introducing some notation that will be used in the sequel.
We define the set R™\ E' as E€ and its characteristic function as xg. Throughout the
paper, we always use C and ¢ to denote positive constants that are independent of
the main parameters involved but their values may differ from line to line. We write
A < B to denote A < ¢B for a positive constant ¢ independent of the parameters
involved. We say that A ~ Bif A < B and B < A. For each ball B(x,r) C R™ we set
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AB := B(z,Ar), So(B) = Band S;(B) = 2/B\2"'Bfor j € N. For 1 < p < oo let p/
be the conjugate exponent of p, i.e. 1/p+1/p’ = 1. Throughout this article, we denote
w(E) := [, w(z)dz for any measurable set £ C R" and log™ ¢ = max{logt,0}.

We recall the definition of Muckenhoupt weights. For a weight w we mean that w
is a non-negative measurable and locally integrable function on R™. For 1 < p < oo
we say that w € A, if there is a constant C' such that

(I%I/Bw(m)da’> (ﬁ/}gwu@n@dxf_l <

for all balls B C X.
For the case p = 1 we say that w € A; if there is a constant C such that for all
balls B C X,

|—;| /B w(y) dy < Cu(x)

for a.e. ¢ € B.

Moreover, we set Aoo = | A4p.
pE[l,00)
The weight w is said to belong to reverse Holder classes RH,, 1 < ¢ < oo if there

is a constant C such that for all balls B C X,

()<

When g = oo, we say that w € RH, if there is a constant C' > 0 such that for all
balls B C X,

w(z) < |T€| /B w(y) dy

for a.e. x € B.
For 0 > 1 and a weight w we say that w € D, if there exists a constant C' > 0
such that
w(tB) < Ct"w(B) Vt>1.

Note that w € A, implies that w € D,,.
Now, we recall some basic properties on the Muckenhoupt weights.

Lemma 2.1. The following properties hold:
(1) Ay Cc A, Cc Aj for 1 < p< g<oo.
(2) RHx, C RH, C RH,, for 1 <p < ¢ < 0.
(3) Ifwe A,, 1 < p < oo, then there exists € > 0 such that w € A,_..
(4) If w e RHy, 1 < g < 0o, then there exists ¢ > 0 such that w € RH..
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(5) A= U A4, C U RH,.
1<p<oo 1<p<Loo
(6) There exists 6 € (0,1) such that for any ball B C R™ and any measurable

subset E of all B,

w(E) _ (B[
(2.1) R (E) .

To establish the weighted inequality for fractional integrals, we need to introduce
class A, ,. We say that a weight w belongs to the class A4, , for 1 < p < oo and
1 € g < o if there is a constant C' such that for any ball @,

() G frrion) <

Notice that w € A, 4, then

1 a/p )1/q< 1 —p'/p >1/pl
<| | /w (z)dx ] /w (x)dx <C
for any ball Q.

The connection of A4, ; and A,, is showed in the following lemma.

Lemma 2.2. Suppose that 0 < § <n, 1 <p<n/a and 1/q=1/p— /n. The
following statements are true:

(i) If p > 1, then w € A, 4 implies w? € A, and w P e Ay
(if) If p=1, then w € A; 4 if and only if w? € A;.

Next, we introduce some notation and recall some properties of the auxiliary
function my (z). We need the following lemma about my(z), see [27].

Lemma 2.3. SupposeV € RH, with q > 5. Then there exist positive constants C
and kg such that

(i) my(z) ~my(y) if [z — y| < C/my(z),
(ii) my(y) < C(+ [z —ylmy(x)omy (@),
(iit) my(y) = Cmy (@) (1 + |z — ylmy(z))~Fo/FoF1),

We next recall some definitions and basic facts about Orlicz spaces needed for
the proofs of the main results. For further information on this subject we refer the
readers to [24]. A function A: [0,00) — [0,00) is said to be a Young function if it
is continuous, convex and strictly increasing, satisfying A(0) = 0 and A(t) — oo as
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t — oo. Two important examples of Young function are A(t) = t?(1 + log™ t)P with
some 1 < p < oo and A(t) = e'. Given a Young function 4 and w € A, we define
the A(w)-average of a function f over a ball B by means of the following Luxemburg

14wy, = inf{/\>o; ﬁ/BA(V(;?H)w(x)dxg 1}.

When A(t) = t(1 + log™ t), this norm is denoted by Il 2 10g L(w),B- The comple-
mentary Young function of A(t) is A(t) = e’ with mean Luxemberg norm denoted

norm:

by ||lexp L(w),B- For w € Ay and for every ball B in R", the following generalized
Holder inequality in the weighted setting

1
(2.2) 5 /B F@)g(@) (@) dz < ClLFllL10g w).5 19l lexp Lw). 5

holds (see [33]).
Note that ¢t < t(1 + log™ t) for all t > 0, then for any ball B C R” and w € A,
the inequality

(2.3) ﬁ /B @) w() dz < [1f | 2iog 20wy

holds for any ball B C R™.

When w = 1, we write [|||L10gL(w),B and |||lexpL(w),B for [|-|L10gz,B and
Illexp ., B, respectively for brevity.

We denote by M i’leo’g 1 (w, v) the generalized weighted Morrey space of L log L type,
the space of all locally integrable functions f defined on R"™ with finite norm

”f”Mi:fogL(ww)

1,0, . .
ML logL(wav) = {f € Llloc(w)' ”f”Mivl"ov:L(w,U) < OO},

where
11 ag3 e,y 1= SPAL+ 7m0 ()" 0(B)B) ™ 10w .-

Here the supremum is taken over all balls B in R™. If v = w, then we denote it by
1,0 .
Mo 1 (w) for brevity.
Let b € BMO, f € L{_(R"), we define the commutator of an operator A:
Llloc(Rn) - Llloc(Rn) by [ba A]f = bA(f) - A(bf)
Note that if

Af(x) = . H(z,y)f(y)dy,
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then

n

b, Al (x) = / (b() — b(y) [ H (1) (y) dy.

The bounded mean oscillation function space BMO was first introduced by John
and Nirenberg (see [17]) in the study of regular solutions of elliptic PDEs. A locally
integrable function f will be said to belong to BMO if

1
[ fllBmMo = sup —/ |f(y) — fBldy < o0,
B>z |B| B

where fp = ﬁ S5 1f(2)|dz.
We recall some basic facts on BMO function, which can be easily found in many

references.

Lemma 2.4. Let b be a function in BMO.
(i) For every ball B in R™ and for all j € 7,

|boi+1p — bp| < C(5 + 1)||bllBMO-

(ii) For 1 < g < oo every ball B in R™ and for all w € A,
1/q
(/ b(z) — bp|%w(x) dx> < C|bllsmow(B)M4.
B

The above lemma is essentially taken from [28], [31].
We will follow the next statements given in [33].

Lemma 2.5. Let 1 < p < oo, wP € A1, b € BMO and B be a ball. Then for any
y € B and any positive integer m,

1 1/;0
— [ |b(x) - bp|"PwP(2)d
<|2kB| /m| () — bs|™Pu? (2) )

Yy

Lemma 2.6. For any b € BMO, B and w € A,

Hb - bBHexpL(w),B < HbHBMO
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3. RIESZ TRANSFORMS AND THEIR COMMUTATOR

Shen [27] showed that the Schrédinger type operators VL 'V, VL2 and
L1/2V are the standard Calderén-Zygmund operators provided that V € RH,.
The following lemma is essentially taken from [27].

Lemma 3.1. If V € B, with ¢ > n, then for every k there exists a constant C
such that

c 1
(1 [z —zl/ (@) |z — 2

(3.1) |K (z,y)] <

It is known in [8] that there exists a non-negative potential V € RH, with
q < n such that these operators VL'V, V£~1/2 and £-/2V may be not bounded
on LP(R™) for all 1 < p < oo. Hence, in the rest of this paper, we always assume
that T is one of the Schrédinger type operators VL 'V, VL2 and £-'/2V with
V € RH,,.

In 1974, Coifman and Fefferman [7] proved the L?(w) boundedness for Calderén-
Zygmund operator which will be satisfied if w € A,. When b € BMO, Alvarez [2]
proved that the commutator [b, T] is bounded on the weighted Lebesgue space L?(w)
with p € (1,00) and w € A,.

Lemma 3.2. If P is a Calderon-Zygmund operator, then for any w € A,
(1 < p< ), P is bounded on LP(w). In addition, if w € Ay, then

c
w({z € R™: |Pf(2)] > A}) < Tl

The following lemma is the special case of Theorem 4.3 and 4.4 in [29].

Lemma 3.3. Let V € RH,, and b € BMO.

(i) Ifwe A, (1 <p < o0), the operator [b,T] is bounded on LP(w).
(ii) Ifw € Ay, then there exists a constant C such that for every f € L] (R") and
A>0,

w(fz € R": b, T1f@)| > ) <€ | o
where ®(t) = t(1 4+ log™ t).
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To prove the main theorems, we need the following technical lemma.

Lemma 3.4. Let w € A, (1 < p < o0) and f € LP(w). Then we obtain that

/Q 1£()]dz < CIQIw(@) 7| Fxollrw)

holds for all balls Q C R™.

Proof. We consider two cases.
Case 1: If p=1, then w € A; implies that

ECPEER

for all balls @ C R™.
Case 2: If p > 1, then the Holder inequality and A, characterization imply that

@ Jo e [|Q|(/ sorecae) ([ )

w(Q) || fxallLr(w)

for all balls @ C R™. The proof is finished. O

Next, we will prove the first main theorem.

Proof of Theorem 1.1. Let f € M7 j(w). We fix y € R™ and r > 0. Let the ball
B = B(zp,r). We write
[ =FfxeB+ fxese-=fi+ f
By z € B, z € S;(B), we obtain |z — z| ~ 2/r. Combining this with (3.1), for all

m € N we conclude

(3-2) T (f2) () </ 5 K (2, 2)[| f(2)| d=

c

1 1
: Z/s o T Tz fa— o O

]:2 J

2

AN

> T B Ly 1%

<.

We invoke Lemma 3.4 to deduce that

(3.3) /( G2 S D20+ Prmye) 0 B) o
2B)c =
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Thanks to Lemma 2.3, we obtain

1+ ZijV(xB)(l + rmv(xB))_kO/(kOH)]_m

(3.4) (1+29rmy(x))™™ <
< (1 + 2jrmy(x3))_m/(k°+1).

Thus

(3.5) 2)| Y (1 + 2rmy(p)) "™ F w2 B) TP fxei Bl Lo (w)
Jj=2

We then obtain that

(3.6) [Tf(2)] S IT(f)(@)|+)_(1+2rmy(es)) ™ D w(@ B)™VP|| fxo1 5]l o(w)
§=0

for almost every = € B.

We consider two cases.

Case 1: p > 1. Taking the LP(w)-norm on the ball B on both sides of (3.6), we
obtain

IT(f)xBllLrw) S ||fXB||LP(w)

+ Z B)VP(1 + 2rmy(zp) ™ Rt w(27 B) V| Fxai gl Lo gw) -

Hence, multiplying both sides of the above inequality by w(B)~%(1 +rmy(z5))%,
we obtain

w(B) (1 + rmy(x8))* 1T (f)xB Lr (w)
S I xesllLe@yw(B) (1 + rmy(zp))”
+) (L +rmy(ap)*w(B) P70 (1 + 2rmy (2p))™ * Vw2 B) 7P| £ X205 o w)

=0
=Ji + Jo.

We estimate J;. Note that if o < 0, then

(L+rmy(zp))* = (1+rmy(zp))~ (24 2rmy(zp))~°
2—0(

s (1+2rmy(zp))~>"
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Otherwise, we observe that (1 + rmy(zg))* < (1 + 2rmy(zp))°.
Thus,

(3.7) (I+rmy(zg))* < (14 2rmy(zp))”

for all o € (—00, 00).
This implies that

J1 < w(ZB)fe(l + 2va(a?3))a||fX23||Lp(w) (

Sw2B)"(1 + 2rmy(2p))*| fx28] Lo (w),

where we have used the doubling property of w in the last inequality.
Next, we will consider Js. If a < 0, then

1
(I+rmy(zp))—@

(14 rmy(zp))* = <1< (14 2rmy(zp))e.

Otherwise, (1 +rmy(zp))® < (1 + 27rmy(zg))el.
This implies that

(14 rmy(zp))® < (1 + 27rmy(zp))!
for all @ € (—o0, 00), and thus

(1+7“mv($3))a < (1+2j7’my($3))‘a|
(14 2irmy(xg))m™/ (ko+1) = (1 4 2irmy (zp))™/ (ko+1)
(1+ 29rmy(xp))*
= (]_ + 2j7ﬂmv((y3))m/(k0+1)*‘a|*a ’

Let m € N such that m/(ko + 1) — |a| — a > 0. We have

(1 + rmv(xB))a < (1 + 2j7’mv($3))aa

3.8 - <
( ) (]_ + QerV(xB))m/(kO'i‘l)

which implies that

J2 S ) (L+2rmy(ep)) w(B)P~w(2 B) V7| f x5l Lo (w)

Ir

<
I
o

w(B)

< ,
~ w(29B)

1/p—6
)" Il

IF

<
I
o

1+ 2J’rmv(x3))aw(2i3)*9(
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By combining 1/p — 6 > 0 with (2.1), we obtain
Jo 5 27000 (1 4 2 rmy () w (27 B) | f X215l Lo (w)
§=0

and hence

Il (1+Z2 750/p-0) )|f||Mw

7=0

It then follows from 1/p — 6 > 0 that

1T flarzos ) S 1 lagzs ) -

Case 2: p = 1. The proof is very similar with a small modification: replacing the

above appropriate estimate with the corresponding weak estimate (see Lemma 3.2).

O

The strong-type estimate and the weak-type Llog L estimate of the linear com-

mutator [b,T] in our new weighted Morrey type space associated to L = —A 4+ V

will be proved in Theorem 1.2.

Proof of Theorem 1.2.  Let f € M7 j(w). We fix y € R™ and 7 > 0. Set

B := B(zp,r). We write
f=fx2B+ fx@B)--

We consider two cases.

Case 1: p > 1. By the linearity of the commutator operator [b, T|, we write

wt(B) 1+ ) ([ 7 |pw<>dx)1/p

< wI(B)~(1 + rmy(zp)) (/ b, TI(f1) (&) P >dx>1/p

+w!(B)7(1 4+ rmy(zp)) </|bT f2)(z)Pw(z)d )p.

Thus

1[0, TI ) agz (wy < N0 TICFD N ag2: oy + 16 T2 aa25 () 7= 1 + 2.
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We next give the estimates of J; and Js. It follows from the weighted LP(w)-
boundedness of [b, T, that

w!(B)?(1 4+ rmy(u (/ |[b, TV(f1) () [Pw(z )dx)l/p

1/p
<w(3)_9(1+7“mv(u))a</2 If(w)l”w(ar)dx) -

B

< Ibllmmo (%)aw@fs)@a 2y ( [ 1@l dx)w.

Using the doubling property of w, we get

B9 w0 () ( [ TP >dx>“”

1/p
< [bllnow(@B) (1 + 2rmy(azp))” ( | lr@puta) dx) |

B

It is not hard to see that
116 TY D aazg ) S 1 a2 )
For all m € N,
[, T](f2)(z)] < /( b(z) = b(2)||K (2, 2)|[f(2)| dz
—b3|/ K (2, 2)[1£(2)] d

+ / 1b(2) — ba| K (2, 2)| ()] d=
(2B)°
S Qi(x) + Q2(x)

and we arrive at

10, T2l ar 5wy < N1Qullnz g wy + [1Q2llarms
As z € B and z € S;(B), |z — z| ~ 29r. We deduce from (3.5) that

[e’e) ) o 1
Qi(2) S |b(x) = bs| Y (L +2rmy(z5)) /(k"“)WIIfX2JBIILP<w>~
§=0
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Consequently,

w!(B)?(1+rmy(zp))” (/B Q1 (z)[Pw(z) d$>1/p

Swi(B) (14 rmy(zp)* Y (1+ 2erv(x3))*m/<ko+l>m
j=2
1/p
X HfXQJ‘BHLp(w) (/ |b($) — bB|pw(:L') dx) .
B
By applying the second part of Lemma 2.4, we conclude
1/p
wlB) (14 rnen)” ([ Qo Pute) )
B
[eS) ' 1
5 ’l,U(B)_a(l + rmv(xB))o‘ Z(l + 2]va($3))am
j=0

% |1 X218l Lo () 1Dl BMOW(B) /2.

This implies that

w(B)~(1 4+ rmy(zp)) (/ |Q1(x)[Pw(x dx> "

0o
< 3+ Yrmy (@) w(B)YPw(@ B || fxaip | rw)-
7=0

By the same estimate as T'(f2) in (3.5), we get
(3.10) 1Qullner s wy S I llar225 ()

Next, we will estimate Q2. Using (3.1) again leads to

Q)< [ E) -~ bsllK )

G 1 1
< - .
N;)/SJ(B) T @y ey o) ~bellf () e
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We provide an analogue of (3.5) to obtain

Qa(x) < Z(l+2jrmv(x3))_m/(k°+1)(2jr)_"/ |b(2) — bos || f(2)| dz

= 2B

+ Z(l + 29 rmy (z5)) =™ Rt (297) = by; g — bp| |f(2)|dz
= 2B

= Hy + Hy

for almost every = € B.
Applying Holder inequality, we come up to

1/p
Lo = ballfelas< ([ 56 bwal v )0 Ivaali:
2B 2B
The second part of Lemma 2.4 together with w /7 € Ay gives us

/, 1b(2) = basgl|f(2)] dz 5 [1bllmastow ™ /P(2 BYP' | fxa1 5| oo -
2B

Moreover, taking into account that w € A, we get

/, 1b(2) = bai [ £ (2)] dz S 12/ Blw(2/ B) /7| fx2i 8| L (w)-
2B

Therefore

Hy S |bllemo (1 + 27rmy (zp)) ™™ ®otw (27 B) ™7 fxaipll Lo (w)-
=0

On the other hand, observe that

1/p
w(B) (1 + rmy(zp))® </B |Hq[Pw(x) dx) dx
Sw(B)/P70(1 + rmy (zp))*

X Z(l + 2 rmy (zg)) "™ (ot D)
=0

1

W”.fXQJB”LP(w)-

Using estimate (3.5) for T'(f2) we arrive at

(3.11) [ arzos oy S 1S laazs -
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Combining Lemma 3.4 with the first part of Lemma 2.4 yields

oo
Hy S |bllsmo Y 3(1 +27rmy(p)) ™ *otDw(2 B) ™| fxas g Lo w):
=0

Using the same argument as in (3.5) gives us

w(B)?(1 4+ rmy(zp)) (/ |Ha[Pw(z dx) "

S Z m(l + 2/ rmy(z))*w(2’ B) || fx2i Bl Lo (w)-
=0

00 )
The summability of the series ) sma—sy due to 1/p — 60 > 0 yields
7=0

(3.12) [ Hzllarzs wy S I 1aez s (-

Hence, estimate (3.11) together with (3.12) ensures that

1Q2llarzs (w

a, 9

< Clfllaez s w)
Combining this with estimate (3.10), we conclude
16, T2 arz s wy S W 1nz g -

Case 2: p = 1. For any given 7 > 0, by the linearity of the commutator opera-
tor [b, T], we have

w(B)~(1 +rmy(zp))*w({z € B: [b,T]f(z) >t})
<w(B)~(1 +rmy(zp))*w({z € B: [b,T]fi(z) >t/2})
+w(B)~(1 +rmy(xp))*w({x € B: [b,T]f2(x) > t/2}) := R1 + Ra.

We first consider the term R;. Using Lemma 3.3, (2.3) and the fact that ¢ < ®(¥)
we obtain

(3.13) Ry S w(B)"?(1 + rmy(zp))® /QB ('f(x ) (z)

t
< (L2 1+ arm(om) 222 |\<I>(m)|\uogL<w> y
S “Q)(%)HMIQ"‘ (w)’

Llog L

where the second inequality comes from (3.7).
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We now turn to deal with the term Rs. To proceed, we use the following inequality:

[0, T fo(x)] < [b(x) = b||T fo(x)| + |T((bs — b) f2)(2)]
and thus, one can further decompose Ry as

Ry Sw(B)~’(1+rmy(zp))*w({z € B: |b(x) = bp||T f2(x)| > t/4})
+w(B)~(1+rmy(zp))*w({z € B: |T((bg — b)f2)(x)| > t/4})
=J1+ Jo.

It follows from Kolmogorov inequality that
Ji S w(B) (L +rmy(ep))*t! / [b(x) = bB||T fo(z)|w(z) dz
B

We then invoke estimates (3.2) and (3.4) to deduce that

oo

w( l—l— rmy(xp))® 1 / /
N3 i b(z)—b der.
t ; 1+ ZJTmV xB))m/(ko-i-l) (er)n i B | B|w ) x

On the other hand, we obtain the following estimate thanks to Lemma (2.5):
/ |b(x) — bp|w(z)dz < ||b||pmo|B| inf w(y).
B yeB

Combining the above estimate with (3.8) and the fact that ¢ < ®(¢), we get

Ji <ZQ Ingy (1 4+ 22 rmy(xp))® /

2wp 1

<Z _jn( w(2’ B)) (ZjB)_a(l—l—Zijv(J?B))a /JBfl)(lf(Z)l)w(z)dZ

29

8

A

2—jn(1—9)(1_|_QijV(xB))aw(ZjB)l_aH‘I)(m>HLI L(w),2i+1B’
og w), .

<
(=)

where the validity of the third inequality comes from Lemma 2.1.
Thus,

|/ 1-0 |f]
5 < Hq>(T)HM1ML( )22 in(1-0) < Hcp( Mz,

where the summability of the series is due to 1 — 6 > 0.
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Taking into account Kolmogorov inequality leads us to
Jo Sw(B)~*(1+rmy(xp))*t~! / IT((bs = b) f2)(z)|w(z) dz
B
We estimate T'((bp — b) f2)(z) similarly as in (3.2):

IT((br = b)f2)(2)] < /(ZB)C | K (, 2)|[b(2) = bp||f(2)| dz

oo

1 1
(1 + 20rmy (zp))™ Rt D) (277 /QJ_B [b(2) = bgl[f(2)| dz.

J=0

It follows from (3.8) that

J
Jo Sw(B)'"Y w2/ B)” 1+2j7’mv($3))au}|$]§|)/ W@-hﬂ@d
; 2i B

We deduce from (3.8), w € Ay, and ¢t < ®(¢) that

S w(B)' 3 B) 1+ Py o) [ v = oafo (K2 a:
< w(B)" O: w @) (1 Prm(en))® [ p) = b ple (L g as
(B 1920 w@B) 1+ rm(en)oa — bl | o(L)uge)a:
192 (29B)"1 (1 + 2rmy (z5))” /QJ_B|b(z)—b2jB|c1>(|fiz>|)w(z)dz

+ ||b||BMOw 1 [ ij 2JB 1 + 2]va(xB)) /QB(I)<|f(Z)|)w(Z) dz

= K + Ks.

We next use (2.2) to estimate K as

]
Ky S (B)' S (0L + rmy ()b~ b s o (L) )| —
7=0

We now combine Lemma 2.6 with Lemma 2.1 to obtain the following estimate

& % ool ()] g(wﬁﬁ))l_a

LlugL

LGOI e

LlugL
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By the summability of the series due to 1 — 6§ > 0, we obtain
(3.14) K < H@(m)u .
t Mpiget (“’)

To estimate (or to deal with) K5, we proceed as follows. Using the first part of
Lemma 2.4 together with the facts w € A; and ¢ < ®(¢), we deduce that

K> Sw(B)'™* > j(1+ Y rmy(2p)) w(2/ B) ™! /B ‘I’(@)W) dz

=0

NI w(B) N g (1]
SJZ%M+2”rmv<x3>>“(w(2j3)) w(@'B)' |0 (2) 1o 1(uy.205
<Jo(2))

( t ) My fO:L(w)]zz:O 246(1-6)

Thus,
f]
3.15 K 5Hq> 171 H
(3:19) 5 (%) MELE, ()

We then arrive at the following estimate thanks to (3.14) and (3.15):

|/l
B3 H(I)( )H Lhe (w)
L log L
Combining this with (3.14) we obtain
r 5 (P,
t ilgo;L (’LU)
and thus complete the proof of the theorem thanks to estimate (3.13). O

4. FRACTIONAL INTEGRAL AND ITS COMMUTATOR

In 1974, Muckenhoupt and Wheeden ([22]) studied the weighted boundedness of I
and obtained the following result.

Lemma 4.1. Let 0 < S <n,1<s<fB/nandl/q=1/s—p/n. Ifw € A, q, then

15 fllLa(way < CllfllLr(wr)-

Suppose further that w? € Ay with ¢ = n/(n— ). Then there exists a constant C
such that for all t > 0,

C
wi({x € R™: [1£(2)] > )"/ < TN f e
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Now, we will prove the main theorem about the weighted strong-type and weak-

type estimates for fractional integral Ig.

Proof of Theorem 1.3. We represent f as
[=TIx2B+ fxepe = fi+ f

Consider two cases.
Case 1: w € A, 4. It follows from the linearity of the fractional integral Iz that

w(B) 0+ rmv(en) ([ 11r(e |Quﬂ<>dx)1/q
< w81+ rmv(ea) ([ 15t dx)l/q
+w!(B)~ (1+rmv xg)) (/ |1g fo(x) 9w (x )dx>1/q

=J1 + Jo.

We next estimate J; and Jo. Indeed, the weighted (LP(w?), LP(wP))-boundedness
of Iz (see Lemma 4.1) gives us

I S wi(B)~(L+ rpmy(p))” ( | 1r@prere) dx>1/p

(o

B

)awq(QB)’e(l + 2rgmy(z5))° < /2 |f(@)|PuP (z) dx>1/p.

B

Therefore we obtain from the doubling property of w? that

1/p
(4.1) J1 Swi(2B) (1 + 2rpmy(zp))® < /2 |f(2)[PwP (z) dx) :

B

According to the proof of Theorem 1.3 in [30], we claim that for z € B(u,r),
y € B(u,2r)° and for any m € N, there exists C,,, > 0 such that

° C 1
4.2 327k (z,y) | dt < m .
(4.2) / k@I S T i @ T — g7

When z € B and y € S;(B), |t — y| ~ 2/r. Combining this with (3.4), for all

m € N we have

@3) e ) / {1k, e dy

1
/2 17y,

1 + ZJerv(xB))m (2j7“)"_6

\

(23)‘"‘

QMg
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By Holder inequality and A, ;, condition on w, we have

1 1 ro /
4.4 — < ; oo P (29 B)Y/P
( ) (2]7“)'”7'3 /QJB |f(y)| dy ~ (237’)7175 ||fX2 B”L (wr)W ( )

21 B|1/a+1/p’ o
S |(2j|w||fxzuf3||Lv(wv)wq(2]B) i

S I x2i8] oguryw? (27 B) 711,

Thus,
45)  [Ts(f2)(@)] S D (1 +2rmy(xp) ™ V| fxoi gl Loun w? (2 B) 714,
7=0
And hence
T2 S wi(B)~ 00N (14 2T rmy (@) | f X2 8 Lo (wryw? (27 B) 9,
j=0
which implies that
e . .
Jo S wl(B)" TN (14 2rpmy(xp))® || fx2 8 Lo (wryw® (27 B) 4
j=0

oo

1/q—6 . )
Z(wq >7E) L (Wt 2y a0)) 0 (2B s v
J=

Using 1/g — 6 > 0 and Lemma 2.1 yields

oo

1 . i
Jo S Z m(l + 2rgmy(2p))*w (27 B) || f X2 Bl Lo (wr)-
=

It then follows from (4.1) and the above inequality that

1 sz sy S (1+Zz 00 )l aggan

7=0
Since 1/qg — 6 > 0, we get
L8 fllar25 way S 1f 125 or ey

Case 2: w™("=F) € A;. The proof for the case w € A, , is similar and hence we
may skip it. (I
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In 1991, Segovia and Torrea [26] proved that [b, I] is also bounded from LP(w?)
to LY(w?), 1 < p < n/B, whenever b € BMO.

Lemma 4.2. Let 0 < 8 < n, 1 <p<n/B,1/¢g=1/p—F/n, and w € A, ,.
Suppose that b € BMO. Then the linear commutator [b, I5] is bounded from LP(w?)
to L1 (w?).

In 2007, Cruz-Uribe and Fiorenza [9] discussed the weighted endpoint inequalities
for commutator of fractional integral operator. This result is showed by the following
Lemma.

Lemma 4.3. Let 0 < S <n,p=1,q=mn/(n— ) and w? € A;y. Suppose that

b € BMO. Then for any given A > 0 and any bounded domain 2 C R" there is
a constant C' > 0 (which does not depend on f and Q1) and A > 0 such that

wi({z € R™: |[b, Is]f(z)] > AD)V4 < c/gq»(@)w(x) da.

The strong-type estimate and the weak-type Llog L estimate of the linear com-
mutator [b, I5] in our new weighted Morrey-type space associated to £ will be proved
in Theorem 1.4.

Proof of Theorem 1.4. Let f € MP;(wP,w?). Fix y € R™, the ball B and write

f=fx2B+ fx@B)e-

Consider two cases.

Case 1: p > 1. Using the linearity of the commutator operator [b, 3] we can write

(@014 ramy(en)® ([ 1100 @0 >dx>1/p
<wI(B) (1 +rpmy(en)) </ BTl @07 >dx>1/p
() 01+ ramy(ea) ([ b1l @) )/
T

116, 1s] ()| ar2-5 ey < M, Ia) ()l ag2 s way + 11105 Il (F2)llaa2s o)
=Ji + Jo.
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We next estimate J; and J. It follows from the weighted LP(w?)— L(w?) bound-
edness of [b, T] that

1/p
wI(B) (1 + rpmy(zp))® < [ sl @ o) dx)

1/p
<wq<B>9<1+erv<xB>>a(/2 If(x)l”w”(x)dx) 15l1mm0

B

< (B wrom) 2+ 2ramten) |

1/p
@) () dx) |

B

We obtain from the doubling property of w that

(46)  w(B)"(L+rpmy(ws)) (/ |[b, Ig] (f1) () ["w () d )1/p

1/p
swq@B)G(HermV(xB))a( / If(x)l”w”(x)dx) |

B

It is not hard to see that
(47) Ji 5 |‘f|‘M§:§(wl’,w‘1)'

By (4.2), for all m € N we have

i@ < [ b s ([ e ) dt) )l

2
1
< [b(z) — bp| eny (L+ |z — 2[my (@)™ [z — z|" 51/ (2)[dz
1
+/(QB)° |b(z)_bB|(1+|x—z|mV(x))m = z|” 51/(2)|dz
5@1“‘@2-

And thus

[0, Is] (F2)llar2 5wy < NQllare s way + 1Q2llare s (wa)-

Since z € B and z € Sj(B), |z — z| ~ 27r. It follows from (4.5) that

Qu(z) S Ib(x) = bp| Y (1 + 27rmy (u) ™™ FoFD|| o) gl 1o ryw? (27 B) 1.
j=0
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Consequently,
1/q
wt(B) 0+ ramy(ea) [ @) i)

)7 (142 remy () X2l L wryw? (2 B) 916 = bp]| Lawe)-
7=0

Applying the second part of Lemma 2.4, we get
1/p
W (B) (14 rpmy(en)® ([ Qa0 o)
B

oo

1/q—6 . )
Z(wq 29 B) ) (1+27rpmy (25))*w(2'B) ™| fx2i 5]l Lo ().
=

This implies that
1/q
wt(B) 0+ ramy(ea) [ Qo) ar

oo
1 ; i o\ —
S E 0: 276(1/q—0) (1 + zjerV(xB))awq(sz) t9||fXQJBHLP(wP)
]:

o0
S ||f||M 5 (wp wa) Zz*ﬂs(l/qfe).

Thus, we obtain

(4.8) Q1 ar2:s (way S IF11nezs we wa) -

Next, we will estimate (). Using (3.1) again leads to

1 1
QQNZ/ s;3) (L4 |z = zlmy(z))™ |x_z|nfﬂ|b('z)_bB||f(Z)|dz,

We provide an analogue of (3.5) to obtain
> .
QS S (14 2rpma xB))—m/<ko+1>(2J7~)6—"/ 1b(=) — by || £ ()] d=
= 2B

—|—Z(1+2]7“Bmy(x3)) m/ kot 1) (231) A= by, —b3|/ (2)]dz
3=0
= Hiy + Hy

for almost every = € B.
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Taking Holder inequality into account, we get

1/p’
/ Ib(Z)—szBIIf(Z)Idz<( [ b -baslw (z)dz) 1 xor5lloman)-
27 B 2i B

The second part of Lemma 2.4 together with wP € A, implies that

1/p' ‘ ,
< [ @) = bl ) dz) < blleaow ¥ (29B)V7
2/ B

< |2jB|1/q+1/p/wq(2jB)—1/q.
Since w € A, 4, we have
/M 1b(z) — bas gl ()] dz S (277)" P (27 B) /9| fxa1 5| 1o (-
Therefore

Hy < Z 1+ 27rgmy(zp)) "™ Rt (27 B) 9| fXo5 5|l Lo (wr)-
7=0

Using the same argument as in (4.5) we can deduce
(4.9) [H ([ ar25 way S N aazs wr aws) -
Combining Lemma 3.4 with the first part of Lemma 2.4 yields
o . .
Hz S |bllsyo Y j(1+ QJTBmv(fUB))fm/(k”l)(2]7“)57"/_ £ (2)| dz
= 2B

(o]
S i+ Prpmy ()™ FD| fxos gl Loy w (27B) 719,
=0

where (4.4) is used in the last inequality.
Thus, we obtain

wt(8) 1+ rmy ) ([ ot o) dm)l/q

SwI BV Y (L + 2 rsmy ()| £ X1 8l Loy w? (27 B) 7.
§=0
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Using the same argument as in (3.12) yields

(4.10) [Hz | a2 (way S WS aazs e wa)-

It then follows from (4.9) and (4.10) that

Q2 a2 (wey S W FIa1225 (wr,we)-

Combining this with estimate (4.8), we conclude

(411) J2 S HfHMp o (wP wd)-

By (4.7) and (4.11) we get

1[0, La) () nr2:5 (way S N 1arz25 e wa) -
Case 2: p = 1. For any given 7 > 0, by the linearity of the commutator opera-
tor [b, T], we write
wi(B)~(1 4+ rmy(zp))*wi({z € B: b, I]f(x) > t})"/1
<w!(B)’(1 +rmy(zp))*w({z € B: [b, Ig) fi(z) > t/2})1/q
+w?(B)~%(1 + rmy(xp))*w!({x € B: [b, Is]fa2(x) > t/2})/
= R1 + Rs.

We first consider the term R;. Using Lemma 4.3, (2.3) and the fact that ¢ < ®(t),
we get

(4.12) Ry Swi(B)~ (1 +rmy(zp))* / (lf(: |

S (qu(f;)) (L+2rmy(@p))® gﬁ;e H(I)( |f|>HLlogL(w) 2B

f
S (S) larze, oy

where the second inequality comes from (3.7).

We now turn to deal with the term Rs. To proceed, we use the following inequality:

|[b, 15] fa ()] < [b(x) — bp|[Isfa(x)] + [1s((bp — b) f2)(z)]|
which helps to further decompose Ry as

Ry Sw(B)~?(L+rmy(zp))*w'({z € B: |b(x) — bp||Is f2(x)| > t/4})
+w!(B)~(1 + rmy(2p))*w!({z € B: |I5((bp — b) f2)(x)| > t/4})
=J1+ Jo.
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It follows from Chebyshev inequality that

1/q
Ji Swi(B)'(1 + rmy(zp))* (/ |b(x) — bp |t fo(x)|Tw? (x )dx) .

We then invoke estimates (4.12) and (3.4) to deduce that

— wi(B)"(1+rmy(zp))* 1 / |f(2)]
J1 < JXZ:O( +2J7’mv (zg))™/(kot1) (20p)n=B Jo;p & dz

x (/B Ib(x) — bp|"w(z) dx)l/q.

Thanks to the second part of Lemma (2.4), we obtain

(/B |b(x) — bp|Tw(x) da:)l/q < ||b||BMowq(B)1/q.

Combining the above estimate with (3.8) and the fact that ¢ < ®(¢), we get

Ji < i(l + 2jrmv($B))aM /2]3 (b('f(Z)') dz.

par |20 B|1=5/n t

Moreover, by applying Holder inequality and the reverse Holder inequality in suc-
cession, we can show that w? € A; if only if w € A; N RH, (see [18]). And hence

>, wi(B)Y =020 B|B/m (29 B '
J1 Szw 23|32) | |$B|>(1+237“mv(x3))a/ ‘I’(—'f(:”)d
=0 2B
> B/n ,
szzgwq B)l/a 9%(1—1—237“7711)(333))@ /QJbe(@)w(z)dz,

where w € A; and Lemma 2.1 are used in the second inequality.
In addition, note that w € RH,. For any j € Z* we have

1/q
wl(2 B)Y1 = (/ wi(z) dx) < 127B)Y9 w(27 B)
2i B
or equivalently,

27B|°/" _ 1
w(29B) ~ wi(21B)/a’

(4.13)
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Consequently,

(o)
wq(B)l/q% . ) If]
RS ey n|o(L)|
1Nzwq(213)1/q( +2rmy (25)) w(2' B) (t ) Llog L(w),29 B

< i(%)l/q GM(l—i—Qirmv(xB)) (%)HLIOgL(me_B

wi(27B)?

o] 1
‘ (T)HMIM Zogjé(l/q—er
iz

Llog (w,w?)
Thus

o L
t MifO:L(w,wq)

where the summability of the series is due to 1/¢ — 6 > 0.
Using Chebyshev inequality gives us

1/q
72wt (B) (14 (e [ 1500 - D@l az)
By (4.2), we get

|I5((bp — b) f2)(x)]
> 1 1
— (1+ 2irmy (wg))"/ (oD [29 B[/

S

/ b(2) — bg||f(2)|dz.
27 B

<.

In view of (3.8) and w € A, it follows from A; condition and the fact that ¢t < ®(t)
that

Ja Sut(B)T QZ—'QJB'Mu+zfrmv<x3>>“w(2j3) JCEE
2i B

(27B) 12/ B]
ﬁ/n
< w(B)a0 '“” j o O]
Thus
S~ wI(B)O 2 B i a £ (=)l
J2 S ; w(27B) 1+ 2'rmy(zg)) /2jB|b(z)—bng|tI>( " )w(z)dz
S wIB)TRIBP 7
J a _ )
+z=: (21 B) (1 +2/rmy(2))*|bp — byi | QJB‘I’( " )w(z)dz
— K1 + Ko,
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Using (2.2) and (3.8) to estimate Ky we obtain
K Swi(B)Ya0

o0
] n ] a f
< S 1Bt 2y (25) 10— b llesp 2 205 [ (L))

= Llog L(w),2i B

We now combine Lemma 2.6 with Lemma 2.1 to arrive at the following estimate:

iwq(B)l/q |2jB|ﬁ/n (wq(ng) )9.

& % [blnio 2 (2 w(@B) \ wi(B)

1,0,
My loaL(w “’q)

By virtue of (4.13) one can get

oy (S

NgE

w5 o ()] e
t M1 L(w wa)

<[=(P)]
t M1 BO:L(UJ wa)

Il
=]

J

e

Il
=]

( wq(B)) )1/1170.

wi(29B
J

Taking (2.1) into account we have

o) S
~ t MBEe () wa)

Llog L ]:0

It follows from the summability of the series (due to 1 — 6 > 0) that

a1 <o)

1,0,a '
M q
Lluwa)

For the last term K5 we proceed as follows. Using the first part of Lemma 2.4 we
deduce that

wi(B)'/9-0|21 B|B/"
w(27B)

/()
t

o()]
t Llog L(w),2i B

fl _o|22B|P/"
< @('—)H 9(29 B)Pwt(B) a0 =21
~ H t Mi&:L(ww )ij ) v ( ) w(2JB)

Ko )w(z) dz

<H4mmumm@—@m/ ®
2/ B

A

<
I
o

S Y i+ Yrmy(ap))*w(B)V |2 B

M

I
o

J
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Thanks to (4.13) we get

oo

K5 H(I)(%>HM1 e, (w, wq)zj(wq 2iB) )1/‘1_9.

=0
Thus

K2<H<I>(M>H i‘j <H¢(M)H
SN b, i 228500 2 1P Mlargtie, s’

L lo

We then deduce from (3.14) and (3.15) that:

55 o(H)]

0. .
Mi IUQL(w’wq)

Combining this with (3.14) yields

w5 e ()]
~ t Milgo:L(w7wq)

and thus completes the proof of the theorem thanks to (3.13). O

5. THE CALDERON-ZYGMUND INEQUALITIES FOR
SCHRODINGER TYPE EQUATIONS

In this section we give some applications of our main results to Schrodinger equa-
tion. Let 2 be an open set in R”. We define the space M%7 (Q,w,v) as the space of
all measurable functions f satisfying ”f”M”’Z(Q,w,v) < 00, where

”fHMp ;(Q w,v)
1/s

—sup[ [+ @) B ) | fxeonl o) do| - < o
r>0 n

Corollary 5.1. Suppose that V € RH,. Let 1 < p < s < 00, a € (—00,00),
w e Ay and 0 € [0,1/p). If u is a solution of —Au + Vu = div f, then

IVullarz s @w) < Cllflazs )

Proof. Since Vu = VL Y2(L~Y/2V)f, the result follows similarly as in the
proof of Theorem 1.1. O
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Corollary 5.2. Suppose that V € RH,,. Let f € (0,n), 1 < p < n/p,
a € (—00,00), 1 < s < oo Forall 1/q =1/p—8/n, 0 € [0,1/q), w € Apgq, if
g € M75(,wP, w?), then there exists a function u € MD5(Q, w?), such that

—Au+Vu=gae x €l

Futhermore,

lullare s @,way < Cllgllae s @,we wa)-
Proof. It follows from the proof of Theorem 1.2 that

||u||Mg’;;(Q,wq) = ||V719||Mg§;(9,wq) = ”IQQHMZ';(Q,UJG) < C”Q”Mﬁ:g(ﬁ,wl’,wq)'

O
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