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Abstract. Some open problems appearing in the primary article on the symmetry reduc-
tion are solved. A new and quite simple coordinate-free definition of Poincaré-Cartan forms
and the substance of divergence symmetries (quasisymmetries) are clarified. The unbeliav-
able uniqueness and therefore the global existence of Poincaré-Cartan forms without any
uncertain multipliers for the Lagrange variational problems are worth extra mentioning.
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1. Introduction

We will systematically refer to the primary article, especially to the open problems

in Perspectives (see [7]). Two problems admit short solution stated below. They

essentially improve the achievements of article [7]. It should be noted on this occasion

that the improvements cannot be carried over for a much more involved case of the

multidimensional Lagrange problem (in preparation). For the reader’s convenience,

let us briefly overview the core of our approach since it differs from the common

literature.

We start with the notation. Our underlying spaces are infinite-dimensional mani-

folds M modelled on R
∞. Each function depends on a finite number of coordinates

and the functions constitute the ring denoted by F(M) (= F , abbreviation). The
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F -module Φ(M) (= Φ) of differential 1-forms

ϕ =
∑

f i dgi (finite sum with f i, gi ∈ F)

makes a good sense. The vector fields Z are F -linear functions on Φ, where

ϕ(Z) = Z⌋ϕ =
∑

f iZgi, Zf = Z⌋ df = df(Z)

are familiar formulae. The Lie derivative LZϕ = Z⌋ dϕ + dϕ(Z) will be frequently

needed. A novelty is as follows. Let ϕ1, ϕ2, . . . be a basis of module Φ. Then we

denote

Z =
∑

zi
∂

∂ϕi
(infinite sum with zi = ϕi(Z))

and recall the common abbreviation ∂/∂f = ∂/∂ df. In fact, we deal with the local

theory on open subsets of M which are not explicitly specified.

The Lagrange variational problem consists of two components. First, the differ-

ential constraints for admissible curves of the problem are defined in coordinate-free

terms as a certain Pfaffian system onM and we speak of a diffiety Ω. In more detail,

we deal with Pfaffian equations ω = 0, ω ∈ Ω, where Ω ⊂ Φ is a submodule of

codimension one. Any function x ∈ F with dx /∈ Ω may be taken for the indepen-

dent variable as a technical tool. It follows that Ω is generated by contact forms

df − Df dx, f ∈ F , where D is the total derivative vector field determined by the

properties

Dx = 1, ω(D) = 0, ω ∈ Ω.

If Ω is a controllable diffiety in the sense that Df = 0 if and only if f = const., then

there exists the standard basis

πj
r , j = 1, . . . , µ(Ω), r = 0, 1, . . .

of module Ω with the excellent property LDπj
r = πj

r+1. Second, we are interested in

the values ∫ b

a

n
∗ϕ (n : (a 6 t 6 b) → M),

where the curves n lying inM satisfy the differential constraints, that is, mappings n

are solutions of Ω in the common sense n∗ω = 0, ω ∈ Ω. However,

∫ b

a

n
∗ϕ =

∫ b

a

n
∗ϕ̃, ϕ̃ = ϕ+ ω̃, ω̃ ∈ Ω

for any ω̃. So the latter expression with arbitrary ω̃ may be called a variational

integral. For our convenience, it is abbreviated as
∫
ϕ and therefore

∫
ϕ =

∫
(ϕ+ ω)

for any fixed ω ∈ Ω.
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The calculus of variations eventually appears as follows. A vector field V is called

a variation of Ω if LV Ω ⊂ Ω. A vector field A is called an (admissible) variation

of solution n if n∗LAΩ = 0. A solution n of Ω is called an extremal (of variational

integral
∫
ϕ with the constraint Ω) if

A⌋ dϕ̃ = 0, ϕ̃ = ϕ+ ω̃, ω̃ = ω̃[n] ∈ Ω

for all variationsA of n and an appropriate correction ω̃. The most important achieve-

ment is: in the controllable case, there exists a universal correction ω̃ denoted ω̆

which gives all extremals. It can be explicitly calculated by a mere linear algebra.

This is the famous Poincaré-Cartan (PC) form ϕ̆ = ϕ+ ω̆ of the Lagrange problem

and we recall the primary Definition 2.5 (see [7]) which is as follows.

The form ϕ̆ = ϕ+ ω̆, ω̆ ∈ Ω is called PC form if

A⌋ dϕ̆ ∼= Z⌋ dϕ̆ (mod Ω),

where Z is an arbitrary vector field and A = A[Z] is an appropriate variation uni-

versal for all solutions n such that (2.6) from [7]

ϕj(A) =
∑

f j
krD

rϕk(Z), j = 1, 2, . . .

Here ϕ1, ϕ2, . . . is a basis of module Φ and the coefficients f j
kr are universal for all Z

and A = A[Z].

In the reduction theory, we speak of variations V of integral
∫
ϕ (with the con-

straint Ω) if LV Ω ⊂ Ω and LV ϕ ∈ Ω. Variations V which moreover (locally) generate

a one-parameter are called infinitesimal symmetries of the variational problem, see

Definition 2.6 and Theorem 2.2 (both from [7]).

The preparation is over and we leave more details to the Concluding comments.

Let us turn to the open problems in Perspectives from [7].

2. On the PC forms

We introduce shorter definition of Poincaré-Cartan (PC) form.

Definition 2.1. For a special choice ω̆ ∈ Ω, the form ϕ̆ = ϕ+ω̆ is called PC form

related to the integral
∫
ϕ if

(2.1) V ⌋ dϕ̆ ∼= Z⌋ dϕ̆ (mod Ω),

where Z ∈ T (M) is an arbitrary vector field and V = V [Z] the appropriate variation.
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The equivalence of both definitions of the PC form rests on the following obser-

vation. If A is admissible variation of all solutions n, then A = V is in reality

a variation of Ω (easy). Therefore A = A[Z] in Definition 2.5 from [7] can be re-

placed with V = V [Z]. (This fact was also noted in [7].) Then Definition 2.1 appears

by omitting the requirement (2.6) in [7] and the supply of PC forms is therefore not

reduced. However, there exists only one PC form in the sense of Definition 2.1 and

so the equivalence is obvious.

Theorem 2.1. For every variational integral
∫
ϕ there exists a unique PC form ϕ̆

in the sense of Definition 2.1.

P r o o f. The difference ω ∈ Ω of two PC forms in the sense of Definition 2.1

satisfies

(2.2) V ⌋ dω ∼= Z⌋ dω (mod Ω).

In terms of (any) standard basis (4.5), see [7], we have

ω =
∑

ajrπ
j
r , dω ∼= dx ∧

∑
bjrπ

j
r (mod Ω ∧ Ω),

where bjr = Dajr + ajr−1
and

D =
∂

∂x
+
∑

0
∂

∂πj
r

, Dx = 1, πj
r(D) = 0

is the total derivative. This follows from the congruences

dπj
r
∼= dx ∧ πj

r+1
(mod Ω ∧ Ω), dajr

∼= Dajr dx (mod Ω)

frequently appearing in [7]. On the other hand, we recall formula (4.6) from [7]

V = v
∂

∂x
+
∑

Drpj
∂

∂πj
r

, v = V x, pj = πj
0(V )

for the variations V. Then (2.2) implies the congruence
∑

bjrD
rpj dx ∼= V ⌋ dω ∼= Z⌋ dω ∼=

∑
bjrz

j
r dx, zjr = πj

r(Z)

and therefore the identity

Df =
∑

bjrD
rpj =

∑
bjrz

j
r = g, f =

∑
ajrD

rpj .

This identity is impossible for arbitrary nonvanishing function g, see the lemma

below. It follows that bjr = 0 identically. However

bj0 = Daj0, bj1 = Daj1 + aj0, . . . , bjR = DajR + ajR−1
, bjR+1

= ajR (certain R)

and therefore ajr = 0, hence ω = 0. �
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Lemma 2.1. The identity of the kind g = Df holds true if and only if the PC form

related to the variational integral
∫
g dx is closed.

P r o o f. The identity reads

g dx ∼= df = Df dx+
∑ ∂f

∂πj
r

πj
r (mod Ω).

The PC form ϕ̆ related to the integral
∫
g dx is the same as the PC form related to

the integral
∫
df , therefore ϕ̆ = df and dϕ̆ = 0. The converse is true as well. �

For our convenience, we recall (a little simplified) Theorem 2.1 from [7] which

describes the role of the PC form in the calculus of variations.

Theorem 2.2. A solution n of Ω is an extremal of variational integral
∫
ϕ with

the constraint Ω if and only if n∗Z⌋ dϕ̆ = 0 for all vector fields Z.

In the reduction theory, the following obvious consequence of Theorem 2.1 is es-

sential. It completely devaluates Theorems 2.2, 2.3 (see [7]) which become needless

with comfortable impact for the practice: any PC form ϕ̆ can be employed in (5.1)

from [7]. See also the more general Theorem 3.3 below.

Theorem 2.3. Every infinitesimal symmetry V of variational integral
∫
ϕ pre-

serves the relevant PC form ϕ̆.

Theorems 2.1 and 2.3 appear as a by-product of the symmetry reduction, however,

they are the most important and even unbelievable achievements already for the case

of the jet spaces with trivial constraint Ω. Indeed, there are always many possible

standard filtrations Ω∗ and construction in Theorem 4.3 (see [7]) moreover heavily

depends on the choice of the initial forms of Ω∗. However, the final PC form is unique.

In the global theory omitted here, the local uniqueness ensures the existence of the

global PC form related to every controllable Lagrange problem, that is, the choice of

quite different good filtrations (2.1) from [7] on overlapping coordinate systems does

not affect the global PC form!

3. On the Noether theorem

Complete Definition 2.6 of [7] goes as follows.

Definition 3.1. An infinitesimal symmetry V of diffiety Ω is called a divergence

symmetry of variational integral
∫
ϕ if LV ϕ − df ∈ Ω for appropriate function

f ∈ F(M). We occasionally denote V = V [f ] for clarity.
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Theorem 3.1 (Noether). The conservation law

(3.1) n
∗(ϕ̆(V )− f) = c ∈ R, V = V [f ]

holds true for every extremal n.

P r o o f. This is a consequence of the inclusion

LV ϕ̆− df = V ⌋ dϕ̆+ d(ϕ̆(V )− f) ∈ Ω,

where n∗V ⌋ dϕ̆ = 0. �

In reality, the divergence symmetries are merely slight generalizations of the com-

mon symmetries.

Theorem 3.2. A vector field V = V [f ] is a divergence symmetry of integral
∫
ϕ

if and only if this V is a symmetry of any integral

(3.2)

∫
(ϕ− dF ), V F = f.

If ϕ̆ is the PC form related to integral
∫
ϕ, then ϕ̆[F ] = ϕ̆ − dF is the PC form

corresponding to integral (3.2).

P r o o f. Clearly

LV ϕ− df = LV ϕ− dV F = LV (ϕ− dF ) ∈ Ω.

Substituting moreover the PC form ϕ̆ for ϕ, we obtain

(3.3) LV ϕ̆[F ] ∈ Ω, ϕ̆[F ] = ϕ̆− dF

and one can see that ϕ̆[F ] is the PC form related to the integral
∫
(ϕ− dF ). �

In particular, it follows that the conservation law (3.1) reads

(3.4) n
∗ϕ̆[F ](V ) = c ∈ R, V = V [f ].

Altogether we conclude that the reduction theory (see [7]) can be applied to the

divergence symmetries as well: the PC form ϕ̆ should be replaced with ϕ̆[F ]. For

instance, Theorem 5.1 from [7] turns into a more general result:

Theorem 3.3. Let Ω ⊂ Φ(M) be a controllable diffiety and V = V [f ] ∈ T (M)

a divergence symmetry of a variational integral
∫
ϕ with the constraint Ω. Every
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extremal is lying in a certain subspace M[f, c] ⊂ M determined by the equation

ϕ̆(V ) − f = c, where c ∈ R and there exists the orbit space M[f, c]/V ⊂ M/V of

the total orbit space M/V, the orbit diffiety Ω[f, c]/V ⊂ Φ(M[f, c]/V ) naturally

induced by Ω and the Routh variational integral

(3.5)

∫
ϕ̆[f, c], ϕ̆[f, c] = ϕ̆− dF − c dw, f = V F, V w = 1

defined on the space M[f, c]/V. Projections on the orbit space of the original ex-

tremals are extremals of the Routh variational integral. If ϕ̆[f, c] is even a PC form,

the projection of extremals is surjective.

We have already employed the uniqueness of PC forms. One can observe that

the primary Theorem 5.1 from [7] is involved for the particular case f = const. We

omit the obvious result corresponding to Theorem 5.3 from [7]. The global theory

can be comfortably investigated as well: since the PC forms are unique, the global

reduction is ensured by any global solution F of the ordinary differential equation

V F = f + const.

Theorem 3.4. The divergence symmetries V = V [f ] for various f can be defined

by the identity LV dϕ̆ = 0.

P r o o f. The divergence condition LV ϕ − df ∈ Ω is equivalent to any of the

inclusions

LV (ϕ− dF ) ∈ Ω, LV (ϕ̆− dF ) ∈ Ω, LV ϕ̆[F ] ∈ Ω.

However, Theorem 2.3 applied to the PC form ϕ̆[F ] implies even

LV ϕ̆[F ] = 0, LV (ϕ̆− dF ) = 0, LV dϕ̆ = 0.

This sequence of reasonings can be reversed. �

It follows that the divergence symmetries V can be defined by LV dϕ̆ = 0. In more

detail

(3.6) 0 = LV dϕ̆ ∼=
∑

V ejπj
0 ∧ dx+

∑
ejLV π

j
0 ∧ dx (mod Ω ∧ Ω)

by using (4.9) from [7], where LV π
j
0 =

∑
ajj′π

j′

0 by virtue of Lemma 5.1 (see [7]).

Then (3.6) can be interpreted by saying that the divergence symmetries V = V [f ]

with various f are identical with such infinitesimal symmetries V of Ω which preserve

the Euler-Lagrange system ej = 0, j = 1, . . . , µ(Ω) but this is informal statement

and we do not investigate subtle details.
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4. Concluding comments

Since our approach differs from the actual literature, we believe that some brief

comments would be useful. On this occasion, let us refer to the excellent and clear

survey (see [4]) of rather special reduction problems in terms of the common jet

theory and, on the contrary, to the involved prologue (see [3]) into the problem of

PC forms in general field theories, where the exterior differential systems are used

for the differential constraints.

4.1. A note on extremals. Actually, the extremals in current literature are

defined by the stationarity of variational integral for one-parameter solutions n(t)

satisfying moreover certain boundary conditions. However, for multidimensional

Lagrange problems, that is, in the constrained field theories (see [3]), the existence of

such true solutions satisfying moreover appropriate boundary conditions is in general

doubtful. On the contrary, our approach (with Definitions 2.1–2.6 from [7]) can be

almost literally applied as well. Alas, the standard basis becomes rather involved

(see [6]) and the explicit formulae for all variations V do not exist. Consequently,

the simplified Definition 1.1 fails and the final PC forms need not be unique.

4.2. A note on divergence symmetries. We may refer to the theory (see [4]),

where only the variational integrals and infinitesimal symmetries

(4.1)

∫
L dt, V = v

∂

∂t
+
∑

vi
∂

∂qi

with L = L(q1, . . . , qn, q̇1, . . . , q̇n) and v = 0, vi = vi(q, . . . , qn) independent of time

variable t are discussed. These results in beautiful geometrical theory on the first-

order jet spaces, however, even the classical Maupertuis theorem, cannot be involved

without adaptations (see [1]). In our approach the most general case (4.1) with

variable t is easily contained as well. For instance, the divergence symmetries V =

V [f ] of the integral
∫
L dt are identified with the point symmetries of the variational

integral
∫ (

L−
(∂F
∂t

+
∑ ∂F

∂qi
q̇i

))
dt, F = F (t, q1, . . . , qn), V F = f.

Altogether taken, our divergence symmetries applied within the jet spaces involve

the quasisymmetries (see [4]) as a very particular subcase.

4.3. A note on several symmetries. For instance, let V and V be infinitesimal

symmetries of integral
∫
ϕ. Then

LV ϕ̆ = LV ϕ̆ = 0, n
∗ϕ̆(V ) = c, n

∗ϕ̆(V ) = c̄, c, c̄ ∈ R
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hold true for every extremal n. It follows that the extremals lie in subspaces

N[c, c̄] ⊂ M defined by ϕ̆(V ) = c, ϕ̆(V ) = c̄. Alas, we have

V ϕ̆(V ) = (LV ϕ̆)(V ) + ϕ̆([V, V ]) = ϕ̆([V, V ])

and the vector field V need not be in general tangent to the subspace N[c, c̄] which

therefore does not consist of V -orbits. The “gyroscopic augmentation” was inverted

in order to delete this trouble, see the references in [4]. Possible implementation of

this idea into our theory would be desirable.

4.4. Still two open problems. Finally, we recall that the pseudogroup sym-

metries depending on the choice of arbitrary functions, the calibrations in physics,

cause many difficulties since they cannot be reasonably developed in terms of the

infinitesimal symmetries (see [2], [5]). We also raise the following problem. Let us

have a conservation law in an extremal principle of a field theory with differential

constraints. What is the impact on the extremality if the conservation law is re-

garded as an additional constraint? The group symmetry reduction is a particular

case of the latter problem.
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