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Abstract. We generalize some criteria of boundedness of L-index in joint variables for in
a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a
skeleton in a bidisc and an estimate of (p + 1)th partial derivative by lower order partial
derivatives (analogue of Hayman’s theorem).
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1. INTRODUCTION

This paper continues our investigations from [5], where we introduced a definition
of in a polydisc analytic function of bounded L-index in joint variables. Besides, we
obtained a criterion of boundedness of L-index in joint variables which describes a
local behaviour of partial derivatives and explored some interesting properties.

Our goal is to prove new analogues of the criteria of boundedness of L-index in
joint variables. For entire functions, similar propositions were obtained by Bordulyak
and Sheremeta [7] in the case of L(z) = (I1(|z1]), .., 1n(]#n|)) and by Bandura [1] in
the case of L(z) = (I1(2),...,ln(2)), z € C™.

Note that the corresponding theorems for entire functions of bounded [-index
and of bounded L-index in direction are used to investigate index boundedness of
entire solutions of ordinary and partial differential equations and infinite products
(see bibliography in [14], [3]). Thus, those generalisations for in a polydisc analytic
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functions are necessary to explore L-index in joint variables of holomorphic solutions
of PDE’s, its systems and, for instance, multidimensional counterparts of Blaschke
products.

Particularly, we prove an estimate of the maximum modulus on a greater bidisc by
maximum modulus on a lesser bidisc (Theorems 4.1 and 4.2) and obtain an analogue
of Hayman’s theorem for in a bidisc analytic functions of bounded L-index in joint
variables (Theorems 5.1 and 5.2).

2. MAIN DEFINITIONS AND NOTATIONS

For simplicity, we consider two-dimensional complex space C2. This helps to dis-
tinguish main methods of investigation.

We need some standard notations. Denote Ry = [0,00), 0 = (0,0), 1 = (1,1),
R = (r1,r2) € R%, 2 = (21,22) € C?. For A = (a1,a2) € R?, B = (b, b2) € R? we
will use formal notations without violation of the existence of these expressions

A a1 a
AB = (a1b1, azbq), B (b_l’ b_z
1

), by £0, by £0, AB =alia, be 2,
the notation A < B means that a; < bj, j € {1,2}; the relation A < B is defined
similarly. For K = (ki,...,k,) € 2%, denote | K|| = ki +...+kp, K! = k! kL

The polydisc {z = (21, 22) € C: |z; — 2J| <rj, j = 1,2} is denoted by D*(z°, R),
its skeleton {z = (21, 22) € C?: |z; — z?| =rj, j = 1,2} is denoted by T%(z°, R),
and the closed polydisc {z = (21,22) € C?: |z; — ?| < rj, j = 1,2} is denoted by
D?[2% R], D? = D?*(0,1), D= {z € C: |z| < 1}. For p, ¢ € Z and partial derivative
of function F(z) analytic in D? we will use the notation

aerqF(Z)

7(P.a) — 9 —
(Z) (ZlaZQ) 8zf8zg ;

z = (21, 22).

Let L(z) = (11(2),12(2)), 2 = (21, 22), where [;(z): D?* — R is a continuous function
such that

(Vz = (21,22) € D?): 1;(2) > , Je{1,2},

1— |z
where 8 > 1 is a constant, 8 := (3, 8). Strochyk, Sheremeta, Kushnir [15], [10], [14]
imposed a similar condition for a function I: D — R4 and I: G — R4, where G is
an arbitrary domain in C. We also used related condition by the study in the unit
ball analytic functions of bounded L-index in direction [4].
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An analytic function F': D? — C is called a function of bounded L-index (in joint
variables) if there exists ng € Z, such that for all 2 = (21,22) € D? and for all

(p17p2) S Ziv

(2.1)

1 |F(P1,p2)(z)| 1 |F(k1,k2)(z)|
< :0< ky + ko < .
pilp2! 17 (2)15° (=) max{kl!kgl 15 (2)ik2 (2) 1+ ke no}

The least such integer ng is called the L-indez in joint variables of the function F(z)
and is denoted by N(F,L,D?) = ng. This is an analogue of the definition of entire
function of bounded L-index or bounded index (L = 1) in joint variables in C? (see
[2], [7], [6], [12], [13]) and the definition of in a domain analytic function of bounded
index [8]. Note that the primary definition of in C entire function of bounded index
was considered by Lepson in [11].

By Q(D?) we denote the class of functions L, which satisfy the condition

(Vrj S [0,6], j S {1,2}): 0< )\17]‘(R) < AQ’j(R) < 00,

where

(2.2) Ay(R) = jnf inf{lij(izo)) L ze |]j)2[ZO7R/L(z0)]}7
Li(z 2

(2.3) A2 i(R) = Zglelgz sup { lj((zo) : z € D?[2Y, R/L(ZO)]}.

3. AUXILIARY PROPOSITIONS

Denote B = (0, 3] and B? = (0, 8] x (0, 3], where x means the Cartesian product.
We need three following theorems from [5].

Theorem 3.1 ([5]). Let L € Q(D?). A function F analytic in D? has bounded
L-index in joint variables if and only if for each R € B? there exist ng € 7, po > 0
such that for every z° = (2°) € D? there exists (k{,k9) € 73, 0 < kY + k9 < no, and

1 |FRuk2) ()
Fatha! 1 (2)152 (2)

(3.1) max{ Dkt k2 <ng, (21,22) € DQ[ZoaR/L(ZO)]}

Do |F(k§’7 8)(ZO)|
=R l]f?(zo)lgg(zo).
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Theorem 3.2 ([5]). Let L € Q(D?). In order that a function F analytic in D?
be of bounded L-index in joint variables it is necessary that for every R € B? exists
no € Z4 and exists p > 1 such that for all z2° € D? exists k° € 7%, k{ + k3 < no, and

(3.2) max{|F*52) (2)|: 2z € D2[2°, R/L(2°)]} < p|F*1#+2) (20)),

and it is sufficient that for every R € B? exists ng € 7 and exists p > 1 such that
for all 2° € D? exist kY < ng, k9 < ny and

p|FHR0 (20
p|FOR) (20,

(3.3) max{|[F*9(2)|: z € D2[2°, R/L(z°)]} <

(3.4) max{|FO*) (2)|: z € D?[2°, R/L(z°)]} <

Denote L(z) = (I1(2),l2(2)). L < L means that exists © = (61,65) > 0, such that
V (21, 22) € D?: 010;(2) < 1;(2) < 6al;(2), j € {1,2}.

Theorem 3.3 ([5]). Let L € Q(D?) and L < L. A function F analytic in D* has
bounded L-index in joint variables if and only if it has bounded L-index.

4. ESTIMATE OF MAXIMUM MODULUS ON A BIDISC

For an entire function F(z) we put M (R, 2% F) = max{|F(2)|: z € T?(z° R)}.
Then M(R,2° F) = max{|F(z)|: 2z € D?[2% R]}, because the maximum modulus
for an entire function in a closed polydisc is attained on its skeleton.

Theorem 4.1. Let L € Q(D?). If an analytic function F in D? has bounded
L-index in joint variables, then for any R',R" € R%, 0 < R' < R"” < (B3,8) there
exists p; = p1(R', R") > 1 such that for each z° € D?,

(4.1) M(R"/L(2°),2° F) < ptM(R'/L(2"), 2°, F).

Proof. Let N(F,L,D?) = N < oo. Suppose that inequality (4.1) does not
hold, i.e. there exist R, R”, 0 < R’ < R"” such that for each p, > 1 and for some

2% =2%(p.),
(4.2) M(R"/L(2°),2°, F) > p.M(R'/L(2°), 2°, F).

By Theorem 3.2 there exists a number py = po(R”) > 1 such that for every 2° € D?
and for some k° € Zi, kY + k9 < N one has

(4.3) M(R" JL(2°), 20, F®R2)) < po| FHIE) (20)],
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We put

N .
b . N' 7»’1/7/./2’ N)\N R// )\N R//
1 = PoiV: W 21 22 Z ’
12 j=1

N .
b2=poA£2<R">Z%max{< 0N,

riry
pe = po(VD? (B2 ) by 4 by 1.
Ty
Let 20 = 2%(p.) be a point for which inequality (4.2) holds and k° be such that (4.3)

holds. We choose z* and 2z such that

(J1.42)
M(R'[L(z°),2° F) = [F(z")], M(R"/L(z°),2°, FUv7)) = |[FULR) (20, )]
for every j = (j1,j2) € 7%, j1 + j» < N. We apply Cauchy’s inequality

(1.9 pom ) < (MDY (DY ey

1 T

to estimate the difference

(4'5) |F(j1’j2)(2’;1, 2;2) _ F(ju]é)(zg7 2;;2)|

a1 .
/ F(11+1,12)(C7 ) dg‘
z

0
1

i1 . .
< / " mane { PO (C 255)] ¢ ] = s g
Zy

(0)

+1,
RG] NE

The point (z(l),z;-"Q) belongs to D?[z°, R”/L(z°)]. Therefore, for k € {1,2} we have
125 — 20l = 73 J1(2°) and 1k (27, 25 5) < A2k (R”)Ik(2°). Putting j = £ in (4.4), by
Theorem 3.1 we obtain

(k%) ( 0 |ll (Zlv jQ)lD(Z 72;2)

k,O
ko'ko'l ( 0)152(29)
_ Al A (RN (RN (20)15 (=)
KOO 1(20)lk (20)

kl ZO kg
(ZIEH )) (ZQE“'Q )) =)l
. . J1 ZO J
< .7'1!jz!/\%fl(R'/)AQ?Q(R/')I?()%

(4.6)  [FU) (20 2% 5)] < j1ljalpol F

pokd1EI!

[F (")l
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From inequalities (4.5) and (4.6) it follows that

|F(j1+17j2)(zikj1+1,j2))|

I ZO) o .
2 r// (|F(]1’j2)(zj717
1
Iy 20 o ) ) o . .
> B (150 (1,200 — o (R (R
1

11(z° o o ,
= B0 0 (5, )| i (B (R o ()

1

We choose j = (j1,J2) =
0 ;.0 *
(47) |F(k11k2)( Zjo

/

S bz )|F(k1 L) (2

Zo)| — [FU2) (20, 2%5)))

(K9, k9) and deduce

Z(k9—1 kO))|

_ po(k) — DKUY (20)15% (=°)

>

—~

11(=%)
(ri)?

polg — 2) Ut (015

0 0
) ()78

|F(k —2,kS )(Z(*ko—Q,kO))'

(20)

(r])2(rp)M (r5)*

2
1

| pokQUN (20182 (20)

ok — 1RO (20042 (20)

r{ () (rp)¥

=) FOR) ()

0
s>

() (r) " (r )

po(KY — 2)KQUET (20)18% (0)
(r])2(r))M (rh) k8
(k0—1)'k0'11(20)1’“2( 0)
T (7"1)k0( é)kg
k9 -0 .
— L) o )

()"
ok (01 (=)
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()M (rp)ks

Aéll(R”)A” R")|F(z*

lil(zo)l”( %)
(r)M ()"
lh( O)lh(

A (RN (R F (27)

N (RN (R)F ()

AL (RN (R F (27)|

TN (RN, (R F ()| —

M (RN (R F (")

A (RN (R F (27)|

) Z

j1=1

LiF

’/ 11

aeel)

(=

-



P> (r’l’)kg (r’z’)kg |F(2Ek0,0))|
pOk%il,:f)i(gii);)ng(ZO) M (RN (R (= '1121
yor o
= %IF(%O))I—IF(%)I@ +b2),
where
w5 i pok%;g,l’f;gz(gff;z°>x;a i 5
S e

K9 kS, o NN N — q)!
<p0N!ll (2°)15% (= )(7'17'2) Aé\jl(R/,)AéYQ(R”)Z (N J)

(Ti/)k? (T'Q/)kg T1T)

B

0 0 bla
()R8 (g )3
kS o ovikS /0 k3
7 Dbo l1 z )12 (Z) ko (k _32)
b2 = (Tll/)ko (r/ll)k(l)(ré/)ko /\2,2(R/I) Z (7“ )jz
j2=1
0 0 N
(52 (2°) N o o= (N — )] 1
< , .1
P R ) 2 S e e
0 0
W' ()" (=)
LRI

Inequality (4.7) implies that
k9 k3 *
1M (2012 (20) |F'(2{5,0))]

4. k) > L2 L2 S Pt = — (b D) .

( 9) | 2 ( (ko ko )| (T’l')k?(rlz')kg | (Z )| |F(Z*)| ( 1+ 2)

In view of (4.2) we have that [F(z(, ))|/|F(z")| = p« > b1+ b2. Hence, applying (4.4)

and (4.3) to (4.9), we deduce

B (=)

F(k17k2) >
T Gl >

[F(z%)|(p+ — (b1 + b2))
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K9 k9
LG G P

T ()M () KOIRQNET (20)1%% 20y
(K9,k9) (%

> (riré)N(p —(b1+b2))|F T i)

=\l * po(N1)2

Therefore, p. < po(N)2(r{rYy /rirh)N + by + ba, but it contradicts the choice p. =
po(N)2(r'rY /rirh)N + by + by + 1. Thus, inequality (4.1) is valid. O

Theorem 4.2. Let L € Q(D?), F be a function analytic in D?. If there exist
RR" € R%,0< R <e< R"<(B,8) and p1 > 1 such that for each 2° € D?
inequality (4.1) holds, then function F' has bounded L-index in joint variables.

Proof. Let 2° € D? be an arbitrary point. We expand the function F in power
series in D2 (2%, R):
(10)  FE= G- = Y bl -0 (- )

k>0 k130, ko >0

where k = (k1,k2), b, = b, by = F<khk2>(z 29) k1l k!, R = (rl,rg)

Let u(R, 2%, F) = max{|bg|RF: k > 0} = max{|by, 1, | 752: ky >0, ko > 0} be
a maximal term of series (4.10) and v(R) = v(R, 2°, F) = (11(R),v2(R)) be a set of
indices such that

M(RaZOaF) = |bV(R)|RV(R)7
[V(R)|| = v1(R) + v2(R) = max{ki + kao: k1 >0, k2 > 0, |by|R* = u(R, 2°, F)}.

We apply Cauchy’s inequality:
VR = (r1,m2),0<r; <1,5€{1,2}: p(R,2° F) < M(R,2° F).

For given R’ and R" such that 0 <7’ <1, 1 <r7 < 3 we conclude

M(R'R,2°,F) < Y |l (R'R)* < Y u(R,2° F)(R)*

k>0 k>0

2
= u(R, 2, F)) (R ]:[

k=0

(R, 2°, F).

Besides,

v /v ]‘
In (R, 2%, F) = (b, ()| R*) = In (1by ) |(RR") <R>W)

= (b | (RR")) + 1 (s )

Inp(R'R,2° F) — ||v(R)|| Inmin{rY, r}}.

N
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This implies that

(4.11) ||[¥(R)|| < (Inu(R'R,2°, F) —Inu(R, 2°, F))

In min{ry, 4
1
= Inmin{r}, 7§
x (InM(R"R,2°, F) —In((1 — ) (1 — r5) M(R'R, 2°, F)))
1
< ———~(IM(R'R,2°,F) —In M(R'R, 2°, F))
In mm{r1 Y

In(
~In mm{r1 , r2} Z .

1 M(R”R,ZO,F)
= n Zln
~ Inmin{r!, 7y M(R'R,2°,F) In mm{r1 , r2}

Put R = 1/L(z2"). Now let N(F,2° L) be an L-index of function F in joint variables
at point 2, i.e. it is the least integer for which inequality (2.1) holds at point 2°.

Clearly,

(4.12) N(F,2° L) < v(1/L(2°),2° F) = v(R, 2°, F).
But

(4.13) M(R"JL(2%),2° F) < p1 (R, R")M (R’ /L(z°), 2°, F).

Therefore, from (4.11), (4.12), (4.13) we obtain that for all z° € D?:

/ hlpl (R/ R//)

N(F,2° L 1
(F, 251 < 1nm1n{r1,7“2} Z n( 1nmln{r1,7“2

This means that F' has bounded L-index in joint variables. O

5. AN ANALOGUE OF HAYMAN’S THEOREM FOR IN A BIDISC ANALYTIC FUNCTION
OF BOUNDED L-INDEX IN JOINT VARIABLES

Theorem 5.1 is an analogue of known Hayman’s theorem, which was established
for entire functions of one complex variable (see [9]).

Theorem 5.1. Let L € Q(D?). A function F analytic in D? has bounded L-index
in joint variables if and only if there exist p € 7, and ¢ € Ry such that for each
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z € D? the inequality

P62 (z)
e

) (2)

(5.1) max{ 7111“ (2)152 @)

CJ1t e = p+1} cmax{ :k1+k2<p}

holds.

Proof. Let N = N(F,L,D?) < co. The necessity we obtain immediately from
the definition of the boundedness of L-index in joint variables with p = N and
= ((N + 1)!)2. We prove the sufficiency. If F' = 0, then theorem is obvious. Thus,
we suppose that F' # 0. Let (5.1) hold, 2 € D?, z € T?(z% B/L(z°)). For all
J = (j1,J2) € 73, j1 + j2 < p+ 1 we have

F(jl:j2) z F]l:]Z) ljl z ljz z . io F(jlvj?) z
.Ll 0 j2( )0| .|71 12( )0| ljl( )2j2( ) < Ajltl(ﬂ)AjLQ(ﬂﬂh j2( )|
(20 (%) (20 (20)1 (2)15 (2) I (2)l5° (=)
. F(k17k2 (z |
<ML (B )\” B)cma | k1 + k }
1,1( 1 2 X{ lkl le(z 1 2 <
} lkl 2 ZO |F(k1 kz)(z)|
— \)1 J2
= /\2,1( /\2 2 X{ lkl lkz = lkl( )lkz(z) k14 ko < p}
; Fkuk2) ()|
< A]l /\Jz { | -k +k < }
il X (8 A’fz JIEEREn
< max{\, (B)A7,(B): j1+j2 <p+1}
1
X cmaxy ————: k1 + ko Sp}
{ AL (B)AT%(8)
F(k1,k2)
X max{#: ki + ks < p} = BG(z),
171 (29)13° (2°)

where

B = cmax{\}, (B)A%(B): i+ jo < p+ 1} max{ A\ [ (B)A 52 (8): k1 + k2 < p},

o) }
G(z) = — " ki +k<py.
(2) rn:aux{llf1 (zo)l§2 0) 1 2K D

We choose z() = (2 o él)) € T2(2°,1/(28L(2°))) and 2® = (zi) 52)) €
T2(2°, B/L(2°)) such that F(2) # 0 and

(5.2) |F(22)] = max{|F(z)|: z € T?(z°, B/L(z°))} # 0.

These points exist, otherwise if F(2) = 0 on skeleton T2(z° 1/(28L(2%))) or
T2(2°, B/L(2°)), then by the uniqueness theorem, F' = 0 in D?. We connect the
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points z(1) and z(?) with a plane

zZ9 — Zél) zZ1 — 2’51)
a: zp = kaz1 + co, = ;
zf) _ zél) Z§2) _ 251)
2 1 1 2 1 2
N L P
zf) _ 251) Z§2) _ 251)

Let G(z1) = G(2)| be a restriction of function @ onto a. All functions F*1:%2)|, are
analytic functions of variable z; and é(zil)) = G(2zM)|4 # 0, because F(z(V) # 0.
That’s why zeros of function G (21) are isolated as zeros of a function of one variable.
Therefore we can choose piecewise analytic curve y onto a:

z=2z(t) = (21(t), k221 (t) + c2), t€]0,1],

which connects points z(1), 2(2) and such that G(z(t)) # 0 and fol |z1(t)|dt <
28/11(2°). For a construction of the curve we connect z(!) and 2(?) by a line z}(t) =
(252) - z§1))t + z§1), t € [0,1]. The curve 7 can cross points z1 at which the function
G(z1) = 0. The number of such points m = m(z(), 2(?)) is finite. Let (211 be a se-

quence of these points in ascending order of the value |z§1) =21l ke {1,2,...,m}.
We choose
< i Lsia b lets — A0 et~ )
r min 2=z 21—z 2 — 2 — .
1<k<m—1 1,k 1,k+10 71,1 1 bI1*1l,m 1 b 2n6l1 (ZQ)

Now we construct circles with the centre at points 27, and corresponding radii
r, < r27% such that é(zl) # 0 for all z; on the circles. It is possible, because
F #£ 0. Every such circle is divided into two semicircles by the line zj(¢). The
required piecewise analytic curve consists of arcs of the constructed semicircles and
segments of line z7(t), which connect the arcs in series between themselves or with
points 251)7 252). The length of z1(¢) in C is less than

8 1 26
L) T 2800 TS 1)

Then

1 1 (2) (1)
|22 — 29 | 2
24 ()] dt = |k2|/ ()] dt <
/0 2 0 ! |z§2)—z§1)|ll(20)

282 +1281(°) 2B 26(28° +1)

S 2820 282 — 1 11(20) (282 — 1)la(2%)
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Hence,

1 2 1 1
(5.3) / > HEE Bt = / 1 (29) ]2 (1))t + / ()| 4(1) dt

26
11(29)

TN C(CLih ) . )

<hL(2Y) (282 —1)la(29) 282 -1

Since the function z = z(t) is piecewise analytic on [0,1], for arbitrary k € 73,
J € 2%, ||kl < p, |3l < p, k # j either

(5.4) [F0R) (2 (8), 22 (0)] _ [FU2) (2 (8), 22(8))]
' BEOEE) R E ()

or the equality

655) [P (21 (1), 22| _ 932 (1 (), 20())
| Mt Pl
()08 (0) i O (=0)

holds only for a finite set of points ¢, € [0;1]. Then for function G(z(t)) as maximum
of such expressions | FU1:72) (2 (t), zo(t))| /(12 (2°)132 (z9)) by all ||j]| < p two cases are
possible:

Case 1. In some interval of analyticity of the curve v, function G(z(t)) identi-
cally equals simultaneously to some derivatives, that is, (5.4) holds. It means that
G(2(t)) = |FU92) (21 (), 22(t))] /(1" (2°)13? (2°)) for some ||j|| < p. Clearly, function
FULI2) (21 (1), 29(t)) is analytic. Then |FU12) (2 (t), 29(t))| is continuously differen-
tiable function on the interval of analyticity except points where this partial deriva-
tive equals zero |FU192) (21 (t), 22(t))| = 0. However, such points don’t exist, because
in the opposite case G(z(t)) = 0. But it contradicts the construction of the curve ~.

Case 2. In some interval of analyticity of the curve v, function G(z(t)) equals
simultaneously to some derivatives at a finite number of points ¢, that is, (5.5)
holds. Then points t; divide the interval of analyticity into a finite number of
segments, in which G(z(t)) equals to one of the partial derivatives, i.e. G(z(t)) =
|FU132) (21 (1), 22(2))] /(17 (2°)12? (2°)) for some 7, ||j]| < p. As above, in each of these
segments, functions |F71:92) (21 (t), 22(t))| and G(z(t)) are continuously differentiable
except points tg.

Taking into account (3.1) and using the inequality

d d
—_ < | =
—lo@) < | -el@)

)
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which holds for complex-valued functions of real argument outside a countable set
of points, we have

d
SCGEW)
s max{m th(]hm(Zl( ),22(1))|: J1 + ja Sp}
< max {IFW+L”Nm<x (] 1O, [T 0, 2o 2 <n}
Jit+j2<p

1 (20 (=°) ' (20)15(2°)
= max {|F(j1+1’j2)(z(t))|m+|F(j1,j2+1)(z(t))|M}

sty 0 (=0) 7 O T0)

(J1,42) 21(t), z
<uaawmfwwéawxf»mw{wlﬁégﬁt£@”
(}jl )BG((»

Therefore, (5.3) yields

D1+ g2 <P+1}

I G =

‘ / '(4)|dt < BS.

Using (5.2), we deduce
max{|F(2)]: z € T*(2%, B/L(="))} = |F(:?)] < G(z®)) < G(=V) exp(BS).
Since () € T?(2°,1/(2B8L(2))), the Cauchy inequality

(9 ()]

LI S il Jjitj2 ZO ZO
o) S ARBPM/BL),

holds for every j € Zi. Therefore, for j; + jo < p we have

G(="") < (01)*(28)* M (1/(2BL(2")), 2°, F)

and

max{|F(z)]: z € T*(2%, B/L(z°))}
< e (p!)?(26)* max{|F(2)|: 2 € T*(2",1/(2BL(")))}.

Hence, by Theorem 4.2, F' is a function of bounded L-index in joint variables. [
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Theorem 5.2. Let 8 > 1, L € Q(D?). A function F analytic in D?> has bounded
L-index in joint variables if and only if there exist ¢ € (0;00) and N € N such that
for each z € D? the inequality

S LlC) I L (O]

(5.6) 1> :
klkollE ()52 (2) 7y o Rkl (2152 (2)

k1+ko=0

holds.

Proof. Let1/8 < 6; <1, j € {1,2}. If function F' has bounded L-index in
joint variables, then by Theorem 3.3 F’ has bounded L-index in joint variables, where
L = (l1(2),12(2)), 1;(2) = 6;1;(2), j € {1,2}. Therefore,

F(k1k2) .
ax{ | - (?J L 0 <k + ks < N(F,L, DQ)}
k1 lk21l7* (2)15°(2)

k1 gk2 | p(k1,k2) .
x{el 9215 Ak(z”: o<k1+k2<N(F,L,|D2)}
oy Vo VT8 (2)152 (2)

[ )
ey ko 17 (2182 ()
PG5 (2)]
1152\ (2)15 (2)
GNPy N (PED?) s |FU19)(2)]
' ? 31521 ()1 (2)

> (9192)N(F’£’D2) max{ c0< k1 + ko < N(F,I:7 |D2)}

> (9192>N(F,f,,m>2)

for all j; >0, jo > 0 and

i": |FU172) ()|
g2l (2)15(2)

j1+i2=N(F,L,D?)+1
[F0as) (2)]

< max

0k +ha SN(FE,D2) k15 (2)152(2)
X i 9{'1*N(FﬁT:,DQ)engN(F,E,W)

J1+j2=N(F,L,D?)+1

(klka) ~
=$max{ | k (?l : ngl—l—kQSN(F,L,DQ)}
(1—=01)(1 —62) key o lR (2)152 ()
= LRSI

S (1—61)(1—067) ko1 (2)152 (2)

k1+ko=0
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Hence, we obtain (5.6) with N = N(F,L,D?) and ¢ = 6;65/((1 — 6;)(1 — 65)). On
the contrary, inequality (5.6) implies

{ |F(j1,j2)(z)|
maxy ————————— = =
k’l !k’g!lll (Z)l22 (Z)

Rl (i () T

k1+ko=N+1

L i O

S T Vo !0 (2)182 ()
ky+ky=0 1201 2

N+ DN |F(F1sk2) (2))]
T 2 0<kHkeN Ry lkpllF (2)1R2(2)

and by Theorem 5.1, F' is of bounded L-index in joint variables. O
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