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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 3 , P A G E S 5 9 3 – 6 0 9

DESIGN OF ROBUST GAIN SCHEDULED CONTROLLER
USING L2 GAIN PERFORMANCE

Vojtech Veselý and Martin Ernek

This paper is devoted to robust gain scheduled PID controller design with L2 performance
for the linear time varying (LPV) uncertain system with polytopic uncertainties. The novel
approach of robust controller design ensures that the obtained design procedure is convex with
respect to both plant uncertainties (polytopic system) and gain scheduling parameters and gives
less conservative results. Modified design procedure should be used to obtain a robust controller
or robust switched controller (ideal, non-ideal switching) with arbitrarily switching algorithm.
The effectiveness of the proposed approach is illustrated on the simulation examples.

Keywords: gain scheduled controller, Linear parameter varying systems (LPV), robust
controller, switched controller, L2 gain performance

Classification: 70E60, 93B36

1. INTRODUCTION

Linear parameter varying systems (LPV) are a class of linear systems where the plant
state matrices are affinelly dependent on measurable vector of time-varying parameters.
The LPV systems should be viewed as a linear time invariant (LTI) plants derived from
time-varying parameters or they should be also obtained as a result from the nonlinear
systems linearization along the trajectories of the parameter θ(t). The concept of LPV
systems has been originally introduced in [9] and their modeling and identification have
been published in the book [10]. The nonlinear and time-varying behavior of the system
should be embedded in the solution of the linear dynamic input-output relationship
which depends on the scheduling variables. The existing analysis and synthesis results
for LPV systems provide a rigorous framework to obtain the gain scheduled controller
design procedure [5, 7, 8, 11, 12, 16, 17].

The several classes of LPV systems are categorized based on the state matrices which
depend on the scheduling parameters [5]. The LPV systems should be divided to two
different classes, where the first class assumes that state matrices have a rational de-
pendence on the parameters and the second class assumes that they have an arbitrary
dependence. This paper deals with the first class of the LPV systems, so the state
matrices used in this paper have a rational (affine) dependence on the gain scheduling
parameters. General approach of the worst case analysis has been introduced in the
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paper [5], where input/output interconnection gain of LPV system and an uncertain
system have been described by an integral quadratic constraints (IQC). The dissipation
inequality has been used here to compute an upper bound for L2 norm gain. The de-
sign problem of gain scheduled output feedback controllers for LPV systems has been
addressed in the paper [8] where the scheduling parameters have been uncertain and
the sufficient condition for the H∞ design problem has been in the terms of parame-
ter dependent matrix inequalities. Solved problem has been given in the terms of LMI.
Wang and Seiler have used the H∞ wind turbine controller designed at several operating
points to coordinate the blade pitch angle and the generator torque [16]. The derived
gain scheduled controller compensated the nonlinear turbine dynamics and has been
dependent on the wind speed and the power output. Another approach has been used
in the paper [12], where the authors addressed the problem of robust PI gain scheduled
controller design with H2 performance using the Lyapunov function and novel equiva-
lent systems approach. The obtained controller design procedures have been in the LMI
form.

The contribution of this paper is to provide gain scheduled controller with robust
performance conditions derived by minimization of L2 gain with respect to the measured
output and disturbance input for the feedback interconnection of the LPV system and
the controller. The modified design procedure should be also used to obtain other L2

gain performance criteria controllers e. g. robust controller or robust switched controller.
This paper has been organized to the following sections. Section 2 presents prelimi-

naries and remark the L2 gain design procedure. Section 3 addresses the new obtained
output feedback PID gain scheduled controller design procedure for L2 gain performance
and convex robust stability conditions and the final Section 4 verifies the proposed design
procedure with the examples.

Notation used in this paper is standard, P ∈ Rm×n denotes the set of real m × n
matrices, P > 0(P ≥ 0) ∈ Rn×n is a real symmetric, positive definite (semidefinite)
matrix. “*” in matrices denotes the respective transposed (conjugate) term to make
matrix symmetric. Im is an m×m identity matrix, 0m denotes the zero matrix.

2. PRELIMINARIES AND PROBLEM FORMULATION

Consider a linear parameter varying (LPV) uncertain systems with state space matrices
which are fixed function of known gain scheduled time varying parameter θ, [10] in the
form:

G :ẋ = A(ξ, θ)x+B(ξ, θ)u+Bw(ξ, θ)w

y = Cx z = Czx (1)

where

A(ξ, θ) = A0(ξ) +

p∑
j=1

Aj(ξ)θj ∈ Rn×n

B(ξ, θ) = B0(ξ) +

p∑
j=1

Bj(ξ)θj ∈ Rn×m
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Bw(ξ, θ) = Bw0(ξ) +

p∑
j=1

Bwj(ξ)θj ∈ Rn×k

x ∈ Rn, u ∈ Rm, y ∈ Rl, w ∈ Rk, z ∈ Rl (2)

denotes the state, control input, controlled output, disturbance input and system out-
put respectively. Disturbance input w(t) and output z(t) are assumed to be square
integrable, so the w(t), z(t) ∈ L2[0,∞). The system in equation (1) with θ = 0, ξ =
const is supposed to be stabilizable via static output feedback controller. Matrices
Aj(ξ), Bj(ξ), Bwj(ξ), j = 0, 1, 2, . . . , p belong to the convex set of polytope with N ver-
tices that can be formally defined as:

Ψ := {Aj(ξ), Bj(ξ), Bwj(ξ) :=

N∑
i=1

(Aji, Bji, Bwji)ξi}

N∑
i=1

ξi = 1,

N∑
i=1

ξ̇i = 0, ξi ≥ 0, j = 0, 1, 2, . . . , p. (3)

Where ξi, i = 1, 2, . . . , N are constant or time varying but unknown parameters respec-
tive uncertainties of system matrices in equation (1) satisfying (3). Aji, Bji, Bwji, C, Cz
are constant matrices of corresponding dimensions. θ ∈ Rp is a vector of known con-
stant or time varying real gain scheduled parameters. Assume that both lower and upper
bounds for these parameters and variation rates are available. Specifically:

• Each parameter θi, i = 1, 2, . . . , p belongs between known extremal values:

θi ∈ Ωp = {θi ∈ 〈θi θi〉, i = 1, 2, . . . , p}. (4)

• The rate of changes of θ is well defined at all times and satisfies:

θ̇i ∈ Ωt = {θ̇i ∈ 〈θ̇i θ̇i〉, i = 1, 2, . . . , p}. (5)

• The rate of changes of ξ̇ is well defined at all times and satisfies:

ξ̇i ∈ Ωρ = {ξ̇i ∈ 〈ρi ρi〉, i = 1, 2, . . . , N}. (6)

The plant states in equation (1) have to be extended to design the integration part
of gain scheduled controller, where the static output feedback control algorithm should
provide proportional (P) and integral (I) parts of the designed PID controller. The more
detailed explanation of the plant states extension has been published in [15]. It should be
assumed that, the PID controller with static output feedback should be designed without
any denotation changes in the system output equation (1). The following definition and
lemma is crucial for the PID controller design process.

Definition 2.1. (Boyd et al. [1]) L2 gain of the uncertain system in equation (1) is
the quantity:

sup||w||2 6=0
||z||2
||w||2

≤ γ (7)
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where L2 norm of variable w is ||w||2 =
∫∞
0
wTw dt and supreme is taken over all non

zero trajectories of the system, starting from x(0) = 0.

Lemma 2.2. (Boyd et al. [1]) Suppose there exists a quadratic function V (x) =
xTP (ξ, θ)x, where P (ξ, θ) > 0 and scalar γ ≥ 0 such that for all t, θ ∈ Ωθ, ξ ∈ Ωξ, and
x ∈ Rn hold:

L =
dV (x)

dt
+ zT z − γ2wTw ≤ 0 (8)

then the L2 gain of system (1) is less than γ.

Proof of Lemma 1 is in the integration of equation (8) from 0 to T0 > 0, with the initial
condition x(0) = 0.

V (x(T0)) +

∫ T0

0

(zT z − γ2wTw) dt ≤ 0.

Since V (x(T0)) ≥ 0, implies:

γ2wTw − zT z ≥ 0→ γ ≥ ||z||2
||w||2

. (9)

If equations (8) and (9) hold, then the trajectory x(t) of the system (1) driven by w(t)
lies within the limits and then the system is stable, [2] – [6].

The following lemma of Isidori plays an important role in the next development [3].

Lemma 2.3. Let γ > 0 be a fixed number. The positive definite matrix P (ξ, θ) sat-
isfying equation (8) exists if and only if there exists a positive definite matrix X(ξ, θ)
satisfying  Ac(ξ, θ)

TX(ξ, θ) +X(.)A(.) X(.)Bw(.) Cz
Bw(.)TX(.) −γI 0

Cz 0 −γI

 < 0

where Ac(·) is the closed loop system matrix for the uncertain system (1) and gain
scheduled controller (11).

The Lemma 2.3 is fulfilled if exists γ and positive definite matrix X(.) and the sys-
tem is asymptotically stable while the H∞ norm of its closed loop transfer function is
strictly less than γ. Note that inequality in Lemma 2 without modification is known as
the bounded real lemma [3], [4]. If the inequality condition in equation (9) is satisfied
then inequality in equation (8) should be interpreted as well known Bellman-Lyapunov
equation, which holds for the time invariant and variant systems. However it is compli-
cated to apply the Lemma 2 for the robust gain scheduled controller design, because the
above inequality is non convex with respect to uncertainty ξ and gain scheduled vari-
ables θ. This paper offers a new robust PID gain scheduled controller design procedure
where uncertainty and gain scheduled parameter are affine (convex) with respect to the
obtained robust stability conditions. Convex properties may not hold for other variables
of the controller design procedure. The plant states have to be extended that the static
output feedback control algorithm should provide proportional (P) and integral (I) parts
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of the designed PID controller. The more detailed plant states extension is described
in [15]. If we assume that the plant states are already extended with the integration
part without any changes in denotation, then the plant outputs of system (1) allows us
to design PID controller with static output feedback. The following problem has been
studied in this paper.

Problem 2.4. For uncertain gain scheduled plant design a robust static output feed-
back gain scheduled PID controller with control algorithm

u = K(θ)y +Kd(θ)ẏ = K(θ)Cx+Kd(θ)Cdẋ (10)

where

K(θ) = [Kp(θ) Ki(θ)]

is the PI part of the controller [15] and the controller in equation (10) ensures the closed
loop system robust parameter dependent quadratic stability and optimal value of L2

gain γ (7) for all θ ∈ Ωθ, θ̇ ∈ Ωt, ξ̇ ∈ Ωρ. Matrices K(θ),Kd(θ) represent gains of the
PID controller in the equation (10).

K(θ) = K0 +

p∑
j=1

Kjθj , Kd(θ) = Kd0 +

p∑
j=1

Kdjθj .

Note that Cd is the output matrix for the D-part of the controller.

3. GAIN SCHEDULED CONTROLLER DESIGN

This section formulates the theoretical approach to the robust gain scheduled controller
design with less conservative results and convex robust stability conditions of gain sched-
uled and uncertain parameters. The uncertain gain scheduled polytopic system is given
by the equation (1) and designed gain scheduled controller in equation (10) ensures the
closed loop system parameter dependent quadratic stability and robust performance
conditions by minimizing of L2 gain with respect to measurable output vector and dis-
turbance input for all uncertain plant parameters Π ∈ Ψ and gain scheduled parameters
θ ∈ Ωθ, θ̇ ∈ Ωt, ξ̇ ∈ Ωρ. The main paper results are interpreted in the next theorem.

Theorem 3.1. The closed-loop system, that consists of the uncertain plant (1) and
gain scheduled controller (10), is robust parameter dependent quadratically stable with
minimal value of L2 gain γ (7) for all uncertain plant parameters Π ∈ Ψ, gain scheduling
parameters θ ∈ Ωθ, θ̇ ∈ Ωt and rate of uncertain parameter changes ξ̇ ∈ Ωρ if for all i
the following BMI conditions hold:

Wi = W0i +

p∑
j=1

Wjiθj < 0 i = 1, 2, . . . , N (11)
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where

W0i ={w0ikl}4×4 Wji = {wjikl}4×4
w0i11 =NT

1 +N1 −NT
5 Kd0Cd − CTd KT

d0N5

wji11 =−NT
5 KdjCd − CTd KT

djN5

w0i12 =P0i +N2 −NT
1 A0i −NT

5 K0C − CTd KT
d0N6

wji12 =Pji −NT
1 Aji −NT

5 KjC − CTd KT
djN6

w0i13 =N3 −NT
1 B0i +NT

5 − CTd KT
d0N7

wji13 =−NT
1 Bji − CTd KT

djN7

w0i14 =N4 −NT
1 Bw0i − CTd KT

d0N8

wji14 =−NT
1 Bwji − CTd KT

djN8

w0i22 =−NT
2 A0i −AT0iN2 −NT

6 K0C

− CTKT
0 N6 + CTz Cz +

N∑
i=1

P0iξ̇ +

p∑
j=1

Pjiθ̇j

wji22 =−NT
2 Aji −ATjiN2 −NT

6 KjC

− CTKT
j N6 +

N∑
i=1

Pjiξ̇i

w0i23 =−AT0iN3 −NT
2 B0i +NT

6 − (K0C)TN7

wji23 =−ATjiN3 −NT
2 Bji − (KjC)TN7

w0i24 =−AT0iN4 −NT
2 Bw0 − (K0C)TN8

wji24 =−ATjiN4 −NT
2 Bwj − (KjC)TN8

w0i33 =NT
7 +N7 −NT

3 B0i −BT0iN3

wji33 =−NT
3 Bji −BTjiN3

w0i34 =−BT0iN4 −NT
3 Bwoi +N8

wji34 =−BTjiN4 −NT
3 Bwji

w0i44 =−NT
4 Bw0i −BTw0iN4 − γ2I

wji44 =−NT
4 Bwji −BTwjiN4

where dimensions of auxiliary matrices are: Ni ∈ Rn×n, i = 1, 2, N3 ∈ Rm×n, N4 ∈
Rk×n, Ni ∈ Rn×m, i = 5, 6, N7 ∈ Rm×m, N8 ∈ Rk×m.

Remark 3.2.
1. Time derivative of gain scheduling parameters θ and uncertainties ξ are set in the
diagonal entries of matrices W0i,Wji. The corresponding terms of w22 should be changed
to decrease the computational load as

N∑
i=1

Pjiξ̇ ≤
N∑
i=1

Pjiρi

N∑
i=1

Pjiθ̇j ≤
N∑
i=1

Pjiθ̇j (12)
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assuming that Pji > 0 for all i, j. Because the inequality of (11) with respect to θ and
ξ is convex, it is sufficient to ensure the negative definiteness at all corners of θ and
uncertainties ξ to guarantee the negative definiteness of (11). The inequality of (11)
is negative if and only if it is negative in 2p vertices (θ-vertices) and i = 1, 2, . . . ,N
ξ-vertices.

2. Assume that instead of equation (4) holds:

p∑
j=1

θj = 1

p∑
j=1

θ̇j = 0 θj ∈ 〈0, 1〉. (13)

The gain scheduled parameter θ is transformed to switching variable with arbitrarily
switching algorithm. The rate of changes of θ is infinite for ideal switching and in this
case Pji = 0, j = 1, 2, . . . , p, i = 1, 2, . . . , N . In the case of non ideal switching the rate of
changes of θ is finite. Using the switching algorithm the number of θ vertices decreases
to p. Inequality of the equation (11) for the case of equation (13) serves to design the
robust PID switching controller with p plant mode, arbitrarily switching algorithm and
L2 gain performance.

3. Assume that θj = 0, θ̇j = 0, j = 1, 2, . . . , p. Inequality in the equation (11) serves
to design of robust PID controller with polytopic uncertainties, parameter dependent
quadratic stability and L2 gain performance.

4. The robust PI controller design procedure should be obtained by setting the Cd = 0.

5. The robust PD gain scheduled controller design procedure could by obtained by
setting the Ki(θ) = 0 in (11).

P r o o f . To proof the Theorem 3.1 assume that the Lyapunov function in the equation
(8) is in the form:

V (x, θ, ξ) = xTP (ξ, θ)x (14)

where:

P (ξ, θ) = P0(ξ) +

p∑
j=1

Pj(ξ)θj Pj(ξ) =

N∑
i=1

Pjiξi.

Note that for quadratic stability Pj(ξ) = 0, j = 1, 2, . . . , p.
Time derivative of the equation (14) is given as:

dV

dt
= ẋTP (ξ, θ)x+ xTP (ξ̇, θ̇)x+ xTP (ξ, θ)ẋ

and by equation (8) should be obtained:

L = vT


0 P (ξ, θ) 0 0

P (.) P (ξ̇, θ̇) + CTz Cz 0 0
0 0 0 0
0 0 0 −γ2I

 v (15)
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where vT = [ẋTxTuTwT ]

P (ξ̇, θ̇) =

N∑
i=1

P0iξ̇i +

p∑
j=1

N∑
i=1

Pjiξ̇iθj +

N∑
i=1

p∑
j=1

Pjiθ̇jξi.

To join system matrices to time derivative of Lyapunov function and separate matrix P (.)
from matrices A(.), B(.), Bw(.) we have introduced auxiliary matrices Ni, i = 1, 2, . . . , 8
of corresponding dimensions in the following form:

2(N1ẋ+N2x+N3u+N4w)T (ẋ−A(ξ, θ)x−B(ξ, θ)u−Bw(ξ, θ)w) = 0 (16)

2(N5ẋ+N6x+N7u+N8w)T (u−K(θ)Cx−Kd(θ)Cdẋ) = 0. (17)

The stability condition in the equation (18) should be obtained by summarizing equa-
tions (15),(16) and (17).

L = vTWv < 0 (18)

where W = {wkl}4×4 and for each element of W holds:

w11 =NT
1 +N1 −NT

5 Kd(θ)Cd − (KdCd)
TN5

w12 =P (ξ, θ) +N2 −NT
1 A(ξ, θ)−NT

5 KC

− (KdCd)
TN6

w13 =N3 −NT
1 B(ξ, θ) +NT

5 − (KdCd)
TN7

w14 =N4 −NT
1 Bw(ξ, θ)− (KdCd)

TN8

w22 =−NT
2 A(ξ, θ)−A(ξ, θ)TN2 −NT

6 KC

− (KC)TN6 + P (ξ̇, θ̇) + CTz Cz

w23 =−A(ξ, θ)TN3 −NT
2 B(ξ, θ) +NT

6 − (KC)TN7

w24 =−A(ξ, θ)TN4 −NT
2 Bw(ξ, θ)− (KC)TN8

w33 =NT
7 +N7 −NT

3 B(ξ, θ)−B(ξ, θ)TN3

w34 =−B(ξ, θ)N4 −NT
3 Bw(ξ, θ) +N8

w44 =−NT
4 Bw(ξ, θ)−Bw(ξ, θ)TN4 − γ2I.

The inequality in the equation (18) is convex with respect to uncertainty ξ and gain
scheduled parameter θ and therefore the equation (18) should be divided to N inequali-
ties of the equation (11) which prove the sufficient robust stability conditions of Theorem
3.1. �

4. EXAMPLES

Example 4.1. Consider the following uncertain SISO linear parameter varying contin-
uous time system (extended model for PI controller design) in the form of the equation
(1) :

A(θ, ξ) = A0(ξ) +A1(ξ)θ1
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B(θ, ξ) = B0(ξ) +B1(ξ)θ1

Bw(θ, ξ) = Bw0(ξ) +Bw1(ξ)θ1

where p = 1, N = 2

A01 =

−0.5 0.7 0
−0.1 −0.8 0

0 1 0

 , B01 = Bw01 =

0.1
1
0


A02 =

−0.49 0.6 0
−.2 −0.7 0
0 1 0

, B02 = Bw02 =

0.15
0.95

0


A11 =

−0.1 0.20 0
0.25 0.05 0

0 0 0

 , B11 = Bw11 =

−0.05
0.1
0


A12 =

−0.15 0.19 0
0.2 0.04 0
0 0 0

 , B12 = Bw12 =

 0.0
0.15

0

 .
The following output matrices were concerned to obtain the PI and derivative controller
parts:

C =

[
0 1 0
0 0 1

]
, Cd =

[
0 1 0

]
.

Consider the gain scheduled parameter θ1 variation: if output y = 0 then θ1 = −1 and
if y = 1 then θ1 = 1.

The problem is to design the robust PID controller which ensures the closed-loop
robustness properties, L2 gain optimization, quadratic stability or parameter dependent
quadratic stability for the cases of:

• gain scheduled controller design with quadratic stability (QS) and parameter de-
pendent quadratic stability (PDQS) under the conditions θ ∈ 〈−1, 1〉, γ ∈ 〈0.3, 1.2〉,
maximal value of rate of gain scheduled parameter and uncertainties changes
θ̇ = 2/sec, ξ̇ = 0.2/s and θ̇ = 10/s, ξ̇ = 1/s;

• robust controller design with QS and PDQS when maximal value of rate of uncer-
tain parameter changes are ξ̇ = 0.025/s and ξ̇ = 1/s.

Numerical solution has been carried out by MATLAB 7.5 using YALMIP with solver
PENBMI21. The obtained controllers for the desired cases have been summarized as:

Case 1. Gain scheduled controller designed for θ̇ = 2/s, ξ̇ = 0.2/s QS:

R(s) =− 33.1829− 20.9522

s
− 3.2728s

+ θ(−0.4192 +
0.1270

s
+ 0.0033s).
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system disturbance

system output

Fig. 1. Simulation results of output and disturbance input for GSC

designed for case 1 when θ̇(t) ∈ 〈−2, 2〉, ξ̇ ∈ 〈−0.2, 0.2〉.

Computed L2 gain for QS γ = 0.6471 and for the case of θ = 0 maximal closed loop
eigenvalue is −0.4492. The obtained controller has been verified by simulation, where
the controller reference input has been step changed from 0.5 p.u. to 1 p.u. in 5s.
The system disturbance has changed the parameter θ in 10s with rate of θ̇ = 2/s. The
designed controller has suppressed the system disturbance and provided stable control for
the system as is shown in Figure 1. The influence of a sine wave parameter disturbance
has been studied in the experiment which results are shown in Figure 2. The controller
has successfully suppressed the disturbance influence and the calculated L2 gain value
has been γ = 0.034. The effectiveness of the disturbance suppression by the designed
controller is shown by amplitude frequency response in Figure 3.

Case 2. Gain scheduled controller designed for θ̇ = 2/s, ξ̇ = 0.2/s PDQS:

R(s) =− 25.0871− −5.5362

s
− 9.3848s

+ θ(−1.4561− 0.6251

s
+ 0.0789s)

L2 gain for PDQS γ = 0.75 and for the case of θ = 0 maximal closed loop eigenvalue is
−0.2303.

Case 3. Gain scheduled controller designed for θ̇ = 10/s, ξ̇ = 1/s QS:

R(s) =− 33.1829− 20.9522

s
− 3.2728s

+ θ(−0.4192 +
0.1270

s
+ 0.0033s)

L2 gain γ = 0.6471 and for the case of θ = 0 maximal closed loop eigenvalue is −0.4492.
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Fig. 2. Response of gain scheduled controller designed for case 1 to

sine wave disturbance input.

10-2 10-1 100 101 102

 [rad/s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fig. 3. Amplitude frequency response of closed loop system γ for

gain scheduled controller designed for case 1.

Case 4. Gain scheduled controller designed for θ̇ = 10/s, ξ̇ = 1/s PDQS:

R(s) =− 17.5965− 11.4286

s
− 7.4858s

+ θ(−1.0835− 1.8462

s
− 0.0745s)

L2 gain γ = 0.75 and for the case of θ = 0 maximal closed loop eigenvalue is −0.4463.
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Case 5. Robust controller design. Maximal value of rate of uncertain parameter change
is ξ̇ = 0.025/s QS:

R(s) = −13.7207− 9.8584

s
− 1.482s

L2 gain γ = 0.7489 and for the case of θ = 0 maximal closed loop eigenvalue is −0.4434.

Case 6. Robust controller design. Maximal value of rate of uncertain parameter change
is ξ̇ = 0.025/s PDQS:

R(s) = −15.894− 10.4877

s
− 1.6189s

L2 gain γ = 0.7487 and for the case of θ = 0 maximal closed loop eigenvalue is −0.4421.

Case 7. Robust controller design. Maximal value of rate of uncertain parameter change
is ξ̇ = 1/s QS:

R(s) = −13.7207− 9.8584

s
− 1.482s

L2 gain γ = 0.7489 and maximal closed loop eigenvalue is −0.4432.

Case 8. Robust controller design. Maximal value of rate of uncertain parameter change
is ξ̇ = 1/s PDQS:

R(s) = −4.1712− 7.0321

s
− 1.7332s

L2 gain γ = 0.75 and maximal closed loop eigenvalue is −0.4473. This case should be
interpreted as a design of robust switched controller with arbitrarily switching algorithm
for non-ideal switching due to the large value of θ̇ = 10/s. The controller has been
verified by simulation experiment, which results are shown in Figure 4.

Example 4.2. Plant model of the second example has been introduced in [13]. The
following nonlinear model should be obtained for L2 gain case after the small modifica-
tion:

ẋ = −asinx+ bu+ bww y = x

where a ∈ 〈0.8, 1〉, when a=0.8 then b=1 and a=1, b=0.5, bw = b. The above model
should be linearized in three working points x0 = {0, π/4, π/2}. The system state
space has to be increased for PI L2 gain scheduled controller design. The matrices
A(ξ, θ), B(ξ, θ), Bw(ξ, θ) which have to be obtained for PI controller design for the case
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Fig. 4. Simulation results of output and disturbance input for robust

controller designed in case 8 when ξ̇ ∈ 〈−1, 1〉.

of θi ∈ 〈−1, 1〉 are:

A(ξ, θ) ={
[
−0.4 0

1 0

]
+

[
0.117 0

0 0

]
θ1

+

[
−0.28 0

0 0

]
θ2}ξ1 +

{
[
−0.5 0

1 0

]
+

[
0.14645 0

0 0

]
θ1

+

[
−0.35355 0

0 0

]
θ2}ξ2

B(ξ, θ) = Bw(ξ, θ) =

[
1
0

]
ξ1 +

[
0.5
0

]
ξ2.

Gain scheduled parameters θi, i = 1, 2 depend on the following relation: when output
y = 0, θ1 = −1, θ2 = −1, y = π/4, θ1 = 1, θ2 = −1 and y = π/2, θ1 = 1, θ2 = 1.
The problem is to design the robust PID gain scheduled controller which ensures the
closed-loop robustness properties, L2 gain optimization, quadratic stability or parameter
dependent quadratic stability for the case that maximal value of rate of gain scheduled
parameter and uncertainties variations are θ̇ = 5/sec, ξ̇ = 0.5/s.
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The obtained GSC for QS:

R(s) =− 97.7091− 68.2203

s
− 5.3048s

+ θ1(−5.1508− 1.0318

s
− 0.4874s)

+ θ2(9.1057 +
1.7470

s
+ 0.1324s)

L2 gain γ = 0.1882 and for the case of θ = 0 maximal closed loop eigenvalue is −0.7296.
The obtained GSC for PDQS:

R(s) =151.5784 +
141.5023

s
+ 30.4907s

+ θ1(32.3374 +
14.9872

s
+ 8.6029s)

+θ2(−5.3939 +
−20.5362

s
− 6.9868s)

L2 gain for PDQS γ = 0.198 and for the case of θ = 0 maximal closed loop eigenvalue
is −1.2322. Simulation results for the second example are given in the Figure 5.

0 0.5 1 1.5 2 2.5 3

time [s]
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-0.5

0

0.5

1

1.5

r(
t)

,w
(t

),
y
(y

),
(t

)

 

controller reference

system disturbance

system output

time varying parameter 1

time varying parameter 2

Fig. 5. Response of robust gain scheduled controller obtained for QS

in example 2 to step change of reference value and variation of

parameters θ1 and θ2.

Example 4.3. The following extended matrices of the system described by the equation
(1) for the PI controller design have been used from the paper of Sato [7]:

A(ξ, θ) = A0(ξ) +A1(ξ)θ1

B(ξ, θ) = Bw(ξ, θ) = . . .
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A01 =


−4 3 5 0
0 7 −5 0

0.1 −2 −3 0
1 1 0 0

 A02 =


−4.4 3.3 5.5 0

0 7.7 −5.5 0
0.1 −1.8 −3.3 0
1 1 0 0



A11 =


1 0 1 0
2 0 −5 0
2 5 1.5 0
0 0 0 0

 A12 =


.8 0 0.8 0
1.8 0 −4.6 0
1.8 4.5 1.75 0
0 0 0 0



B01 =


0
16
−10

0

 B02 =


0

13.4
−12

0

 B11 =


1
−5
3.5
0


BT12 =

[
0.8 −4.5 3.15 0

]
C =

[
1 1 0 0
0 0 0 1

]
.

Gain scheduled parameter θ1 depends on the following relation: when y = 0, θ1 = −1
and y = 1, θ1 = 1.
For the case of max(θ̇) = 50p.u./s,max(ξ̇) = 0.5p.u./s and ρ ∗ I ≥ P (ξ, θ) the problem
is to design robust PID gain scheduled controller which will guarantee the L2 gain
performance. The following obtained results for two cases as QS and PDQS have been
summarized as:

1. The gain scheduled controller transfer function obtained for QS:

R(s) =− 193.1135− 70.992

s
− 99.8125s

+ (56.1446− 11.73

s
− 7.8123s)θ1

L2 gain γ = 0.5 and for the case of θ = 0 maximal closed loop eigenvalue is −0.4796.

2. PENBMI solver has failed to solve the problem for PDQS.

The above example should be used as effective solution for the non ideal switching
systems with arbitrarily switching algorithm, [14] due to large value of gain scheduled
parameter rate max(θ̇) = 50p.u./s Simulation results for the third example are given in
the Figure 6.

5. CONCLUSION

This paper analysis the linear uncertain parameter varying system with polytopic un-
certainties and gives the new robust gain scheduled PID controller design procedure
with L2 gain performance. The main paper result, the novel controller design approach
in Theorem 3.1, ensures that the plant uncertainties and gain scheduled parameters
are convex in the obtained robust stability conditions. The obtained design procedure
should be used under a mild modifications for robust controller design or robust switched
controller design with arbitrarily switching algorithm and guarantees the L2 gain perfor-
mance for the designed robust controllers. Simulation results imply that the robust gain
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Fig. 6. Response of robust gain scheduled controller obtained by QS

for example 3.

scheduled controller achieves better dynamic properties than the robust controller. The
gain scheduled parameters uncertainty problem is very important from the viewpoint of
the future research.
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