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Abstract. Let q(n) be a simple strange Lie superalgebra over the complex field C. In
a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations
on semi-simple Lie algebras over C and showed the difference between the properties of local
derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are
a generalization of Lie algebras and the properties of some Lie superalgebras are similar
to those of semi-simple Lie algebras, but p(n) is an exception. In this paper, we introduce
the definition of the local superderivation on q(n), give the structures and properties of the
local superderivations of q(n), and prove that every local superderivation on q(n), n > 3,
is a superderivation.
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1. INTRODUCTION

Many people have begun to research the structures and properties of local deriva-
tions since the concept of local derivation from a C*-algebra A into a Banach
A-bimodule was introduced by Kadison in 1990, see [6]. In [6] Kadison proved
that every continuous local derivation from a von Neumann algebra M into a dual
Banach M-bimodule is a derivation. Inspired by the results proved by Kadison, it is
natural to pose the question whether every (continuous) local derivation on a certain
associative or nonassociative algebra is a derivation? If it is not true, one needs to
provide examples of algebras on which local derivations are not derivations.

Around this question, the local derivations on different algebras were investigated.
In [2] and [9], the authors studied the local derivations of the full matrix algebras and
subrings of matrix rings, respectively. In [2] it was proved that for n > 3, every local
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derivation ¢: M, (R) — M,(M) is a derivation provided R is a commutative ring
with unity element and M is a 2-torsion free unital R-bimodule such that rm = mr
for all r € R and m € M. For all finite incidence algebras, each local derivation is
a derivation, see [9], where finite incidence algebras are algebras of square matrices
(of finite size) with zero entries at places whose pairs of indices do not belong to
a given reflexive transitive relation. Local derivations on a noncommutative Arens
algebra, a von Neumann algebra and a nest subalgebra have been researched in [4],
[1], [7] and [11] and obtained the affirmative answer. In particular, the authors
considered the existence problem of local derivations which are not derivations on
algebras of measurable operators in [1].

In [3], the authors investigated local derivations on finite-dimensional Lie algebras
and proved that every local derivation on semisimple Lie algebra over the complex
field C is a derivation. However, on finite-dimensional nilpotent Lie algebras L
with dimZL > 3 there exist local derivations which are not derivations. This means
a fundamental difference between semisimple and nilpotent Lie algebras as concerns
their local derivations.

Motivated by [3], we introduce the definition of local superderivations on Lie
superalgebras since a Lie superalgebra is a generalization of a Lie algebra to in-
clude a Zs-grading. It is natural ask whether every local superderivation on finite-
dimensional classical Lie superalgebra is a superderivation. In 1977, Kac in [5]
pointed out that finite dimensional simple Lie superalgebras over an algebraically
closed field of characteristic zero can be classified into classical Lie superalgebras
and Cartan type Lie superalgebras. The classical Lie superalgebras over C consist of
simple Lie algebras, basic classical Lie superalgebras and the strange Lie superalge-
bras. Now we have known the result that local superderivations are superderivations
on simple Lie algebras, see [3], but the structures and properties of the strange
Lie superalgebras are different from the simple Lie algebras. For example, the su-
perderivations are not inner. The strange Lie superalgebras include two series: p(n)
and q(n). In this paper, we will be devoted to investigating local superderivations
on q(n) with n > 3.

2. THE STRANGE LIE SUPERALGEBRAS q(n)

Let us recall the strange Lie superalgebra ¢(n) over the complex field C in [8].

Let Z be the set of integers and 75 the residue class modulo 2. The two elements
of 75 will be denote by 0 and 1. Let V' = V[;@® V; be a Z-graded vector space and let
7: V — V be an odd linear map such that —72 is the identity. The centralizer L(7)
of 7 in gl(V) is a subalgebra. Let e, ..., e, be a basis for Vj and set e,; = —7(e;)
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for i =1,...,n. Then the matrix of 7 with respect to the basis eq,...,eq, is

0 I,
(D),

Now let q(n) = L(7) be the centralizer of J,, in gl(n,n). Therefore,

q(n) = {(g i) . A,B Eg[(n)}.

Let q(n) be the subalgebra of q(n):

a(n)—{<g i) . A€ gl(n), BEﬁ[(n)}.

Then q(n) has a one-dimensional center Cls,,. Let

q(n) = d(n)/Clan.

By abuse of notation, we denote the image in q(n) of a matrix X € q(n) again by X.
When n > 3, q(n) is a simple Lie superalgebra, and q(n) is a Zs-graded vector space,
ie., q(n) =q(n)o @ q(n)1, where q(n)o is a Lie algebra and q(n); is a q(n)o-module.
Let Hy be a Cartan subalgebra of q(n)g. To describe the roots of q(n), define e, € Hf

) (3 2))e

where h is the diagonal matrix with entries (a1, ..., ay). Also denote by E;; € gl(n,n)
the matrix with 1 in row ¢ and column j and 0 elsewhere. When 1 < i # j < n, let

Aij = Eij + Entinyj,  Bij = Einyj + Envtiy-

Let hi = Eiyi+Eptinti—Fit1,i41— Entitintit1, 1 <1 <n—1Dbeabasis of Hy. Let
h,/L = EnJri’i +Ei,n+i _En+i+1,i+1 — Ei+1,n+i+17 1 < i< n—1be abasis of H,, where
H, = {(}?, }6/> : b/ € sl(n) is a diagonal rnatrix}. The roots of q(n) are given by
A=Ay=A1={e;—¢j: i #j} Take I ={a; =¢; — €541 € Hi: 1 <i<n—1},
then II is a basis of A, and every root o € A is a Z-linear combination of ay,
1<i<n—1. For a,8 € A, B# —«a there exists a unique pair of integers p and ¢
such that all 8 — pa,...,[,...,8 4+ g« are roots, and this finite sequence is said to
be the a-string through . Obviously, the a-string through S on q(n) contains at
most two roots. The subsets AT and Aj‘ of A and A, respectively, are defined by

AT =AT ={e;—g;: 1<i<j<n}, =01
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Moreover, if & = €; — €5, let
qn)* ={z € q(n)*: [h,z] = alh)x Vh € Hy};

then q(n)® = q(n)§ ® q(n)$, where q(n)§ = CA;j, q(n)§ = CB,;. With these defini-
tions we have a root space decomposition

n):H@@q(n)

a€A

where H = q(n)° = Hy & H; is the centralizer of Hy in q(n). If a = ¢, —g; € A,
<i# j < n, take zo = Aj; € q(n)§, Yo = Bij € q(n){. The set

{hi, Wy TasYo: 1<k<n—1, acA}
forms a basis of q(n). Its Lie operations are as follows: suppose that @ =¢; —¢; =

n—1
> arag, BEA, a € Z,
=1

hk; xa 04 hk xa; hka ya] = a(hk)yav [hkv hl] =0, [hka h;] =0,
Nopgtayrs ifa+peA, Tatp a4+ BeA,
Yo, ypl =

{Ea,xg =
ifa+ 8¢ A, 0 ifa+p¢ A,
NogYats ifa+fel,
[Tasys] = . No,p = *1,
ifa+p¢A,
[350“ a] =E; n+i T En+z n - Ej7n+j - En+j7ja
n—1
[(Ea, (E,a] =ho = Z akhka [ya; yfa] = E;; + EnJri,nJri + Ejj + En+j,n+j;
k=1
[Wes2a] = a(hi)yas [y Yal = NakTas  Nak = ki — kg1, + 0k — k41,5 € Z,

(R, M) = 2(0ki — Okt1.4) (Bii + Bnginti) + 200k — 0kit1) (Bit1,i+1 + Brtit1ntit1)s

where
5 1 ifi=k, () € Z
i = « S
T o ik, g

since

2, k=1,
Oéi(hk): —1, i:kil,
0, otherwise

is the integer and o € A is a Z-linear combination of o;, 1 < i< n— 1.
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A linear mapping ¢: q(n) — q(n) is called homogeneous of degree v, v € Z if
©(q(n)g) C q(n)y4p for all B € Zy. Let D,(q(n)), v € Z2, be the subspace of all
homogeneous of degree v linear maps § of q(n) such that

3([z,y]) = [0(x),y) + (=1)"P[z,8(y)] Yz €a(n)s, Yy € an), § € La.

Define D(q(n)) = Do(q(n)) @ D1(q(n)). The elements of D(q(n)) are called su-
perderivations of q(n). D(q(n)) is called the Lie superalgebra of superderivations
of g(n). For a € q(n), a linear mapping ada: q(n) — q(n) such that ad a(b) = [a, b]
for all b € q(n) is a superderivation which is called inner, all others are called outer.

Definition 2.1. A homogeneous linear mapping ¢: q(n) — q(n) of degree 7 is
called a local homogeneous superderivation of degree ~ if for any element x € q(n)
there exists a superderivation ¢,: q(n) — q(n)(depending on z) such that p(z) =
0z (). If v = 0, we call ¢ an even local superderivation; if v = 1, we call ¢ an odd
local superderivation. Let LD, be the set of all local homogeneous superderivations
of degree . The elements of LD = LDy + LD; are called local superderivations
on q(n).

Obviously, every superderivation is a local superderivation on q(n). The sum of
two local superderivations is also a local superderivations on q(n).

3. THE STRUCTURE OF THE SUPERDERIVATION ALGEBRA OF q(n)

We first consider the superderivation algebra of q(n). In [10] we can find the result
of the superderivation algebra.

Proposition 3.1 ([10]). The superderivation algebra of simple Lie superalgebra
q(n) is isomorphic to q(n)/Cla,, i.e., D(q(n)) = q(n)/Cla,.

Since q(n), n > 3, is a simple Lie superalgebra, we have ad(q(n)) = q(n). Compar-
ing ad(q(n)) with D(q(n)), it is easy to see that there exists an odd outer superderiva-
tion such that D(q(n)) = ad(q(n)) @ Cd;, where d; is an odd outer superderivation.
We will find this outer superderivation d; .

Lemma 3.2. The linear mapping d; on q(n) defined by
dl(q(n))o):O, dl(h;):hk, 1<k<n—1, dl(ya):xa VOL€A1,

is an outer superderivation of q(n).
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Proof. By the definition of the superderivation, it is easy to prove that d; is an
odd superderivation. Next, we will show that it is not an odd inner superderiva-
tion. Suppose that it is an inner superderivation, then there exists an element

n—1

uw= Y ugh} + > uaYa such that di(z) = [u,z], z € q(n),, v = 0,1. Moreover,
k=1 a€A

taking x = h;, ¢ = 1,...,n — 1, we have d1(h;) = [u,hi] = — > uqa(hi)ye = 0.

a€A
They implies u, = 0 for all & € A;. Using

n—1
di(Te;) = [, o, = Zukak(hi)yai =0, i=1,...,n—1,
k=1

we have a system of equations for uy:
n—1
> ugon(hi) =0, i=1,....n—1.
k=1

We can put uy =0, kK =1,...,n — 1 since the coefficient matrix is nondegenerate.
Then d; = 0, which is a contradiction. Therefore, d; is not an inner superderivation.
O

4. LOCAL SUPERDERIVATIONS ON LIE SUPERALGEBRA q(n)
The main result of this section is given as follows.

Theorem 4.1. Forn > 3, all local superderivations on q(n) are superderivations.

Recall that a homogeneous linear mapping ¢: q(n) — ¢(n) of degree ~ is called
a local homogeneous superderivation of degree « if for any element = € q(n), there
exists a superderivation d,: q(n) — q(n) (depending on z) such that p(z) = . (x).

Since any superderivation of q(n) is ad(q(n)) @ Cd, it follows that every even
superderivation is an inner superderivation and every odd superderivation is a lin-
ear combination of an inner superderivation and d,. For this algebra the above
definition of a local homogeneous superderivation is reformulated as follows. A ho-
mogeneous linear mapping ¢: q(n) — q(n) of degree v is called a local homogeneous
superderivation of degree ~ if for any element x € q(n) there exists an element
Uy € q(n),a; € C such that ¢(z) = [ug, 2] + azdi(z). More specifically, if ¢ is an
even local superderivation on q(n), then for any homogeneous element = € q(n),
there exists an element u, € q(n)o such that ¢(z) = [us, z]. If y is any homogeneous
even element of q(n), then we can find an element v, such that ¢(y) = [vy, y] since

di(y) = 0.
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Suppose that ¢ is any local superderivation of q(n). Fix a basis of q(n):
hi, Wy Tay Yoo 1<k<n—1, a €A,

which has been described in Section 2. Then ¢ on q(n) can be represented as a 4 x 4
matrix of the following form:

Ay A Az Ay
Agi A Azz Ay
Az1 Azp Azz Az
Ay Agr Az Ay

Since every local superderivation can be written as the sum of an even and an
odd local superderivation, we will consider separately the even and the odd local
superderivations.

We first consider the even local superderivations on q(n). Suppose that g is an
even local superderivation on q(n). For elements h; € q(n)o, b, € q(n)1, i =1,...,
n — 1, there exist elements

U—Zukhk—f—Zuxa, u—kahk—i—vaaEq

aElg aElg
respectively such that
po(hi) = [ushi] = = Y uhalhi)za,
aElg
po(hy) = [, hi] = = Y via(hi)ya.
aEAL

It is easy to see that A1y = Ayp = Ag; = Agp = 0, A1y = Az = 0. Thus, suppose
that

3 .
E Ga,i%ay wo(hy) E ba,iVa, i=1,...,n—1,
aEAg aEA

ie. A1z = (Ga,i), A2a = (ba,i)-

Lemma 4.2. Suppose that ¢ is any even superderivation on q(n). If ¢o(h) = 0,
_ n—1 n—1
where h = kzl thhy + kz tkh), (t is an algebraic number of degree more than n — 1),
= =1
then po(H) = 0.
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Proof. Let By € A be a given root. Since hy,...,h,_1 is a basis of Hp, there
exists an integer s, 1 < s < n — 1, such that Sy(hs) # 0. Let

_ QBg,s r b,Bo,s
Joo = Botny 170 T Bolhe)

For i # s, we take h = By(hs)h; — Bo(hi)hs. On the one hand, we can find an element
n—1

u= > ughi + >, uaZq such that @o(h) = [u,h]. The coeflicient of x5, in this
k=1 aEAg

equation is

ug(—PBo(hs)Bo(hi) + Bo(hi)Bo(hs)) = 0.
On the other hand, by the matrix A;3, we obtain that the coeflicient of x4, is
Bo(hs)ap,.i — Bo(hi)as,.s = Bo(hs)(ag,.i — Bo(hi) fs,) = 0.
Therefore, ag,; = Bo(hi)fs, for all i = 1,...,n — 1. Similarly, using the coefficient
of yg,, we can get bg, ; = Bo(h:)ff,-

It is sufficient to show that A3 = 0, As4 = 0. Using the matrix Ai3, A4 and the
linear of g, we can get the coeflicients of =3, yg, respectively. They are as follows:

n—1 n—1 n—1 n—1 n—1
S apatt =3 faBhi)tt = f5 > B =0, > gt = f5 " Blhu)tt = 0.
k=1 k=1 k=1 k=1 k=1

Since for k = 1,...,n—1, f(hy) are integers, and ¢ is an algebraic number of degree
n—1

more than n—1, we have Y. B(hg)t* # 0. Thus, fz = fé =0,ie., A13 =0, Aoy = 0.
k=1

Therefore, ¢o(H) = 0. O

Remark 4.3. For h above, there exists an element w € q(n) and a € C such
that po(h) = [w, h] + adi(h). Let o) = wo —adw — ady, i.e., ¢)(h) = 0. Then by
Lemma 4.2, we have ¢((H) = 0. In the following, we always suppose that ¢o(H) = 0
for every even local superderivation ¢g.

Lemma 4.4. Let po be an even local superderivation on q(n) such that
wo(H) =0, then ¢o(T+a) = *CaTra; ©0(Y+a) = £yt for alla € AT,

Proof. For a =¢; —¢; € Ay, there exists an element v = h, + Y, ugxg such
that pedo
vo(za) = [u,20] = a(hy)ze — u_gha + Z No, gUBTa+3-
a+BEA
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Since the a-string through 8 # —« contains 2 roots, without loss of generality let
us assume that 8+ o« € A, then 8 — a ¢ A. And from the above equation, the
coefficients of x5, x4+ are 0 and N, gug, respectively. Take h € Hj such that

(a+B)(h)=0,  B(h) =1
For the element h+xz,, we have o (h+za) = |ho+ Y, vy, h+x4|. The coeflicients

YEAQ
of x5, Tayp are —f(h)vg and Ny pgvg — (B + a)(h), respectively. Since @o(zq) =

wo(h + xq) and Ny g # 0, we obtain ug = vg = 0. Therefore,
©o(Ta) = CaZo + €aha-
Similarly, for y,, it is easy to prove that

vo(¥a) = chya + eq([T—a;s Yal)-
Since spanc{ziq, ha} = sl(C) and every local derivation on sly(C) is a derivation
in [3], there exists a constant ¢, such that ©o|span, {1 a,h.} =ad(caha). Thus,
©0(T+a) = £CaTta-

For the element x4 + Yo, @ = &; —; € A we can find an element u = h,, + h), +

> (ugzg +vpxg) € q(n) and b € C such that
BeA

900($a + ya) = [U; To + ya] + bdl(xa + ya) = u,a[x,a,ya] + ’U,a[y,a,xa]
+u_o(Eii + Enyinti — Ejj — Engjintj)
+v_o(Eii + Enyingi + Ejj + Engjngs) + 5,

where S contains no element of H. On the other hand,

SOO(xa + ya) = Ca%a + C;ya + e;([x,a,ya]).

The two equations combined give u_o = v_o = 0. Therefore, e, = 0, i.e., ©o(ya) =

/
c()ly()l'
Using the element y, + y—_n, we have

00(Yo + Y-a) = [h + ) ugzs, Yo + y—a} = a(h)ya — a(h)y-o = chla + ¢_oY-a-
BEA
Thus, ¢, =, i.e., 9o(Y+ta) = T Yta- O

With these lemmas, we can determine the structure of the even local superderiva-
tions on q(n).
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Proposition 4.5. Let ¢y be an even local superderivation on q(n) such that
wo(H) =0, then yy is a superderivation.

Proof. By Lemma 4.4, we have

©0(T+a) = tCaZia, P0(Yta) = £ChYta, ae AT

Since dim(Hp) =n —1and for 1 < i,k < n—1, (ax(h)) isan (n — 1) x (n — 1)
invertible matrix, we can find an element h € Hy such that o (za,) = [k, Zq,] for all
a; € I Let @) = o — ad h, then @) (z+q,) = @h(H) = 0.

Claim. If o{(za) = ¢h(zs) =0,a, 8 € AT and a+ 8 € A, then

20 (Zatp) = 00 (Yars) = 0.

A repeated application of this claim proves that ¢ = 0, i.e., ¢o = adh is a su-
perderivation.
We prove this claim. For the element x_, +x_g + 443 We have

@o(T—a +2-p + Tatp) = [hu + Z UyTo; Lo T T—p + Tatp
BeA

= —a(hu)r—o = B(hu)r—p + (@ + B)(hu)Tats + 5,

where S does not contain z_,,2_g, Ta+3. Moreover,

¢0(T—a + T + Ta+p) = CatpTa+ts-

Therefore, these identities imply coyp = (a + 8)(hy) = 0, ie., ¢{(Tats) = 0.
Similarly, using the element x_, + z_g + Ya+3, we conclude that ¢f(yats) =0. O

Next, we will consider the odd local superderivations on q(n). Suppose that ¢ is

an odd local superderivation on q(n). For elements h; € q(n)o, h; € q(n)1,i=1,...,
n71 . . n71 . .

n—1, there exist elements u = Y ujh) + Y ubya,u' = Y vphi+ > viy. and
k=1 aEAy k=1 a€EAy

constants a; € C, respectively, such that

1) pr(h) = [uhi] = = D ubo(hi)ya,

aEA,
@1(hi) = [u, hi] + aidy (hy)

= Z Vo, Na,i%a + *(Bi; + Bninti) + *(Bit1,i01 + Entittntit1)
aEAg
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where * stands for the given constants. It is easy to see that Ay; = Ao = Agg =0,
Ay3 = Aoy = 0. Therefore, suppose that

=Y ah e (B = > b wath  heHy i=1..,n-1,
[1VAN Y a€Ag

ie., Ais = (ag,;), A2z = (b, ;)

Lemma 4.6. Let 1 be an odd local superderivation on q(n) such that oy (h) € Hy,
_ n—1 n—1
where h = Y thhy + > tkh) is defined in Lemma 4.2. Then ¢1(Hy) = 0 and
k=1 k=1

e1(h}) = ci(Bii + Entingi) — civ1(Biv1iv1 + Bnyivingiv1), i=1,...,n—1,

Proof. For a fixed By € A there exists an integer I, 1 < [ < n — 1, such that
Bo(hy) # 0, since hi,...,hy_1 is a basis of Hy. Let rg, = alﬂoyl/ﬂo(hl). Similarly to
the proof of Lemma 4.2, let A’ = Bo(hi)h; — Bo(hi)h; for i # [; we get

alﬁo,izrﬁoﬂo(hi), t=1,...,n—1.

For a fixed § = &; — ¢; € A there exists s = min{4,j} — 1 for min{¢,j} > 1
ors=jfori =1 j <nors=1fori=1,j =n such that Ng; # 0. Let
T = by /Nps. Fori # s, take h' = Ngh; — Ng;h,. Then the coefficient of
xg is Npsbjs; — Ngibly o = Np s(b3 ; — 73 Np,i). Moreover, we can find an element

Z uphl, + > uaYa and a such that ¢i(h') = [u, k'] + adi(h'). Here the

a€A;
coefﬁ(:lent of x5 is ug(Ng,sNg,; — Ng,iNg,s) = 0. Therefore,

by;=13Ngs,  i=1, ...,n—L

For the element 1 (h) € Hy, the coefficients of ys, 5 are

n—1 n—1 n—1 n—1
0= aput’ =rg Y Blha)t*, — 0=3 by,t*=rh3 Nyt
k=1 k=1 k=1 k=1

Since all B(hy), N are integers and ¢ is an algebraic number, we get rg = 7"’6 =0,
ie, a,,; = 0,b,,; = 0. Thus, A1y = 0, i.e, p1(Hp) = 0, and Az3 = 0. Now we
can assume that ¢y (h}) = ¢;(Eii + Enyinti) — i1 (Big1,it1 + Engit1ntig1) by the
equation (1).
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- n—1 n—1
For the element h = ) h, we have an element u = > uphj, + > uaYa and
i=1 k=1 a€l,
a € C such that

1(h) = [u, h] + adi(h) = 2u1 + a)(E11 + Entint1) + Qun—1 — a)(Enn + Eon 2n).

n—1 i
Further, ¢1(h) = ci(Ei1 + Bptin1) + 2 (¢ — Y (Eii 4 Enigngi) — N Enn +

=2
FEsy,.90). Therefore, ¢t = —cz_l, i=2,...,n—1. Letcl=¢;fori=1,...,n—1, then
¢1(hi) = ¢i(Eii + Entineti) = Civ1(Bivvit1 + Engivintitr)- O

Lemma 4.7. Let 1 be an odd local superderivation on q(n) such that oy (h) € Hy.
Then

$1 (l‘ioz) = *aa¥Y+a, Sol(yia) = alamiou o< AT

Proof. Using the method of Lemma 4.4, we get

¢1(2a) = aaYa + bal([y-arTal)s ©1(Ya) = agaa + 5 ([Y-as Yal)-
Take the roots «, 5 such that a« — 8 € A, then a+§ ¢ A. For the element x4+ 23,
we have ¢©1(To +28) = @aYa + ba([Y=a;s Ta]) + asys + bs(ly—g, xs]). In addition, we

n—1
can find an element u = ) urh) + > u,y, € q(n) such that
k=1 YEA

@1(37@ + .135) = [’U,, Ta + xﬁ] = *Yq + *Yg — U—a(Nﬁ,—ayB—oz + [y—ouxa])
—u—g(N-q,8Ya—p + [y-p,28]) + ...,
where * stands for certain coefficients. Therefore, u_, = u_g = 0, which implies
bo = bg = 0. For the element x, + x_n, we have a_, = —ao. Thus, p1(z1s) =

+aqy+q for all a € A(')".
For the element x, + y, we have

Sol(xa + yoz) = [hu + h; + Z Uy Ty + Z VY Loy + ya} + bdl(xa + yoz)
YEA YEA

= *Tq + *Yo + u_a([x_a,xa + ya]) + 'U—a([y—ou To + yoz]) +.o
where * stands for certain coefficients. On the other hand, we know that
01(Ta + Ya) = @aYo + apTo + by ([Y—a) Yal)-

Combining the equations, since [x_q,Z4] and [y_a, yo| are linearly independent and
U—o[T—a,Ya] + V—aly—a, Ta] = 0, we obtain u_, = v_, = 0, which means b/, = 0.
Thus, ¢1(ya) = a,,x4. Using the element y, +y_n, we conclude a’_, = a,. Therefore,
©1(Yta) = a3T4a- 0
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With these results, we can determine the structure of the odd local superderiva-
tions on q(n).

Proposition 4.8. Let ¢; be an odd local superderivation on q(n) such that

p1(h) € Hy. Then p; is an odd superderivation.

Proof. By Lemmas 4.6, 4.7 we have

01(Ho) =0, ¢1(2+a) = taayta, ¢1(Y+a)= apTta, ae At

Since dim(H;) = n — 1 and (ax(h;)) is an (n — 1) x (n — 1) invertible matrix, we
can find an element i/ such that ¢y(za,) = [, %a,], i = 1,...,n — 1. Let ¢} =
@1 —adl/, then @) (210,) = ¢} (Ho) =0,i=1,...,n— 1. It is easy to prove that if
O (za) = @i (x5) =0, a, € AT and a+ 8 € A, then ¢/ (za+p) = 0 by the proof of
Proposition 4.5. Using this result, we obtain ¢} (z,) = 0 for all & € A.

Take o =¢; —€j, B=¢€j — €k, v =¢€r — €1, 6 =€ — &4, where for 1 < 4,5, k,1 < n,
none is equal to another. For the element X = x, + x3 + ¥, + ys, we can find the
element u = Y uphy + > uyxy+ > vph) + > vy, and a € C such that

k=1 YEA k=1 YEA
P (X) = [u, X] + ady (X) = (vi = vi1 =0 + 0j-1)Ya + (Uj — Vi1 — V& + Vk—1)Ys
+ vk —v1+u—vata)ry +H (v —v— v —vio Fa)zs .

Meanwhile, ¢}(X) = aly, + asys. The two equations combined yield o = aj.
Therefore,

01 (Ya) =d'zqa YaeA.
By Lemma 4.6 we have
o1 (hY) = ci(Bii + Entinti) — Cit1(Biv1,i41 + Bntitintit1), =1,...,n—1.

Let o = €5 — €542, B = €542 — €541, 1 < s <n—2. For the element Y = A}, + yo +y3,
we can find an element v = Y uih) + Y u,y, € q(n); and a € C such that
k=1 YEA

Qo/l (Y) = [uvY] + ady (Y) = (U's — Us—1 T Ust2 — Us1 + U + a)xa + (us+2 — Ug —
ug+a)rg+ (ug+ug)rots+ (U_a+u_g)(Esiosto+ Entsiantsta)+ (2us —2us_1 +
U—o + a)(Ess + Entsnts) — 2ust1 — 2us — u—g + @)(Est1,5+1 + Entstintst1)
Moreover,

<,0/1 (Y) = al(xa + x,@‘) + Cs(Ess + En—i—s,n-{-s) - Cs+1(Es+1,s+1 + En+s+1,n+s+1)-
These equations lead to
Ug +Ug = U_o +u_g =0, Us — Us—1 = Ug41 — Us.-
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They imply ¢; = cs41, s = 1,...,n — 2. Similarly, using the element h]_, +
By _1n-3+ Bp_3 5, we obtain ¢,_1 = ¢,. Therefore, assume that

o1 (k) =bh;, i=1,...,n—1.

For the element h] 4 yo, we can find an element u = kz uphy, + ZA UyYy € q(n)1
=1 ye
and A € C such that ¢} (R} + ya,) = [u, B + ya,| + A1 (R] + Yo, ), L€,

bhi + a'ze, = b(Ev1 + Entin41) — b(Ea2 + Enionie) + a'za,
= (2114 +U_n, + )\)(Ell + En+1,n+1)
— (271,2 — 2u1 — U_q, T )\)(EQQ + En+2,n+2) —+ (UQ —+ )\){Eal .

This equation implies b = a’. Therefore, we obtain
01 (o) = d'za, ) (M) =ad'he, k=1,...,n—1, a € A.

Now, we know that ¢} = a'dy, i.e., ¢1 = ad h' 4+ a’d; is an odd superderivation. [

Now we will prove Theorem 4.1.

Proof of Theorem 4.1. Since every local superderivation can be written as the
sum of an even and an odd local superderivation, we only need to prove that every
even or odd local superderivation is a superderivation. By Proposition 4.5 and Re-
mark 4.3, we prove that every even local superderivation on q(n) is a superderivation.
For an odd local superderivation ¢y, there exists an element u and a constant a € C
such that o1 (h) = [u,h] + ady(h). Let ¢} = p1 —adwu, then ¢} (h) = ady(h) € Ho.
By Lemma 4.8, we conclude that ¢} is a superderivation. Thus, ¢; is also a su-
perderivation. (I
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