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Abstract. Let q(n) be a simple strange Lie superalgebra over the complex field C. In
a paper by A.Ayupov, K.Kudaybergenov (2016), the authors studied the local derivations
on semi-simple Lie algebras over C and showed the difference between the properties of local
derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are
a generalization of Lie algebras and the properties of some Lie superalgebras are similar
to those of semi-simple Lie algebras, but p(n) is an exception. In this paper, we introduce
the definition of the local superderivation on q(n), give the structures and properties of the
local superderivations of q(n), and prove that every local superderivation on q(n), n > 3,
is a superderivation.
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1. Introduction

Many people have begun to research the structures and properties of local deriva-

tions since the concept of local derivation from a C∗-algebra A into a Banach

A-bimodule was introduced by Kadison in 1990, see [6]. In [6] Kadison proved

that every continuous local derivation from a von Neumann algebra M into a dual

BanachM -bimodule is a derivation. Inspired by the results proved by Kadison, it is

natural to pose the question whether every (continuous) local derivation on a certain

associative or nonassociative algebra is a derivation? If it is not true, one needs to

provide examples of algebras on which local derivations are not derivations.

Around this question, the local derivations on different algebras were investigated.

In [2] and [9], the authors studied the local derivations of the full matrix algebras and

subrings of matrix rings, respectively. In [2] it was proved that for n > 3, every local
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derivation ϕ : Mn(R) → Mn(M) is a derivation provided R is a commutative ring

with unity element andM is a 2-torsion free unital R-bimodule such that rm = mr

for all r ∈ R and m ∈ M. For all finite incidence algebras, each local derivation is

a derivation, see [9], where finite incidence algebras are algebras of square matrices

(of finite size) with zero entries at places whose pairs of indices do not belong to

a given reflexive transitive relation. Local derivations on a noncommutative Arens

algebra, a von Neumann algebra and a nest subalgebra have been researched in [4],

[1], [7] and [11] and obtained the affirmative answer. In particular, the authors

considered the existence problem of local derivations which are not derivations on

algebras of measurable operators in [1].

In [3], the authors investigated local derivations on finite-dimensional Lie algebras

and proved that every local derivation on semisimple Lie algebra over the complex

field C is a derivation. However, on finite-dimensional nilpotent Lie algebras L

with dimL > 3 there exist local derivations which are not derivations. This means

a fundamental difference between semisimple and nilpotent Lie algebras as concerns

their local derivations.

Motivated by [3], we introduce the definition of local superderivations on Lie

superalgebras since a Lie superalgebra is a generalization of a Lie algebra to in-

clude a Z2-grading. It is natural ask whether every local superderivation on finite-

dimensional classical Lie superalgebra is a superderivation. In 1977, Kac in [5]

pointed out that finite dimensional simple Lie superalgebras over an algebraically

closed field of characteristic zero can be classified into classical Lie superalgebras

and Cartan type Lie superalgebras. The classical Lie superalgebras over C consist of

simple Lie algebras, basic classical Lie superalgebras and the strange Lie superalge-

bras. Now we have known the result that local superderivations are superderivations

on simple Lie algebras, see [3], but the structures and properties of the strange

Lie superalgebras are different from the simple Lie algebras. For example, the su-

perderivations are not inner. The strange Lie superalgebras include two series: p(n)

and q(n). In this paper, we will be devoted to investigating local superderivations

on q(n) with n > 3.

2. The strange Lie superalgebras q(n)

Let us recall the strange Lie superalgebra q(n) over the complex field C in [8].

Let Z be the set of integers and Z2 the residue class modulo 2. The two elements

of Z2 will be denote by 0 and 1. Let V = V0⊕V1 be a Z2-graded vector space and let

τ : V → V be an odd linear map such that −τ2 is the identity. The centralizer L(τ)

of τ in gl(V ) is a subalgebra. Let e1, . . . , en be a basis for V0 and set en+i = −τ(ei)
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for i = 1, . . . , n. Then the matrix of τ with respect to the basis e1, . . . , e2n is

Jn =

(
0 In
In 0

)
.

Now let q̂(n) = L(τ) be the centralizer of Jn in gl(n, n). Therefore,

q̂(n) =

{(
A B

B A

)
: A,B ∈ gl(n)

}
.

Let q̃(n) be the subalgebra of q̂(n):

q̃(n) =

{(
A B

B A

)
: A ∈ gl(n), B ∈ sl(n)

}
.

Then q̃(n) has a one-dimensional center CI2n. Let

q(n) = q̃(n)/CI2n.

By abuse of notation, we denote the image in q(n) of a matrix X ∈ q̃(n) again by X .

When n > 3, q(n) is a simple Lie superalgebra, and q(n) is a Z2-graded vector space,

i.e., q(n) = q(n)0 ⊕ q(n)1, where q(n)0 is a Lie algebra and q(n)1 is a q(n)0-module.

Let H0 be a Cartan subalgebra of q(n)0. To describe the roots of q(n), define εi ∈ H∗
0

by

εi

((
h 0

0 h

))
= ai,

where h is the diagonal matrix with entries (a1, . . . , an). Also denote by Eij ∈ gl(n, n)

the matrix with 1 in row i and column j and 0 elsewhere. When 1 6 i 6= j 6 n, let

Aij = Eij + En+i,n+j , Bij = Ei,n+j + En+i,j .

Let hi = Eii+En+i,n+i−Ei+1,i+1−En+i+1,n+i+1, 1 6 i 6 n−1 be a basis ofH0. Let

h′
i = En+i,i+Ei,n+i−En+i+1,i+1−Ei+1,n+i+1, 1 6 i 6 n−1 be a basis of H1, where

H1 =
{(

0 h′

h′ 0

)
: h′ ∈ sl(n) is a diagonal matrix

}
. The roots of q(n) are given by

∆ = ∆0 = ∆1 = {εi − εj : i 6= j}. Take Π = {αi = εi − εi+1 ∈ H∗
0 : 1 6 i 6 n− 1},

then Π is a basis of ∆, and every root α ∈ ∆ is a Z-linear combination of αi,

1 6 i 6 n− 1. For α, β ∈ ∆, β 6= −α there exists a unique pair of integers p and q

such that all β − pα, . . . , β, . . . , β + qα are roots, and this finite sequence is said to

be the α-string through β. Obviously, the α-string through β on q(n) contains at

most two roots. The subsets ∆+ and ∆+
γ of ∆ and ∆γ , respectively, are defined by

∆+ = ∆+
γ = {εi − εj : 1 6 i < j 6 n}, γ = 0, 1.
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Moreover, if α = εi − εj , let

q(n)α = {x ∈ q(n)α : [h, x] = α(h)x ∀h ∈ H0};

then q(n)α = q(n)α0 ⊕ q(n)α1 , where q(n)
α
0 = CAij , q(n)

α
1 = CBij . With these defini-

tions we have a root space decomposition

q(n) = H ⊕
⊕

α∈∆

q(n)α,

where H = q(n)0 = H0 ⊕ H1 is the centralizer of H0 in q(n). If α = εi − εj ∈ ∆,

1 6 i 6= j 6 n, take xα = Aij ∈ q(n)α0 , yα = Bij ∈ q(n)α1 . The set

{hk, h
′
k, xα, yα : 1 6 k 6 n− 1, α ∈ ∆}

forms a basis of q(n). Its Lie operations are as follows: suppose that α = εi − εj =
n−1∑
k=1

akαk, β ∈ ∆, ak ∈ Z,

[hk, xα] = α(hk)xα, [hk, yα] = α(hk)yα, [hk, hl] = 0, [hk, h
′
l] = 0,

[xα, xβ ] =

{
Nα,βxα+β if α+ β ∈ ∆,

0 if α+ β /∈ ∆,
[yα, yβ ] =

{
xα+β if α+ β ∈ ∆,

0 if α+ β /∈ ∆,

[xα, yβ] =

{
Nα,βyα+β if α+ β ∈ ∆,

0 if α+ β /∈ ∆,
Nα,β = ±1,

[xα, y−α] = Ei,n+i + En+i,n − Ej,n+j − En+j,j ,

[xα, x−α] = hα =

n−1∑

k=1

akhk, [yα, y−α] = Eii + En+i,n+i + Ejj + En+j,n+j ,

[h′
k, xα] = α(hk)yα, [h′

k, yα] = Nα,kxα, Nα,k = δki − δk+1,i + δkj − δk+1,j ∈ Z,

[h′
k, h

′
i] = 2(δki − δk+1,i)(Eii +En+i,n+i)+ 2(δki− δk,i+1)(Ei+1,i+1 +En+i+1,n+i+1),

where

δki =

{
1 if i = k,

0 if i 6= k,
α(hk) ∈ Z

since

αi(hk) =





2, k = i,

−1, i = k ± 1,

0, otherwise

is the integer and α ∈ ∆ is a Z-linear combination of αi, 1 6 i 6 n− 1.
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A linear mapping ϕ : q(n) → q(n) is called homogeneous of degree γ, γ ∈ Z2 if

ϕ(q(n)β) ⊆ q(n)γ+β for all β ∈ Z2. Let Dγ(q(n)), γ ∈ Z2, be the subspace of all

homogeneous of degree γ linear maps δ of q(n) such that

δ([x, y]) = [δ(x), y] + (−1)γβ[x, δ(y)] ∀x ∈ q(n)β , ∀ y ∈ q(n), β ∈ Z2.

Define D(q(n)) = D0(q(n)) ⊕ D1(q(n)). The elements of D(q(n)) are called su-

perderivations of q(n). D(q(n)) is called the Lie superalgebra of superderivations

of q(n). For a ∈ q(n), a linear mapping ad a : q(n) → q(n) such that ad a(b) = [a, b]

for all b ∈ q(n) is a superderivation which is called inner, all others are called outer.

Definition 2.1. A homogeneous linear mapping ϕ : q(n) → q(n) of degree γ is

called a local homogeneous superderivation of degree γ if for any element x ∈ q(n)

there exists a superderivation δx : q(n) → q(n)(depending on x) such that ϕ(x) =

δx(x). If γ = 0, we call ϕ an even local superderivation; if γ = 1, we call ϕ an odd

local superderivation. Let LDγ be the set of all local homogeneous superderivations

of degree γ. The elements of LD = LD0 + LD1 are called local superderivations

on q(n).

Obviously, every superderivation is a local superderivation on q(n). The sum of

two local superderivations is also a local superderivations on q(n).

3. The structure of the superderivation algebra of q(n)

We first consider the superderivation algebra of q(n). In [10] we can find the result

of the superderivation algebra.

Proposition 3.1 ([10]). The superderivation algebra of simple Lie superalgebra

q(n) is isomorphic to q̂(n)/CI2n, i.e., D(q(n)) ∼= q̂(n)/CI2n.

Since q(n), n > 3, is a simple Lie superalgebra, we have ad(q(n)) = q(n). Compar-

ing ad(q(n)) with D(q(n)), it is easy to see that there exists an odd outer superderiva-

tion such that D(q(n)) = ad(q(n))⊕ Cd1, where d1 is an odd outer superderivation.

We will find this outer superderivation d1.

Lemma 3.2. The linear mapping d1 on q(n) defined by

d1(q(n))0) = 0, d1(h
′
k) = hk, 1 6 k 6 n− 1, d1(yα) = xα ∀α ∈ ∆1,

is an outer superderivation of q(n).
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P r o o f. By the definition of the superderivation, it is easy to prove that d1 is an

odd superderivation. Next, we will show that it is not an odd inner superderiva-

tion. Suppose that it is an inner superderivation, then there exists an element

u =
n−1∑
k=1

ukh
′
k +

∑
α∈∆

uαyα such that d1(x) = [u, x], x ∈ q(n)γ , γ = 0, 1. Moreover,

taking x = hi, i = 1, . . . , n − 1, we have d1(hi) = [u, hi] = −
∑
α∈∆

uαα(hi)yα = 0.

They implies uα = 0 for all α ∈ ∆1. Using

d1(xαi
) = [u, xαi

] =

n−1∑

k=1

ukαk(hi)yαi
= 0, i = 1, . . . , n− 1,

we have a system of equations for uk:

n−1∑

k=1

ukαk(hi) = 0, i = 1, . . . , n− 1.

We can put uk = 0, k = 1, . . . , n − 1 since the coefficient matrix is nondegenerate.

Then d1 = 0, which is a contradiction. Therefore, d1 is not an inner superderivation.

�

4. Local superderivations on Lie superalgebra q(n)

The main result of this section is given as follows.

Theorem 4.1. For n > 3, all local superderivations on q(n) are superderivations.

Recall that a homogeneous linear mapping ϕ : q(n) → q(n) of degree γ is called

a local homogeneous superderivation of degree γ if for any element x ∈ q(n), there

exists a superderivation δx : q(n) → q(n) (depending on x) such that ϕ(x) = δx(x).

Since any superderivation of q(n) is ad(q(n)) ⊕ Cd1, it follows that every even

superderivation is an inner superderivation and every odd superderivation is a lin-

ear combination of an inner superderivation and d1. For this algebra the above

definition of a local homogeneous superderivation is reformulated as follows. A ho-

mogeneous linear mapping ϕ : q(n) → q(n) of degree γ is called a local homogeneous

superderivation of degree γ if for any element x ∈ q(n) there exists an element

ux ∈ q(n), ax ∈ C such that ϕ(x) = [ux, x] + axd1(x). More specifically, if ϕ is an

even local superderivation on q(n), then for any homogeneous element x ∈ q(n)γ
there exists an element ux ∈ q(n)0 such that ϕ(x) = [ux, x]. If y is any homogeneous

even element of q(n), then we can find an element vy such that ϕ(y) = [vy, y] since

d1(y) = 0.
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Suppose that ϕ is any local superderivation of q(n). Fix a basis of q(n):

hk, h′
k, xα, yα, 1 6 k 6 n− 1, α ∈ ∆,

which has been described in Section 2. Then ϕ on q(n) can be represented as a 4× 4

matrix of the following form:




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 .

Since every local superderivation can be written as the sum of an even and an

odd local superderivation, we will consider separately the even and the odd local

superderivations.

We first consider the even local superderivations on q(n). Suppose that ϕ0 is an

even local superderivation on q(n). For elements hi ∈ q(n)0, h
′
i ∈ q(n)1, i = 1, . . . ,

n− 1, there exist elements

u =

n−1∑

k=1

ui
khk +

∑

α∈∆0

ui
αxα, u′ =

n−1∑

k=1

vikhk +
∑

α∈∆0

viαxα ∈ q(n)0

respectively such that

ϕ0(hi) = [u, hi] = −
∑

α∈∆0

ui
αα(hi)xα,

ϕ0(h
′
i) = [u′, h′

i] = −
∑

α∈∆1

viαα(hi)yα.

It is easy to see that A11 = A12 = A21 = A22 = 0, A14 = A23 = 0. Thus, suppose

that

ϕ0(hi) =
∑

α∈∆0

aα,ixα, ϕ0(h
′
i) =

∑

α∈∆1

bα,iyα, i = 1, . . . , n− 1,

i.e. A13 = (aα,i), A24 = (bα,i).

Lemma 4.2. Suppose that ϕ0 is any even superderivation on q(n). If ϕ0(h̄) = 0,

where h̄ =
n−1∑
k=1

tkhk +
n−1∑
k=1

tkh′
k (t is an algebraic number of degree more than n− 1),

then ϕ0(H) = 0.
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P r o o f. Let β0 ∈ ∆ be a given root. Since h1, . . . , hn−1 is a basis of H0, there

exists an integer s, 1 6 s 6 n− 1, such that β0(hs) 6= 0. Let

fβ0
=

aβ0,s

β0(hs)
, f ′

β0
=

bβ0,s

β0(hs)
.

For i 6= s, we take h = β0(hs)hi−β0(hi)hs. On the one hand, we can find an element

u =
n−1∑
k=1

ukhk +
∑

α∈∆0

uαxα such that ϕ0(h) = [u, h]. The coefficient of xβ0
in this

equation is

uβ(−β0(hs)β0(hi) + β0(hi)β0(hs)) = 0.

On the other hand, by the matrix A13, we obtain that the coefficient of xβ0
is

β0(hs)aβ0,i − β0(hi)aβ0,s = β0(hs)(aβ0,i − β0(hi)fβ0
) = 0.

Therefore, aβ0,i = β0(hi)fβ0
for all i = 1, . . . , n − 1. Similarly, using the coefficient

of yβ0
, we can get bβ0,i = β0(hi)f

′
β0
.

It is sufficient to show that A13 = 0, A24 = 0. Using the matrix A13, A24 and the

linear of ϕ0, we can get the coefficients of xβ , yβ , respectively. They are as follows:

n−1∑

k=1

aβ,kt
k =

n−1∑

k=1

fββ(hk)t
k = fβ

n−1∑

k=1

β(hk)t
k = 0,

n−1∑

k=1

bβ,kt
k = f ′

β

n−1∑

k=1

β(hk)t
k = 0.

Since for k = 1, . . . , n− 1, β(hk) are integers, and t is an algebraic number of degree

more than n−1, we have
n−1∑
k=1

β(hk)t
k 6= 0. Thus, fβ = f ′

β = 0, i.e., A13 = 0, A24 = 0.

Therefore, ϕ0(H) = 0. �

Remark 4.3. For h̄ above, there exists an element w ∈ q(n) and a ∈ C such

that ϕ0(h̄) = [w, h̄] + ad1(h̄). Let ϕ
′
0 = ϕ0 − adw − ad1, i.e., ϕ

′
0(h̄) = 0. Then by

Lemma 4.2, we have ϕ′
0(H) = 0. In the following, we always suppose that ϕ0(H) = 0

for every even local superderivation ϕ0.

Lemma 4.4. Let ϕ0 be an even local superderivation on q(n) such that

ϕ0(H) = 0, then ϕ0(x±α) = ±cαx±α, ϕ0(y±α) = ±c′αy±α for all α ∈ ∆+.

P r o o f. For α = εi − εj ∈ ∆0, there exists an element u = hu +
∑

β∈∆0

uβxβ such

that

ϕ0(xα) = [u, xα] = α(hu)xα − u−αhα +
∑

α+β∈∆

Nα,βuβxα+β .
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Since the α-string through β 6= −α contains 2 roots, without loss of generality let

us assume that β + α ∈ ∆, then β − α /∈ ∆. And from the above equation, the

coefficients of xβ , xα+β are 0 and Nα,βuβ , respectively. Take h ∈ H0 such that

(α + β)(h) = 0, β(h) = 1.

For the element h+xα, we have ϕ0(h+xα) =
[
hv+

∑
γ∈∆0

vγxγ , h+xα

]
. The coefficients

of xβ , xα+β are −β(h)vβ and Nα,βvβ − (β + α)(h), respectively. Since ϕ0(xα) =

ϕ0(h+ xα) and Nα,β 6= 0, we obtain uβ = vβ = 0. Therefore,

ϕ0(xα) = cαxα + eαhα.

Similarly, for yα, it is easy to prove that

ϕ0(yα) = c′αyα + e′α([x−α, yα]).

Since spanC{x±α, hα} ∼= sl2(C) and every local derivation on sl2(C) is a derivation

in [3], there exists a constant cα such that ϕ0|span
C
{x±α,hα} =ad(cαhα). Thus,

ϕ0(x±α) = ±cαx±α.

For the element xα + yα, α = εi − εj ∈ ∆ we can find an element u = hu + h′
u +∑

β∈∆

(uβxβ + vβxβ) ∈ q(n) and b ∈ C such that

ϕ0(xα + yα) = [u, xα + yα] + bd1(xα + yα) = u−α[x−α, yα] + v−α[y−α, xα]

+ u−α(Eii + En+i,n+i − Ejj − En+j,n+j)

+ v−α(Eii + En+i,n+i + Ejj + En+j,n+j) + S,

where S contains no element of H . On the other hand,

ϕ0(xα + yα) = cαxα + c′αyα + e′α([x−α, yα]).

The two equations combined give u−α = v−α = 0. Therefore, e′α = 0, i.e., ϕ0(yα) =

c′αyα.

Using the element yα + y−α, we have

ϕ0(yα + y−α) =

[
h+

∑

β∈∆

uβxβ , yα + y−α

]
= α(h)yα − α(h)y−α = c′αyα + c′−αy−α.

Thus, c′−α = c′α, i.e., ϕ0(y±α) = ±c′αy±α. �

With these lemmas, we can determine the structure of the even local superderiva-

tions on q(n).
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Proposition 4.5. Let ϕ0 be an even local superderivation on q(n) such that

ϕ0(H) = 0, then ϕ0 is a superderivation.

P r o o f. By Lemma 4.4, we have

ϕ0(x±α) = ±cαx±α, ϕ0(y±α) = ±c′αy±α, α ∈ ∆+.

Since dim(H0) = n − 1 and for 1 6 i, k 6 n − 1, (αk(hi)) is an (n − 1) × (n − 1)

invertible matrix, we can find an element ĥ ∈ H0 such that ϕ0(xαi
) = [ĥ, xαi

] for all

αi ∈ Π. Let ϕ′
0 = ϕ0 − ad ĥ, then ϕ′

0(x±αi
) = ϕ′

0(H) = 0.

Claim. If ϕ′
0(xα) = ϕ′

0(xβ) = 0, α, β ∈ ∆+ and α+ β ∈ ∆, then

ϕ′
0(xα+β) = ϕ′

0(yα+β) = 0.

A repeated application of this claim proves that ϕ′
0 = 0, i.e., ϕ0 = ad ĥ is a su-

perderivation.

We prove this claim. For the element x−α + x−β + xα+β we have

ϕ′
0(x−α + x−β + xα+β) =

[
hu +

∑

β∈∆

uγxγ , x−α + x−β + xα+β

]

= − α(hu)x−α − β(hu)x−β + (α+ β)(hu)xα+β + S,

where S does not contain x−α, x−β , xα+β . Moreover,

ϕ′
0(x−α + x−β + xα+β) = cα+βxα+β .

Therefore, these identities imply cα+β = (α + β)(hu) = 0, i.e., ϕ′
0(xα+β) = 0.

Similarly, using the element x−α + x−β + yα+β, we conclude that ϕ
′
0(yα+β) = 0. �

Next, we will consider the odd local superderivations on q(n). Suppose that ϕ1 is

an odd local superderivation on q(n). For elements hi ∈ q(n)0, h
′
i ∈ q(n)1, i = 1, . . . ,

n− 1, there exist elements u =
n−1∑
k=1

ui
kh

′
k +

∑
α∈∆1

ui
αyα, u

′ =
n−1∑
k=1

vikh
′
k +

∑
α∈∆1

viαyα and

constants ai ∈ C, respectively, such that

(1) ϕ1(hi) = [u, hi] = −
∑

α∈∆1

ui
αα(hi)yα,

ϕ1(h
′
i) = [u′, h′

i] + aid1(h
′
i)

=
∑

α∈∆0

viαNα,ixα + ∗(Eii + En+i,n+i) + ∗(Ei+1,i+1 + En+i+1,n+i+1)
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where ∗ stands for the given constants. It is easy to see that A11 = A12 = A22 = 0,

A13 = A24 = 0. Therefore, suppose that

ϕ1(hi) =
∑

α∈∆1

a′α,iyα, ϕ1(h
′
i) =

∑

α∈∆0

b′α,ixα + h, h ∈ H0, i = 1, . . . , n− 1,

i.e., A14 = (a′α,i), A23 = (b′α,i).

Lemma 4.6. Let ϕ1 be an odd local superderivation on q(n) such that ϕ1(h̄) ∈ H0,

where h̄ =
n−1∑
k=1

tkhk +
n−1∑
k=1

tkh′
k is defined in Lemma 4.2. Then ϕ1(H0) = 0 and

ϕ1(h
′
i) = ci(Eii + En+i,n+i)− ci+1(Ei+1,i+1 + En+i+1,n+i+1), i = 1, . . . , n− 1.

P r o o f. For a fixed β0 ∈ ∆ there exists an integer l, 1 6 l 6 n − 1, such that

β0(hl) 6= 0, since h1, . . . , hn−1 is a basis of H0. Let rβ0
= a′β0,l

/β0(hl). Similarly to

the proof of Lemma 4.2, let h′ = β0(hl)h
′
i − β0(hi)h

′
l for i 6= l; we get

a′β0,i
= rβ0

β0(hi), i = 1, . . . , n− 1.

For a fixed β = εi − εj ∈ ∆ there exists s = min{i, j} − 1 for min{i, j} > 1

or s = j for i = 1, j < n or s = 1 for i = 1, j = n such that Nβ,s 6= 0. Let

r′β = b′β,s/Nβ,s. For i 6= s, take h′ = Nβ,sh
′
i − Nβ,ih

′
s. Then the coefficient of

xβ is Nβ,sb
′
β,i − Nβ,ib

′
β,s = Nβ,s(b

′
β,i − r′βNβ,i). Moreover, we can find an element

u =
∑
k=1

ukh
′
k +

∑
α∈∆1

uαyα and a such that ϕ1(h
′) = [u, h′] + ad1(h

′). Here the

coefficient of xβ is uβ(Nβ,sNβ,i −Nβ,iNβ,s) = 0. Therefore,

b′β,i = r′βNβ,i, i = 1, . . . , n− 1.

For the element ϕ1(h̄) ∈ H0, the coefficients of yβ, xβ are

0 =
n−1∑

k=1

a′β,kt
k = rβ

n−1∑

k=1

β(hk)t
k, 0 =

n−1∑

k=1

b′β,kt
k = r′β

n−1∑

k=1

Nβ,kt
k.

Since all β(hk), Nβ,k are integers and t is an algebraic number, we get rβ = r′β = 0,

i.e., a′α,i = 0, b′α,i = 0. Thus, A14 = 0, i.e., ϕ1(H0) = 0, and A23 = 0. Now we

can assume that ϕ1(h
′
i) = cii(Eii +En+i,n+i)− cii+1(Ei+1,i+1 +En+i+1,n+i+1) by the

equation (1).
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For the element h̃ =
n−1∑
i=1

h′
i we have an element u =

n−1∑
k=1

ukh
′
k +

∑
α∈∆1

uαyα and

a ∈ C such that

ϕ1(h̃) = [u, h̃] + ad1(h̃) = (2u1 + a)(E11 + En+1,n+1) + (2un−1 − a)(Enn + E2n,2n).

Further, ϕ1(h̃) = c11(E11 +En+1,n+1) +
n−1∑
i=2

(cii − ci−1
i )(Eii +En+i,n+i)− cn−1

n (Enn +

E2n,2n). Therefore, c
i
i = −ci−1

i , i = 2, . . . , n− 1. Let cii = ci for i = 1, . . . , n− 1, then

ϕ1(h
′
i) = ci(Eii + En+i,n+i)− ci+1(Ei+1,i+1 + En+i+1,n+i+1). �

Lemma 4.7. Let ϕ1 be an odd local superderivation on q(n) such that ϕ1(h̄) ∈ H0.

Then

ϕ1(x±α) = ±aαy±α, ϕ1(y±α) = a′αx±α, α ∈ ∆+.

P r o o f. Using the method of Lemma 4.4, we get

ϕ1(xα) = aαyα + bα([y−α, xα]), ϕ1(yα) = a′αxα + b′α([y−α, yα]).

Take the roots α, β such that α−β ∈ ∆, then α+β /∈ ∆. For the element xα+xβ ,

we have ϕ1(xα + xβ) = aαyα + bα([y−α, xα]) + aβyβ + bβ([y−β , xβ ]). In addition, we

can find an element u =
n−1∑
k=1

ukh
′
k +

∑
γ∈∆

uγyγ ∈ q(n) such that

ϕ1(xα + xβ) = [u, xα + xβ ] = ∗yα + ∗yβ − u−α(Nβ,−αyβ−α + [y−α, xα])

− u−β(N−α,βyα−β + [y−β, xβ ]) + . . . ,

where ∗ stands for certain coefficients. Therefore, u−α = u−β = 0, which implies

bα = bβ = 0. For the element xα + x−α, we have a−α = −aα. Thus, ϕ1(x±α) =

±aαy±α for all α ∈ ∆+
0 .

For the element xα + yα we have

ϕ1(xα + yα) =

[
hu + h′

u +
∑

γ∈∆

uγxγ +
∑

γ∈∆

vγyγ , xα + yα

]
+ bd1(xα + yα)

= ∗xα + ∗yα + u−α([x−α, xα + yα]) + v−α([y−α, xα + yα]) + . . . ,

where ∗ stands for certain coefficients. On the other hand, we know that

ϕ1(xα + yα) = aαyα + a′αxα + b′α([y−α, yα]).

Combining the equations, since [x−α, xα] and [y−α, yα] are linearly independent and

u−α[x−α, yα] + v−α[y−α, xα] = 0, we obtain u−α = v−α = 0, which means b′α = 0.

Thus, ϕ1(yα) = a′αxα. Using the element yα+y−α, we conclude a
′
−α = a′α. Therefore,

ϕ1(y±α) = a′αx±α. �
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With these results, we can determine the structure of the odd local superderiva-

tions on q(n).

Proposition 4.8. Let ϕ1 be an odd local superderivation on q(n) such that

ϕ1(h̄) ∈ H0. Then ϕ1 is an odd superderivation.

P r o o f. By Lemmas 4.6, 4.7 we have

ϕ1(H0) = 0, ϕ1(x±α) = ±aαy±α, ϕ1(y±α) = a′αx±α, α ∈ ∆+.

Since dim(H1) = n − 1 and (αk(hi)) is an (n − 1) × (n − 1) invertible matrix, we

can find an element ĥ′ such that ϕ1(xαi
) = [ĥ′, xαi

], i = 1, . . . , n − 1. Let ϕ′
1 =

ϕ1 − ad ĥ′, then ϕ′
1(x±αi

) = ϕ′
1(H0) = 0, i = 1, . . . , n− 1. It is easy to prove that if

ϕ′
1(xα) = ϕ′

1(xβ) = 0, α, β ∈ ∆+ and α+ β ∈ ∆, then ϕ′
1(xα+β) = 0 by the proof of

Proposition 4.5. Using this result, we obtain ϕ′
1(xα) = 0 for all α ∈ ∆.

Take α = εi − εj, β = εj − εk, γ = εk − εl, δ = εl − εi, where for 1 6 i, j, k, l 6 n,

none is equal to another. For the element X = xα + xβ + yγ + yδ, we can find the

element u =
∑
k=1

ukhk +
∑
γ∈∆

uγxγ +
∑
k=1

vkh
′
k +

∑
γ∈∆

vγyγ and a ∈ C such that

ϕ′
1(X) = [u,X ] + ad1(X) = (vi − vi−1 − vj + vj−1)yα + (vj − vj−1 − vk + vk−1)yβ

+ (vk − vk−1 + vl − vl−1 + a)xγ + (vl − vl−1 + vi − vi−1 + a)xδ + . . . .

Meanwhile, ϕ′
1(X) = a′γyγ + a′δyδ. The two equations combined yield a′γ = a′δ.

Therefore,

ϕ′
1(yα) = a′xα ∀α ∈ ∆.

By Lemma 4.6 we have

ϕ′
1(h

′
i) = ci(Eii + En+i,n+i)− ci+1(Ei+1,i+1 + En+i+1,n+i+1), i = 1, . . . , n− 1.

Let α = εs−εs+2, β = εs+2−εs+1, 1 6 s 6 n−2. For the element Y = h′
s+yα+yβ,

we can find an element u =
∑
k=1

ukh
′
k +

∑
γ∈∆

uγyγ ∈ q(n)1 and a ∈ C such that

ϕ′
1(Y ) = [u, Y ] + ad1(Y ) = (us − us−1 + us+2 − us+1 + uα + a)xα + (us+2 − us −

uβ+a)xβ+(uα+uβ)xα+β+(u−α+u−β)(Es+2,s+2+En+s+2,n+s+2)+(2us−2us−1+

u−α + a)(Ess + En+s,n+s) − (2us+1 − 2us − u−β + a)(Es+1,s+1 + En+s+1,n+s+1).

Moreover,

ϕ′
1(Y ) = a′(xα + xβ) + cs(Ess + En+s,n+s)− cs+1(Es+1,s+1 + En+s+1,n+s+1).

These equations lead to

uα + uβ = u−α + u−β = 0, us − us−1 = us+1 − us.
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They imply cs = cs+1, s = 1, . . . , n − 2. Similarly, using the element h′
n−1 +

Bn−1,n−3 +Bn−3,n, we obtain cn−1 = cn. Therefore, assume that

ϕ′
1(h

′
i) = bhi, i = 1, . . . , n− 1.

For the element h′
1 + yα1

we can find an element u =
∑
k=1

ukh
′
k +

∑
γ∈∆

uγyγ ∈ q(n)1

and λ ∈ C such that ϕ′
1(h

′
1 + yα1

) = [u, h′
1 + yα1

] + λd1(h
′
1 + yα1

), i.e.,

bh1 + a′xα1
= b(E11 + En+1,n+1)− b(E22 + En+2,n+2) + a′xα1

= (2u1 + u−α1
+ λ)(E11 + En+1,n+1)

− (2u2 − 2u1 − u−α1
+ λ)(E22 + En+2,n+2) + (u2 + λ)xα1

.

This equation implies b = a′. Therefore, we obtain

ϕ′
1(yα) = a′xα, ϕ

′
1(h

′
k) = a′hk, k = 1, . . . , n− 1, α ∈ ∆.

Now, we know that ϕ′
1 = a′d1, i.e., ϕ1 = ad ĥ′ + a′d1 is an odd superderivation. �

Now we will prove Theorem 4.1.

P r o o f of Theorem 4.1. Since every local superderivation can be written as the

sum of an even and an odd local superderivation, we only need to prove that every

even or odd local superderivation is a superderivation. By Proposition 4.5 and Re-

mark 4.3, we prove that every even local superderivation on q(n) is a superderivation.

For an odd local superderivation ϕ1, there exists an element u and a constant a ∈ C

such that ϕ1(h̄) = [u, h̄] + ad1(h̄). Let ϕ
′
1 = ϕ1 − adu, then ϕ′

1(h̄) = ad1(h̄) ∈ H0.

By Lemma 4.8, we conclude that ϕ′
1 is a superderivation. Thus, ϕ1 is also a su-

perderivation. �
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