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Abstract. A graph is said to be symmetric if its automorphism group acts transitively
on its arcs. In this paper, all connected valency seven symmetric graphs of order 2pq are
classified, where p, q are distinct primes. It follows from the classification that there is
a unique connected valency seven symmetric graph of order 4p, and that for odd primes p
and q, there is an infinite family of connected valency seven one-regular graphs of order 2pq
with solvable automorphism groups, and there are four sporadic ones with nonsolvable
automorphism groups, which is 1, 2, 3-arc transitive, respectively. In particular, one of the
four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.

Keywords: arc-transitive graph; symmetric graph; s-regular graph

MSC 2010 : 05C25, 20B25

1. Introduction

For a finite, simple and undirected graph X , let V (X), E(X), A(X) and Aut(X)

denote the vertex set, edge set, arc set and full automorphism group of X , re-

spectively. Note that an arc is an ordered edge, that is, an ordered pair of adja-

cent vertices. For u, v ∈ V (X), {u, v} denotes the edge incident to u and v in X .

An s-arc in a graph X for some nonnegative integer s is an ordered (s + 1)-tuple

(v0, v1, . . . , vs) of s + 1 vertices such that (vi−1, vi) ∈ A(X) for 1 6 i 6 s and

vi−1 6= vi+1 for 1 6 i 6 s− 1. For a subgroup G of the automorphism group Aut(X)

of a graph X , the graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G

acts transitively or regularly on the set of s-arcs of X , and (G, s)-transitive if G acts

transitively on the set of s-arcs but not on the set of (s+1)-arcs of X . A graph X is

said to be s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-transitive,
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(Aut(X), s)-regular or (Aut(X), s)-transitive. In particular, 0-arc-transitive means

vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is

said to be primitive if its automorphism group is primitive on the vertex set, and

a graph is said to be bi-primitive if it is a bipartite graph with bi-parts ∆1,∆2, and

the setwise stabilizer of its automorphism group is primitive on both ∆1 and ∆2.

Throughout this paper, we will denote by Zn the cyclic group of order n, by Z∗

n

the multiplicative group of units modulo n, by D2n the dihedral group of order 2n,

by Fn the Frobenius group of order n, and by An and Sn the alternating group and

the symmetric group of degree n, respectively.

It is well known that a graph Γ is G-arc-transitive if and only if G is vertex-

transitive and the vertex stabilizer Gv of v ∈ V (Γ) in G is transitive on NΓ(v). Hence

the structure of the vertex stabilizer of Gv plays an important role in the study of

(G, s)-transitive graphs. For example, benefitted from Djoković and Miller [4] result

about the vertex stabilizer of cubic symmetric graphs, lots of works about classifi-

cations of cubic symmetric graphs were obtained by many authors (see [7], [8], [9],

[23], [24]). Due to the vertex stabilizers given in [27], symmetric tetravalent graphs

have also been studied extensively in the literature (see [11], [12], [22], [32], [34]).

Simlarly, Guo and Feng [14] determined structure of vertex stabilixers of pentavalent

symmetric graphs, some works about classifications of pentavalent symmetric graphs

were also obtained (see [6], [14], [17], [18], [26]). Naturally, the next step is to char-

acterize valency seven symmetric graphs. Recently, Guo et al. [15] gave the structure

of vertex stabilizers of valency seven symmetric graphs, and this encourages us to

consider some work on valency seven symmetric graphs. In [16], Guo et al. classified

valency seven symmetric graphs of order 4p, and in [25], Pan et al. classified prime-

valent symmetric graphs of square-free order. But, we obtain this result for valency

seven symmetric graphs of order 2pq independently. Let p, q be two distinct primes.

In this paper, we classify valency seven symmetric graphs of order 2pq.

2. Preliminaries

Let X be a graph, and N a subgroup of Aut(X). Denote by XN the quotient

graph corresponding to the orbits of N , that is the graph having the orbits of N as

vertices with two orbits adjacent in XN if there is an edge in X between those orbits.

In view of [20], Theorem 9, we have the following proposition.

Proposition 2.1. Let X be a connected symmetric graph of prime valency p

and G an s-arc-transitive subgroup of Aut(X) for some s > 1. If a normal sub-

group N of G has more than two orbits on V (X) then XN is also a symmetric graph
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of valency p andN is the kernel of the action ofG on the set of orbits of N . Moreover,

N is semiregular on V (X) and G/N is an s-arc-transitive subgroup of Aut(XN ).

By Guo [15], we have the following statement.

Proposition 2.2. Let X be a connected (G, s)-transitive graph of valency seven

for some G 6 Aut(X) and s > 1. Let v ∈ V (X). Then s 6 3 and one of the following

holds:

(1) If Gv is soluble, then |Gv| | 2
2 · 32 · 7. Further, the triple (s,Gv, |Gv|) lies in the

following table:

s = 1 s = 2 s = 3

Gv Order Gv Order Gv Order

Z7 7 F42 2 · 3 · 7 F42 × Z6 22 · 32 · 7

D14 2 · 7 F42 × Z2 22 · 3 · 7

F21 3 · 7 F42 × Z3 2 · 32 · 7

D28 22 · 7

F21 × Z3 32 · 7

(2) If Gv is insoluble, then s > 2 and |Gv| | 2
24 · 34 · 52 · 7. Further, the triple

(s,Gv, |Gv|) lies in the following table:

s = 2 s = 3

Gv Order Gv Order

PSL(3, 2) 23 · 3 · 7 PSL(3, 2)× S4 26 · 32 · 7

A7 23 · 32 · 5 · 7 A7 ×A6 26 · 34 · 52 · 7

S7 24 · 32 · 5 · 7 S7 × S6 28 · 34 · 52 · 7

Z3
2 × SL(3, 2) 26 · 3 · 7 (A7 ×A6)⋊ Z2 27 · 34 · 52 · 7

Z4
2 × SL(3, 2) 27 · 3 · 7 Z6

2 ⋊ (SL(2, 2)× SL(3, 2)) 210 · 32 · 7

([220]⋊ (SL(2, 2)× SL(3, 2)) 224 · 32 · 7

From [3], pages 12–14, 3-prime factor simple groups can be found. And by [13],

pages 134–136, one can obtain the following proposition by checking the orders of

nonabelian simple groups.

Proposition 2.3. Let p, q be distinct odd primes, and let G be a nonabelian

simple group of order |G| = 2i · 3j · 5k · 7 · p · q with 1 6 i 6 26, 0 6 j 6 4, 0 6 k 6 2

and 7 | |G|. Then G has 3-prime factor, 4-prime factor, 5-prime factor or 6-prime

factor, and is one of the groups in Table 1.
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G Order G Order

PSL(2, 7) 23 · 3 · 7 A11 27 · 34 · 52 · 7 · 11

PSL(2, 8) 23 · 32 · 7 A12 29 · 35 · 52 · 7 · 11

PSU(3, 3) 25 · 33 · 7 M22 27 · 32 · 5 · 7 · 11

A7 23 · 32 · 5 · 7 HS 29 · 32 · 53 · 7 · 11

A8 26 · 32 · 5 · 7 PSL(2, 26) 26 · 32 · 5 · 7 · 13

A9 26 · 34 · 5 · 7 PSL(2, 29) 29 · 33 · 7 · 19 · 73

A10 27 · 34 · 52 · 7 PSL(2, 53) 22 · 32 · 53 · 7 · 31

PSL(2, 13) 22 · 3 · 7 · 13 PSL(4, 4) 212 · 34 · 52 · 7 · 17

PSL(2, 27) 22 · 33 · 7 · 13 PSL(5, 2) 210 · 32 · 5 · 7 · 31

PSL(3, 4) 26 · 32 · 5 · 7 PSp(4, 8) 212 · 34 · 5 · 72 · 13

PSL(3, 8) 29 · 32 · 72 · 73 2D4(2) 212 · 34 · 5 · 7 · 17

PSU(3, 5) 24 · 32 · 53 · 7 G2(4) 212 · 33 · 52 · 7 · 13

PSU(3, 8) 29 · 34 · 7 · 19 G2(8) 218 · 35 · 72 · 19 · 73

J2 27 · 33 · 52 · 7 M23 27 · 32 · 5 · 7 · 11 · 23

Sz(8) 26 · 5 · 7 · 13 M24 210 · 33 · 5 · 7 · 11 · 23

D4(2) 212 · 35 · 52 · 7 J1 23 · 3 · 5 · 7 · 11 · 19
3D4(2) 212 · 34 · 72 · 13 PSL(3, 16) 212 · 32 · 52 · 7 · 13 · 17

PSp(6, 2) 29 · 34 · 5 · 7 PSL(2, t) t = ±1 (mod 7) and t > 13

PSp(8, 2) 216 · 35 · 52 · 7

PSL(2, 49) 24 · 3 · 52 · 72

Table 1. Nonabelian simple {2, 3, 5, 7, p, q}-groups.

P r o o f. Clearly, we have

(2.1) 227 ∤ |G|, 36 ∤ |G|, 54 ∤ |G|, 73 ∤ |G|, 7 | |G|, t2 ∤ |G|

where t ∈ {q, p} and t > 11.

From [3], pages 12–14, 3-prime factor simple groups can be found. If 7 | |G|, one

has G ∼= PSL(2, 7), PSL(2, 8) or PSU(3, 3). Specially, if 72 | |G|, 35 | |G| or 53 | |G|,

then |G| has at most five prime divisors. By [31], page 3, each finite nonabelian

simple group is isomorphic to An with n > 5, one of 26 sporadic simple groups, or

a classical group or an exceptional group of Lie type. For the orders of these simple

groups, one can see [13], Table 2.4, pages 134–136, and for more details, see [31],

Sections 3, 4, 5.

For An with n > 5, since 36 ∤ |G| and 7 | |G|, we have G ∼= A7, A8, A9, A10, A11

or A12. For the 26 sporadic simple groups, by equation (2.1) we have G ∼= M22,M23,

M24, J1, J2, HS.
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For the groups of Lie type, since each odd prime divisor of |G| has power at most 5,

by [13], Table 2.4, pages 134–136, G ∼= D4(2),
2D4(2),

3D4(2), PSL(n, t) with n > 2,

PSU(n, t) with n > 3, PSp(2n, t) with n > 2, or Sz(22n+1) with n > 1, where t is

a prime power.

Let G ∼= PSL(n, t). Then |G| = (n, t − 1)−1tn(n−1)/2
n
∏

i=2

(ti − 1). First assume

n > 3. Then n(n − 1)/2 > 3, and by equation (2.1), we have n = 3 and t = 3, 5

or 2i with i < 9, n = 4 and t = 2i with i < 5, or n = 5 and t = 2i with i < 3.

For each case, by checking orders with equation (2.1) again, we have G ∼= PSL(3, 4),

PSL(3, 8), PSL(3, 16), PSL(4, 2) (∼= A8), PSL(4, 4) or PSL(5, 2). Now assume n = 2.

Then |G| = (2, t− 1)−1t(t2 − 1). If t = 2i then i 6 26 by equation (2.1). Similarly,

if t = 3i then i 6 5; if t = 5i then i 6 3; if t = 7i then i 6 2; if t = si with s > 7

and s ∈ {q, p} then i = 1. For each case, checking the orders of PSL(2, t) again, we

have G ∼= PSL(2, 26), PSL(2, 29), PSL(2, 27), PSL(2, 125), PSL(2, 49), or PSL(2, t)

with some prime t > 13 and t ∈ {q, p}.

Let G ∼= PSU(n, t) with n > 3. Then

|G| = (n, t+ 1)−1tn(n−1)/2
n
∏

i=2

(ti − (−1)i).

Since n(n − 1)/2 > 3, we have n = 3 and t = 3, 5 or t = 2i with i < 9, n = 4

and t = 2i with i < 5, or n = 5 and t = 2i with i < 3 by equation (2.1). Hence,

G ∼= PSU(3, 8), PSU(3, 5). For the other two infinite families PSp(2n, t) of order

(n, t− 1)−1tn
2

n
∏

i=2

(t2i − 1) with n > 2 and Sz(22n+1) of order 24n+2(24n+2 + 1)×

(22n+1 − 1) with n > 1, one can similarly obtain that G ∼= PSp(4, 8), Sz(8). �

From [30], page 417, we have the following proposition.

Proposition 2.4. Let p be a prime, and q = pn > 5. Then a maximal subgroup

of PSL(2, q) is isomorphic to one of the following groups:

(1) D2(q−1)/d, where d = (2, q − 1) and q 6= 5, 7, 9, 11;

(2) D2(q+1)/d, where d = (2, q − 1) and q 6= 7, 9;

(3) Zq ⋊ Z(q−1)/d;

(4) A4, when q = p = 5, or q = p ≡ 3, 13, 27, 37 (mod 40);

(5) S4, when q = p ≡ ±1 (mod 8);

(6) A5, when q = p ≡ ±1 (mod 5), or q = p2 ≡ −1 (mod 5) with p an odd prime;

(7) PSL(2, r), when q = rm with m an odd prime;

(8) PGL(2, r), when q = r2.
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To extract a classification of connected valency seven symmetric graphs of or-

der 2p for a prime p from Cheng and Oxley [2], we introduce the graphs G(2p, r).

Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, . . . , p − 1} and V ′ =

{0′, 1′, . . . , (p−1)′}. Let r be a positive integer dividing p−1 and H(p, r) the unique

subgroup of Z∗

p of order r. Define the graph G(2p, r) to have vertex set V ∪ V ′ and

edge set {xy′ : x− y ∈ H(p, r)}.

Proposition 2.5. Let p be a prime, and let X be a connected valency seven

symmetric graph of order 2p. Then one of the following situations occurs:

(1) X ∼= K7,7, the complete bipartite graph of order 14, and Aut(K7,7) = (S7 ×

S7)⋊ Z2;

(2) X ∼= G(2p, 7) with p ≡ 1 (mod 7), and Aut(G(2p, 7)) = (Zp ⋊ Z7)⋊ Z2.

Finally, we introduce the so called Cayley graph. For a finite group G and a sub-

set S of G such that S = S−1 and 1 /∈ S, the Cayley graph Cay(G,S) on G with

respect to S is defined to have vertex set G and edge set {{g, sg} : g ∈ G, s ∈ S}.

Given g ∈ G, right multiplication x 7→ xg (for x ∈ G) is a permutationR(g) onG, and

the homomorphism fromG to Sym(G) taking each g to R(g) is called the right regular

representation of G. The image R(G) = {R(g) : g ∈ G} of G is a regular permutation

group on G, and is isomorphic to G, which can therefore be regarded as a subgroup of

the automorphism group Aut(Cay(G,S)). In particular, the Cayley graph Cay(G,S)

is vertex-transitive. Moreover, the group Aut(G,S) = {α ∈ Aut(G) : Sα = S} is

a subgroup of Aut(Cay(G,S)), indeed of the stabilizer Aut(Cay(G,S))1 of the ver-

tex 1. Also, a Cayley graph Cay(G,S) is said to be normal if R(G) is normal in

Aut(Cay(G,S)). By [33], Propositions 1.3 and 1.5, a Cayley graph Cay(G,S) is

normal if and only if Aut(Cay(G,S))1 = Aut(G,S), or equivalently, if and only if

Aut(Cay(G,S)) is isomorphic to the semidirect product R(G)⋊Aut(G,S).

Now we introduce an infinite family of one-regular Cayley graphs on the dihedral

group D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉. Let m and l be integers such that

l6 + l5 + l4 + l3 + l2 + l+ 1 ≡ 0 (mod m). Define

(2.2) CDl
2m = Cay(D2m, S),

where S = {b, ab, al+1b, al
2+l+1b, al

3+l2+l+1b, al
4+l3+l2+l+1b, al

5+l4+l3+l2+l+1b}.

By [10], we have the following propositions.

Proposition 2.6 ([10], Theorem 3.5). Let n be a square-free integer and X a con-

nected valency seven one-regular graph of order n. Then n = 2 ·7t ·p1p2 . . . ps, where

t 6 1, s > 1, and pi’s are distinct primes such that 7 | (pi − 1). Furthermore, X is

isomorphic to one of CDl
n and there are exactly 6s−1 nonisomorphic such graphs of

order n.
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Now we introduce the so called coset graph (see [22], [28]) constructed from a finite

group G relative to a subgroup H of G and a union D of some double cosets of H

in G such that D−1 = D. Denote by HG the largest normal subgroup of G in H .

The coset graph Cos(G,H,D) of G with respect to H and D is defined to have

vertex set [G : H ], the set of right cosets of H in G, and edge set {{Hg,Hdg} : g ∈

G, d ∈ D}. The action of G on V (Cos(G,H,D)) by right multiplication induces

a vertex-transitive automorphism group, which is faithful if and only if HG = 1.

Furthermore, Aut(G,H,D) = {α ∈ Aut(G) : Hα = H,Dα = D} induces a group

of automorphisms, which lies in the stabilizer of H in Aut(Cos(G,H,D)). Clearly,

Cos(G,H,D) ∼= Cos(G,Hα, Dα) for every α ∈ Aut(G). Note that the concept of

a coset graph is equivalent to the concept of an orbital graph (see [29]). Conversely,

by [28] we have the following statement.

Proposition 2.7. Let X be a graph and let G be a vertex-transitive subgroup

of Aut(X). Then X is isomorphic to a coset graph Cos(G,H,D), where H = Gu is

the stabilizer of u ∈ V (X) in G and D consists of all elements of G which map u to

one of its neighbors. Further,

(1) X is connected if and only if D generates the group G;

(2) X is G-arc-transitive if and only if D is a single double coset. In particular, if

g ∈ G interchanges u and one of its neighbors, then g2 ∈ H and D = HgH ;

(3) the valency of X is equal to |D|/|H | = |H : H ∩Hg|.

3. Constructions

In this section, we construct valency seven symmetric graphs of order 2pq, where p

and q are distinct primes.

Example 3.1. Let G be a subgroup of S14 such that G ∼= PSL(2, 13), and G

contains the following elements:

a = (1, 12)(2, 6)(3, 13)(4, 7)(8, 9)(10, 11),

b = (1, 12, 2, 10, 14, 11, 6)(3, 9, 5, 8, 13, 4, 7),

g2 = (1, 6)(2, 4)(3, 8)(5, 7)(9, 10)(13, 14),

g2 = (1, 8)(3, 5)(4, 12)(6, 7)(9, 10)(11, 13).

By Magma [1], G = 〈a, b, gi〉 for each 1 6 i 6 2 and H = 〈a, b〉. Define the

following coset graphs:

Ci
78 = Cos(G,H,HgiH), 1 6 i 6 2.
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Again by Magma [1], the two coset graphs Ci
78 (i = 1, 2) are pairwise nonisomorphic

connected valency seven 1-transitive graphs of order 78 with Aut(C1
78) = PSL(2, 13)

and Aut(C2
78) = PGL(2, 13).

Lemma 3.2. Each connected valency seven symmetric graph X of order 78 ad-

mitting PSL(2, 13) as an arc-transitive automorphism group is isomorphic to Ci
78

(i = 1, 2). Furthermore, X is 1-transitive and Aut(X) ∼= PSL(2, 13) or PGL(2, 13).

P r o o f. LetG = PSL(2, 13). AsX is aG-arc-transitive graph of order 78, one has

|Gv| = 14 for any vertex v ∈ V (X), and by Proposition 2.4, we have H = Gv
∼= D14.

The simplicity of G and the maximality of H imply that H = NG(H). Take an

involution x in H , and set 〈x〉 = L. Since G has one conjugacy class of involutions,

by Proposition 2.4, NG(L) = D12. Clearly, H∩Hg = L and NH(L) ∼= L. Thus, there

exists an involution g such that g ∈ NG(L) and g 6∈ NH(L). Furthermore, g 6∈ H ,

|HgH |/|H | = 7 and 〈H, g〉 = G. This implies that Cos(G,H,HgH) is a connected

valency seven symmetric graph of order 78.

Let X be a connected valency seven symmetric graph of order 78 admitting

G = PSL(2, 13) as an arc-transitive automorphism group. Note that Gv
∼= D14 for

any v ∈ V (X). To complete the proof, it suffices to show that X ∼= Cos(G,H,HgH).

By Magma [1], G has one conjugacy class of D14 and since Gv has seven subgroups

isomorphic to Z2, each of the subgroups fixes a vertex adjacent to v. By Proposi-

tion 2.7, one may assume that X = Cos(G,H,HfH) such that H ∩ Hf = L and

f ∈ NG(L). By [5], Theorem 2.1, f can be chosen to be a 2-element, and hence

f is an involution in NG(L) ∼= D12. By the connectivity of X , f 6∈ NH(L) ∼= Z2.

Thus, f has six choices and by Magma [1], the six coset graphs Cos(G,H,HfH)

corresponding to the six involutions have two nonisomorphism classes. It follows

that X = Cos(G,H,HfH) ∼= C1
78 or C

2
78, as required. �

Example 3.3. Let G = S8. Then G has a subgroup H ∼= Z3
2 ⋊ SL(3, 2)

and an involution g such that |HgH |/|H | = 7 and 〈H, g〉 = G. The coset graph

Cos(G,H,HgH) is denoted by C30.

Lemma 3.4. Each connected valency seven symmetric graphX of order 30 admit-

ting S8 as an arc-transitive automorphism group is isomorphic to C30. Furthermore,

X is 2-transitive and Aut(X) ∼= S8.

P r o o f. Let G = S8. Clearly, G has a maximal subgroup T ∼= A8 containing

a maximal subgroup H such that H ∼= Z3
2⋊SL(3, 2). Let L = Z3

2⋊S4 be a subgroup

of H . By Magma [1], NG(L) = L · Z2 and NT (L) = L, and by [19], one has

NG(L) = S2 ≀ S4. Let g ∈ NG(L) \ L be an involution. Then NG(L) = L ∪ Lg,

L = H ∩ Hg, |HgH |/|H | = 7 and 〈H, g〉 = G. It follows that the coset graph
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Cos(G,H,HgH) is a connected valency seven symmetric graph of order 30. (Note

that H has yet another conjugacy class of order |Z3
2 ⋊ S4|, which is not isomorphic

to Z3
2 ⋊ S4. By Magma [1], NG(L) = L, no graph arises.)

LetX be a connected valency seven symmetric graph of order 30 admitting G = S8

as an arc-transitive automorphism group. Then Gv
∼= Z3

2⋊SL(3, 2) for any v ∈ V (X).

To complete the proof, it suffices to show that X ∼= Cos(G,H,HgH). Since G has

one conjugacy class of Z3
2⋊SL(3, 2) and Z3

2⋊SL(3, 2) has seven subgroups isomorphic

to Z3
2⋊S4, by Proposition 2.7, one may assume that X = Cos(G,H,HfH) such that

H ∩Hf = L and f ∈ NG(L). Since NG(L) = L∪Lg, one has f = lg for some l ∈ L.

It follows that HfH = HgH , that is, X = Cos(G,H,HfH) ∼= Cos(G,H,HgH). By

Magma [1], Aut(X) = G. �

Example 3.5. Let G = Aut(PSL(5, 2)) = PSL(5, 2).Z2. Then G has a subgroup

H ∼= Z6
2 ⋊ (SL(2, 2) × SL(3, 2)) and an involution g such that |HgH |/|H | = 7 and

〈H, g〉 = G. The coset graph Cos(G,H,HgH) is denoted by C310.

Lemma 3.6. Each connected valency seven symmetric graph X of order 310

admitting Aut(PSL(5, 2)) as an arc-transitive automorphism group is isomorphic

to C310. Furthermore, X is 3-transitive and Aut(X) ∼= Aut(PSL(5, 2)).

P r o o f. By Atlas [3], Aut(PSL(5, 2)) = PSL(5, 2).Z2. Let G = Aut(PSL(5, 2)).

Clearly, G has an index two maximal subgroup T ∼= PSL(5, 2) containing a maximal

subgroup H such that H ∼= Z6
2⋊(SL(2, 2)×SL(3, 2)). Let L = Z6

2⋊(SL(2, 2)×S4) be

a subgroup of H . By Magma [1], NG(L) = L.Z2 and NT (L) = L. Let g ∈ NG(L)\L

be an involution. Then NG(L) = L ∪ Lg, L = H ∩ Hg, |HgH |/|H | = 7 and

〈H, g〉 = G. It follows that the coset graph Cos(G,H,HgH) is a connected valency

seven symmetric graph of order 310. (Note that Z6
2 ⋊ (SL(2, 2) × SL(3, 2)) has yet

another conjugacy class of order |Z6
2 ⋊ (SL(2, 2) × S4)|, which is not isomorphic to

Z6
2 ⋊ (SL(2, 2)× S4). By Magma [1], NG(L) = L, no graph arises.)

Let X be a connected valency seven symmetric graph of order 310 admitting G as

an arc-transitive automorphism group. Then Gv
∼= Z6

2⋊ (SL(2, 2)×SL(3, 2)) for any

v ∈ V (X). To complete the proof, it suffices to show that X ∼= Cos(G,H,HgH).

Since T has two conjugacy classes of maximal parabolic subgroups Z6
2 ⋊ (SL(2, 2)×

SL(3, 2)), and has a graph automorphism g, which is of order 2, g fuses the two

conjugacy classes of maximal parabolic subgroups. By Magma [1], Z6
2 ⋊ (SL(2, 2)×

SL(3, 2)) has a conjugacy class of Z6
2 ⋊ (SL(2, 2)× S4). By Proposition 2.7, one may

assume that X = Cos(G,H,HfH) so that H ∩ Hf = L and f ∈ NG(L). Since

NG(L) = L ∪ Lg, one has f = lg for some l ∈ L. It follows that HfH = HgH , that

is, X = Cos(G,H,HfH) ∼= Cos(G,H,HgH). By Magma [1], Aut(X) = G. �

589



4. Main results

In this section, we classify valency seven symmetric graphs of order 2pq for p and q

primes. First, we consider valency seven symmetric graphs of order 4p, where p is

a prime.

Theorem 4.1. Let p be a prime. Then X is a connected valency seven symmetric

graph of order 4p if and only if X ∼= K8, a complete graph of order 8.

P r o o f. For p = 2, K8 is a unique symmetric graph of valency seven. For p = 3,

by [21], there is no symmetric graph of valency seven. Thus, in what follows, we

assume that p > 5. Let A = Aut(X) and v ∈ V (X). By Guo [15], |Av| | 2
24 ·34 ·52 ·7,

and hence |A| | 2s · 3t · 5r · 7 · p with 2 6 s 6 26, 0 6 t 6 4 and 0 6 r 6 2. We divide

our discussion into the following two cases. Let N be a minimal normal subgroup

of A.

Assume that N is solvable. Then N is elementary abelian. By Proposition 2.1,

N is semiregular on V (X), and the quotient graph XN of X relative to the orbits

of N has valency seven. Since |V (X)| = 4p, A has no normal subgroup of order 4

or p.

It follows that N ∼= Z2, forcing that N 6 Z(A), the center of A. By Proposi-

tion 2.1, XN is a connected valency seven symmetric graph of order 2p with A/N

as an arc-transitive subgroup of Aut(XN ). By Proposition 2.5, either XN
∼= K7,7 or

XN
∼= G(2p, 7) with 7 | p− 1. Take a minimal normal subgroup of A/N , say M/N .

Let XN
∼= K7,7. Clearly, p = 7. Suppose thatM/N is solvable. ThenM/N ∼= Z2,Z7

or Z2
7. If M/N ∼= Z2 or Z7, then A has a normal subgroup of order 4 or 7 because

N ∼= Z2, a contradiction. If M/N ∼= Z2
7 then M ∼= Z2 × Z2

7. It is easy to see that M

has two orbits on V (X), and since M is abelian and Mv
∼= Z7, one has X ∼= 2K7,7,

a union of two copies of K7,7, which contradicts the connectivity of X . Suppose that

M/N is nonsolvable. Then M/N ∼= A7 or A7 ×A7. Obviously, M/N has two orbits

on V (XN ). Since (M/N)u E (A/N)u for any u ∈ XN , by the primitivity of (A/N)u
on the neighborhood of u one has 7 | |(M/N)u|, implying that 49 | |M/N |. Thus,

M/N ∼= A7 ×A7. Let B/N ∼= A7 and B/N E M/N . Similarly, B/N has two orbits

on V (XN ) and 7 | |(B/N)w |. Thus, 49 | |B/N |, a contradiction. Let XN
∼= G(2p, 7)

with 7 | p−1. Then a normal Sylow p-subgroup of Aut(XN ) must be PN/N because

each Sylow p-subgroup of A/N is a Sylow p-subgroup of Aut(XN ). It follows that

P E A because P is characteristic in PN , which is impossible because A has no

normal subgroup of order p.

If A has a solvable nontrivial normal subgroup, then A has a solvable minimal

normal subgroup isomorphic to Z2, Z
2
2 or Zp, which is impossible by the above
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argument. Thus, in what follows we assume that A has no solvable nontrivial normal

subgroups.

Now assume that N is nonsolvable. Then N ∼= Tm, where T is a nonabelian

simple group. By Proposition 2.1, N has at most two orbits on V (X). Then |N | is

divisible by 2p · 7, and since |N | | 2s · 3t · 5r · 7 · p with 1 6 s 6 26, 0 6 t 6 4 and

0 6 r 6 2. One has N = T except p = 7.

If p = 5, then |N | is a factor of 226 · 34 · 53 · 7 and |N | is divisible by 2 · 5 · 7. By

Table 1,

(4.1) N ∼= A7, A8, A9, A10, PSL(3, 4), PSU(3, 5), J2, PSp(6, 2).

For p = 7, one has 72 | |N | and |N | | 226 · 34 · 52 · 72. If N ∼= T 2, then T ∼=

PSL(3, 4), PSL(2, 7), A7, A8, PSL(2, 8) by Table 1. Clearly,N has a normal subgroup

isomorphic to T , say S. Since S E N , one has 7 | |Sv| and S has an orbit of

length 7, 14 or 28, implying that 49 | |S|, a contradiction. Thus, N = T . In this

case, |N | has at most four primes, and 72 | |N |. Again by Table 1, one has

(4.2) N ∼= PSL(2, 49).

Let p > 7. We first consider N ∼= PSL(2, p), the infinite family listed in Table 1. By

the subgroup structure of PSL(2, p), one has Nv is solvable and |Nv| | 2
2 · 32 · 7, and

5 ∤ |Nv|. Then |N | is a factor of 24 · 32 · 7 · p and |N | is divisible by 2 · p · 7. Hence

|N | = |PSL(2, p)| = 1
2p(p− 1)(p+ 1) and (12p(p+ 1), 1

2 (p− 1)) = 1. If 7 | p− 1, then

p + 1 = 2i · 3j , where 1 6 i 6 4, 0 6 j 6 2. It follows that p = 71. Similarly, if

7 | p+ 1, then p = 13. Combining with Table 1, N is one of the following:

PSL(2, 13), PSL(2, 71), PSL(2, 27), PSU(3, 8), Sz(8), A11, M22, PSL(2, 26),(4.3)

PSL(4, 4), PSL(5, 2), 2D4(2), G2(4).(4.4)

Since N is nonsolvable, N has at most two orbits. We may assume that N is

a group listed in (4.1)–(4.4). Let N be transitive on V (X). By Proposition 2.7,

X ∼= Cos(N,H,HaH), where H = Nv, a ∈ N \ H and a2 ∈ H . By the Atlas [3],

N = A7 (p = 5) has no subgroup of order |H | = |N |/|V (X)|. Thus, N 6= A7.

Similarly, N 6= PSL(2, 26) (p = 13). For N = A8 (p = 5), |N |/|V (X)| is not the

order of the vertex stabilizer by Proposition 2.2, a contradiction. It follows that

N 6= A8. Similarly, N 6= A9 (p = 5), A10 (p = 5), PSL(3, 4) (p = 5), PSU(3, 5)

(p = 5), J2 (p = 5), PSp(6, 2) (p = 5), PSL(2, 49), PSL(2, 13) (p = 13), PSL(2, 71)

(p = 71), PSL(2, 27) (p = 13), PSU(3, 8) (p = 19), Sz(8) (p = 13), A11 (p = 11),M22

(p = 11), PSL(4, 4) (p = 17), PSL(5, 2) (p = 31), 2D4(2) (p = 17), G2(4) (p = 13).
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Let N have two orbits on V (X). Then |H | = |N |/ 1
2 |V (X)|. For N = A7 (p = 5),

by Proposition 2.2, |N |/ 1
2 |V (X)| is not the order of the vertex stabilizer, a con-

tradiction. It follows that N 6= A7. Similarly, N 6= A9 (p = 5), A10 (p = 5),

PSL(3, 4) (p = 5), PSU(3, 5) (p = 5), J2 (p = 5), PSp(6, 2) (p = 5), PSL(2, 49),

PSL(2, 13) (p = 13), PSL(2, 71) (p = 71), PSL(2, 27) (p = 13), PSU(3, 8) (p = 19),

Sz(8) (p = 13), M22 (p = 11), PSL(4, 4) (p = 17), PSL(5, 2) (p = 31), 2D4(2)

(p = 17), G2(4) (p = 13). By the Atlas [3], N = A8 has no subgroup of order

|H | = |N |/ 1
2 |V (X)|. Thus, N 6= A8 (p = 5). Similarly, N 6= PSL(2, 26) (p = 13).

For N = A11, one has |H | = 26 · 34 · 52 · 7. By Proposition 2.2, H ∼= A7 × A6, and

by [19], A11 has no subgroup which is isomorphic to A7 ×A6, a contradiction. This

completes the proof. �

Theorem 4.2. Let X be a connected valency seven symmetric graph of order 2pq,

where p > q are odd primes. Then X is 1-, 2- or 3-transitive. Furthermore, one of

the following situations occurs:

(1) X is 1-transitive, and X ∼= Ci
78 (i = 1, 2) with Aut(C1

78)
∼= PSL(2, 13) and

Aut(C2
78)

∼= PGL(2, 13), or X ∼= CDl
2pq (defined in equation (2.2)) with

Aut(X) ∼= D2pq ⋊ Z7 for some l satisfying l6 + l5 + l4 + l3 + l2 + l ≡ 0

(mod pq)—the number of pairwise nonisomorphic such graphs of order 2pq is

f(p, q) =











1, q = 7 and 7 | p− 1;

6, 7 | q − 1 and 7 | p− 1;

0, otherwise.

(2) X is 2-transitive, and X ∼= C30 is a vertex bi-primitive graph with Aut(X) ∼= S8.

(3) X is 3-transitive, and X ∼= C310 is a vertex bi-primitive graph with Aut(X) ∼=

PSL(5, 2) · Z2.

P r o o f. Let A = Aut(X) and v ∈ V (X). By Guo [15], |Av| | 2
24 · 32 · 52 · 7, and

hence |A| = 2s · 3t · 5r · 7 · q · p with 1 6 s 6 25, 0 6 s 6 4 and 0 6 r 6 2. We first

prove a claim.

Claim: If A has a normal subgroup of order q then X ∼= CDl
2pq.

Let Q be a normal subgroup of A of order q. By Proposition 2.1, Q is semiregular

on V (X) and the quotient graph XQ of X relative to Q is a symmetric graph of

order 2p and valency seven with A/Q as an arc-transitive subgroup of Aut(XQ). By

Proposition 2.5, one has XQ
∼= K7,7 or XQ

∼= G(2p, 7) with 7 | p− 1.

Suppose that XQ
∼= K7,7. Then p = 7 and q = 3 or 5. Take a minimal normal

subgroup of A/Q, say M/Q. Assume that M/Q is nonsolvable. Then M/Q ∼= A7 or

A7×A7 because A/Q 6 Aut(K7,7) ∼= (S7×S7)⋊Z2. Obviously,M/Q has two orbits
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on V (XQ) and 7 | |(M/Q)w| for any w ∈ V (XQ), implying that 49 | |M/Q|. Thus,

M/Q ∼= A7×A7. Let B/Q ∼= A7 and B/Q E M/Q. Similarly, B/Q has two orbits on

V (XQ) and 7 | |(B/Q)w|. Thus, 49 | |B/Q|, a contradiction. Now assume thatM/Q

is solvable. ThenM/Q ∼= Z2,Z7 or Z
2
7. IfM/Q ∼= Z2 then XM is a symmetric graph

of order p and valency seven, a contradiction. If M/Q ∼= Z7 then M ∼= Z21 or Z35

and M has two orbits on V (X), implying that X is a bipartite graph. Let R 6 M

and R ∼= Z7. Then R ⊳ A, and since R 6 M , the quotient graph XR is bipartite

and of valency seven. However, |XR| = 6 or 10, a contradiction. If M/Q ∼= Z2
7 then

M ∼= Q × Z2
7 because Q

∼= Z3 or Z5. Since M is abelian and Mv
∼= Z7, one has

X ∼= 3K7,7 or 5K7,7, which contradicts the connectivity of X .

Thus, XQ
∼= G(2p, 7) with 7 | p − 1. By Proposition 2.5, XQ is valency seven

and 1-regular graph of order 2p. Since A/Q is arc-transitive on XQ, one has

A/Q = Aut(XQ) and X is a valency seven and 1-regular graph of order 2pq. By

Proposition 2.6, X ∼= CDl
2pq. This completes the proof of Claim.

If A has a normal subgroup of order 2, then the quotient graph has valency seven

and odd order pq, a contradiction.

Let A have a normal subgroup P of order p. By Proposition 2.5, XP
∼= K7,7

or G(2q, 7) with 7 | q − 1. Let C := CA(P ). Clearly, P 6 C. If P = C then

A/P 6 Aut(P ) ∼= Zp−1, implying that A is abelian. It follows that A is regular

on V (X), which contradicts the fact that X is symmetric. Hence, P < C. Take

a minimal normal subgroup of A/P , say M/P , in C/P . Suppose that M/P is

solvable. By Proposition 2.1,M/P is semiregular on V (XP ). ThenM/P ∼= Z2 or Zq,

which implies that A has a normal subgroup of order 2 or q respectively; we have

done two cases. Thus, M/P is nonsolvable, and hence XP
∼= K7,7. Then M/P ∼= A7

or A7 × A7. Obviously, M/P has two orbits on V (XP ), and 7 | |(M/P )u| for any

u ∈ V (XP ), implying that 49 | |M/P |. Thus, M/P ∼= A7 × A7. Let B/P ∼= A7 and

B/P E M/P . Similarly, B/P has two orbits on V (XP ) and 7 | |(B/P )u|. Thus,

49 | |B/P |, a contradiction.

If A has a solvable nontrivial normal subgroup, then A has a solvable minimal

normal subgroup isomorphic to Z2,Zp or Zq, which was done by the above argument.

Thus, in what follows we assume that A has no solvable nontrivial normal subgroups.

LetN be a minimal normal subgroup ofA. ThenN ∼= Tm, where T is a nonabelian

simple group. By Proposition 2.1,N has at most two orbits on V (X). Since pq·7 | |N |

and |N | | |A| = 2s · 3t · 5r · 7 · q · p with 1 6 s 6 25, 0 6 t 6 4 and 0 6 r 6 2, one has

N = T except for p = 7. Assuming that p = 7, one has q = 3 or 5. Hence 72 | |N |

and |N | | 225 · 35 · 53 · 72. If N ∼= T 2, then T ∼= PSL(2, 7), PSL(2, 8), PSL(3, 4), A7,

A8 by Table 1. Clearly, N has a normal subgroup isomorphic to T , say S. Since

S E N , one has 7 | |Sv| and S has an orbit of length 7, 7q or 14q, implying that

49 | |S|, a contradiction. Thus, N = T . In this case, |N | has at most four primes
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{2, 3, 5, 7}, and 72 | |N |. Again by Table 1, one has

(4.5) N ∼= PSL(2, 49).

Next, we assume that p 6= 7 and N = T . We first consider N ∼= PSL(2, p) (p > 7),

the infinite family listed in Table 1. By the subgroup structure of PSL(2, p), one

has Nv is solvable, and by Proposition 2.2, |Nv| | 22 · 32 · 7 and 5 ∤ |Nv|. Thus

|N | | 23 · 32 · 7 · q · p, implying that N is at most five-prime factor simple group.

Hence |N | = |PSL(2, p)| = 1
2p(p− 1)(p+ 1) and (12 (p+ 1), 1

2 (p− 1)) = 1. For q 6 7,

if 7 | 1
2 (p + 1), then p − 1 = 2i · 3j · q, where 1 6 i 6 3, 0 6 j 6 2. It follows

that p = 13, 41, 181. Since PSL(2, 181) is a six-prime factor simple group, one has

p = 13, 41. Similarly, if 7 | 1
2 (p − 1), then p = 29, 71. For p > q > 7, if q | 1

2 (p+ 1),

then p − 1 = 2i · 3j · 7, where 1 6 i 6 3, 0 6 j 6 2. It follows that p = 43, 127.

Since 27 | |PSL(2, 127)|, a contradiction. Thus p = 43. Similarly, if q | 1
2 (p− 1), then

p = 83, 97, 251, 503. Hence 25 | |PSL(2, 97)| and 53 | |PSL(2, 251)|, a contradiction.

Thus p = 83, 503.

For q = 3, one has 3 · 7 · p | |N | and |N | | 225 · 35 · 52 · 7 · p. By Table 1, N is one

of the following groups:

A7, A8, A9, A10, PSL(2, 27), PSL(3, 4), PSU(3, 5), PSU(3, 8), J2,(4.6)

D4(2), PSp(6, 2), PSp(8, 2), A11, A12, M22,PSL(2, 2
6), PSL(4, 4),(4.7)

PSL(4, 4), PSL(5, 2), 2D4(2), G2(4), PSL(2, p) (p = 13, 127).(4.8)

For q = 5, one has 5 · 7 · p | |N | and |N | | 225 · 34 · 53 · 7 · p. By Table 1, N is one of

the following groups:

Sz(8), A11, M22, HS, PSL(2, 26), PSL(2, 53), PSL(5, 2), PSL(4, 4),(4.9)

2D4(2), G2(4), PSL(2, p) (p = 29, 41, 71).(4.10)

For q > 7, one has 7 · q · p | |N | and |N | | 225 · 34 · 52 · 7 · q · p. By Table 1, N is one

of the following groups:

PSL(3, 8), 3D4(2), PSL(2, 29), PSp(4, 8), M23, M24, J1, PSL(3, 16),(4.11)

PSL(2, p) (p = 43, 83, 503).(4.12)

We may assume that N is a group listed in (4.5)–(4.12). Let G 6 A be a transitive

subgroup ofX . By Proposition 2.7,X ∼= Cos(G,H,HgH), whereH = Gv, g ∈ G\H ,

and g2 ∈ H , implying that a normalizes R = H ∩Hg, that is, g ∈ NG(R)\H . Recall

that N has at most two orbits on V (X). First let N be transitive on V (X). Take

G = N .
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IfN = A7 (q = 3, p = 5), thenNv has order |N |/|V (X)| = 22·3·7. However, A7 has

no subgroups of order 22 ·3·7 by Atlas [3]. Thus, N 6= A7. Similarly, N 6= PSL(2, 127)

(q = 3, p = 127), PSL(2, 29) (q = 5, p = 29), PSL(2, 41) (q = 5, p = 41), PSL(2, 71)

(q = 5, p = 71) and PSL(2, 503) (q = 251, p = 503) by Proposition 2.4. If N = A9

(q = 3, p = 5), A10 (q = 3, p = 5), PSU(3, 8) (q = 3, p = 19), A11 (q = 3, p = 11)

or 2D4(2) (q = 3, p = 17), then 33 ‖ |Nv| and 34 ∤ |Nv|. By Proposition 2.2, it is

not possible. If N = A8 (q = 3, p = 5), then |Nv| = 25 · 3 · 7. By Proposition 2.2,

there exists a vertex stabilizer whose order is 25 · 3 · 7, a contradiction. Similarly,

N 6= PSL(2, 49) (q = 3, p = 7), PSL(2, 49) (q = 5, p = 7), PSL(2, 27) (q = 3, p = 13),

PSL(3, 4) (q = 3, p = 5), PSU(3, 5) (q = 3, p = 5), J2 (q = 3, p = 5), PSp(6, 2)

(q = 3, p = 5), PSp(8, 2) (q = 3, p = 5), A11 (p = 5, q = 11), M22 (q = 3, p = 11),

PSL(2, 26) (q = 3, p = 13), PSL(2, 26) (q = 5, p = 13), PSL(4, 4) (q = 3, p = 17),

PSL(4, 4) (q = 5, p = 17), PSL(5, 2) (q = 3, p = 31), PSL(5, 2) (q = 5, p = 31),

D4(2) (q = 3, p = 5), HS (q = 5, p = 11), PSL(2, 53) (q = 5, p = 31), 2D4(2) (q = 5,

p = 17), G2(4) (q = 3, p = 13), G2(4) (q = 5, p = 13), Sz(8) (q = 5, p = 13),

PSL(2, 71) (q = 3, p = 71), PSL(3, 8) (q = 7, p = 73), 3D4(2) (q = 7, p = 17),

PSL(2, 29) (q = 19, p = 73), PSp(4, 8) (q = 7, p = 13), M23 (q = 11, p = 23), M24

(q = 11, p = 23), J1 (q = 11, p = 19) and N 6= PSL(3, 16) (q = 13, p = 17).

Suppose that N = A12 (q = 3, p = 11). Then |Nv| = |N |/|V (X)| = 28 · 34 · 52 · 7.

By Proposition 2.2, Nv
∼= S7 × S6. By [19], one concludes that N has no subgroup

which is isomorphic to S7 × S6, a contradiction.

Suppose that N = PSL(2, 13) (q = 3, p = 13). Then |Nv| = 2 · 7. By Propo-

sition 2.2, Nv
∼= D14, and by Proposition 2.4, Nv is a maximal subgroup. By

Example 3.1, X ∼= C1
78 or C

2
78.

Suppose that N = PSL(2, 43) (q = 11, p = 43). Then |Nv| = 2 · 3 · 7. By Propo-

sition 2.2, Nv
∼= F42, and by Proposition 2.4, one concludes that N has a unique

conjugacy class D42 which has order 42. Clearly, it is isomorphic to F42, a contra-

diction.

Suppose that N = PSL(2, 83) (q = 41, p = 83). Then |Nv| = 2 · 3 · 7. By Proposi-

tion 2.2, Nv
∼= F42. By Proposition 2.4, one concludes that N has a unique maximal

subgroup conjugacy class D84 which contains subgroups of order 42. Clearly, the

subgroups of order 42 of D84 are isomorphic to D42 or Z42. They are not isomorphic

to F42, a contradiction.

Suppose that N = M22 (q = 5, p = 11). Then |Nv| = 26 · 32 · 7. By Atlas [3], the

unique maximal subgroup class ofM22 which has order divided by 2
6 ·32 ·7 is L3(4);

again by Atlas [3], L3(4) has no subgroup of order 2
6 · 32 · 7, a contradiction.

Now let N have two orbits on V (X). If N 6= A7, then Nv has order |N |/ 1
2 |V (X)| =

23 ·3 ·7. However, A7 has no subgroups of order 2
3 ·3 ·7 by Atlas [3]. Thus, N 6= A7.

Similarly, N 6= PSL(2, 13) (q = 3, p = 13), PSL(2, 27) (q = 3, p = 13), PSL(2, 127)
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(q = 3, p = 127), PSL(2, 29) (q = 5, p = 29), PSL(2, 41) (q = 5, p = 41), PSL(2, 71)

(q = 5, p = 71) and PSL(2, 43) (q = 11, p = 43) by Proposition 2.4. If N = A9

(q = 3, p = 5), A10 (q = 3, p = 5), A11 (q = 3, p = 11), PSU(3, 8) (q = 3, p = 19)

or 2D4(2) (q = 3, p = 17), then 33 ‖ |Nv|. By Proposition 2.2, this is not possible.

If N = A12 (q = 3, p = 11), then |Nv| = 29 · 34 · 52 · 7. By Proposition 2.2, there

exists no vertex stabilizer whose order is 29 · 34 · 52 · 7, a contradiction. Similarly,

N 6= PSL(2, 49) (q = 3, p = 7), PSL(2, 49) (q = 5, p = 7), PSL(2, 503) (q = 251,

p = 503), PSL(3, 4) (q = 3, p = 5), PSU(3, 5) (q = 3, p = 5), J2 (q = 3, p = 5),

PSp(6, 2)(q = 3, p = 5), PSp(8, 2) (q = 3, p = 5), Sz(8) (q = 5, p = 13), A11

(p = 5, q = 11), M22 (q = 3, p = 11), M22 (q = 5, p = 11), PSL(2, 26) (q = 3,

p = 13), PSL(2, 26) (q = 5, p = 13), PSL(4, 4) (q = 3, p = 17), PSL(4, 4) (q = 5,

p = 17), PSL(5, 2) (q = 3, p = 31), HS (q = 5, p = 11), 2D4(2) (q = 5, p = 17),

D4(2) (q = 3, p = 5), G2(4) (q = 3, p = 13), G2(4) (q = 5, p = 13), PSL(2, 53)

(q = 5, p = 31), PSL(2, 71) (q = 3, p = 71), PSL(2, 71) (q = 5, p = 71), PSL(3, 8)

(q = 7, p = 73), 3D4(2) (q = 7, p = 17), PSp(4, 8) (q = 7, p = 13), PSL(2, 29)

(q = 19, p = 73), M23 (q = 11, p = 23), M24 (q = 11, p = 23), J1(q = 11, p = 19)

and N 6= PSL(3, 16) (q = 13, p = 17).

Suppose that N = PSL(2, 83)(q = 41, p = 83). Then |Nv| = 22 · 3 · 7. By

Proposition 2.2, Nv
∼= F42 × Z2. By Proposition 2.4, one concludes that N has

a unique conjugacy classD84 which has order 84. Clearly, it is isomorphic to F42×Z2,

a contradiction.

Suppose that N = A8(q = 3, p = 5). Then |Nv| = |N |/ 1
2 |V (X)| = 26 · 3 · 7. By

Proposition 2.2, Nv
∼= Z3

2 × SL(3, 2). In this case, N has two orbits on V (X), and

Nv ∩ Ng
v
∼= Z3

2 ⋊ S4. Let C = CA(N). Since N is simple, C ∩ N = 1 and CN =

C ×N E A. Since A/CN . Out(N), we have A = (C ×N) · O with O . Out(N),

where Out(N) is the outer automorphism group of N . Hence |A| | 225 · 35 · 53 · 7 and

|N | = 26 ·32 ·5 ·7. Then |C| | 219 ·33 ·52. If C is insolvable, by [3], pages 12–14, then

C has a minimal normal insolvable subgroup M ∼= A5, A6 or A
2
5. Then NM E CN

has at most two orbits on V (X). Then |(MN)v| = |MN |/|V (X)| = 27 · 32 · 5 · 7

or |MN |/ 1
2 |V (X)| = 28 · 32 · 5 · 7 for M ∼= A5. By Proposition 2.2, there exists no

vertex stabilizer whose order is |(MN)v|, a contradiction. For M ∼= A6 or A
2
5, one

has 33 | |(MN)v|. By Proposition 2.2, this is a contradiction. Thus, C is solvable.

Clearly, C is not semiregular on V (X). If it were, XC would be a connected valency

seven graph of order 2pq/|C|, yielding that 2 ∤ |C|. Furthermost, C ≇ Z3 or Z5,

because there is no connected valency seven symmetric graph of order 6 or 10. If

C has at most two orbits on V (X), then |C| = 15 or 30. Let R ∼= Z5 6 C. Then

R ⊳ A, and then XC is a connected valency seven graph of order 6, a contradiction.

Thus, C = 1 and A 6 Aut(A8). Further, A = S8. By Example 3.3, X ∼= C30. Hence
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Nv is a maximal subgroup of N , and N has two orbits on V (X). Then X is a vertex

bi-primitive 3-arc transitive graph.

Suppose that N = PSL(5, 2) (q = 5, p = 31). Then |Nv| = 210 · 32 · 7. By

Proposition 2.2, Nv
∼= Z6

2 ⋊ (SL(2, 2)× SL(3, 2)). Let C = CA(N). Similarly to the

above proof, one has A = (C ×N).O with O . Out(N), where Out(N) is the outer

automorphism group of N . Hence |A| | 225 · 34 · 53 · 7 · 31 and |N | = 210 · 32 · 5 · 7 · 31.

Then |C| | 215 · 32 · 52. If C is insolvable, by [3], pages 12–14, then C has a minimal

normal insolvable subgroup M ∼= A5, A6 or A
2
5. Then NM E CN has at most two

orbits on V (X). For M ∼= A5, one has 3
3 | |(MN)v|. By Proposition 2.2, this is

a contradiction. Thus, M ≇ A5. If M ∼= A6, then |(MN)v| = |MN |/|V (X)| =

213 · 34 · 5 · 7 or |MN |/ 1
2 |V (X)| = 212 · 34 · 5 · 7. By Proposition 2.2, there exists

no vertex stabilizer whose order is |(MN)v|, a contradiction. Similarly, M ≇ A2
5.

Thus, C is solvable. Clearly, C is not semiregular on V (X). If it were, XC would be

a connected valency seven graph of order 2pq/|C|, yielding that 2 ∤ |C|. Furthermost,

C ≇ Z31 because there is no connected valency seven symmetric graph of order 10.

If C ∼= Z5, by Proposition 2.5, there is no connected valency seven symmetric graph

of order 62 because 7 ∤ p− 1 with p = 31. Thus C has at most two orbits on V (X),

then |C| = 5p or 10p. Let R ∼= Zp < C. Then R ⊳ A, and then XR is a connected

valency seven graph of order 10, a contradiction. Thus, C = 1 and A 6 Aut(N).

Further, A ∼= Aut(PSL(5, 2) · Z2 because Out(N) = Z2. By Example 3.5, X ∼= C310.

Hence Nv is a maximal subgroup of N , and N has two orbits on V (X). Then X is

a vertex bi-primitive 3-arc transitive graph. This completes the proof. �
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