
Applications of Mathematics

Jiří Vala; Petra Jarošová
Optimization approaches to some problems of building design

Applications of Mathematics, Vol. 63 (2018), No. 3, 305–331

Persistent URL: http://dml.cz/dmlcz/147313

Terms of use:
© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147313
http://dml.cz


63 (2018) APPLICATIONS OF MATHEMATICS No. 3, 305–331

OPTIMIZATION APPROACHES TO SOME PROBLEMS

OF BUILDING DESIGN

Jiří Vala, Petra Jarošová, Brno

Received March 31, 2018. Published online June 18, 2018.

Abstract. Advanced building design is a rather new interdisciplinary research branch,
combining knowledge from physics, engineering, art and social science; its support from
both theoretical and computational mathematics is needed. This paper shows an exam-
ple of such collaboration, introducing a model problem of optimal heating in a low-energy
house. Since all particular function values, needed for optimization are obtained as numer-
ical solutions of an initial and boundary value problem for a sparse system of parabolic
partial differential equations of evolution with at least two types of physically motivated
nonlinearities, the usual gradient-based methods must be replaced by the downhill sim-
plex Nelder-Mead approach or its quasi-gradient modifications. One example of the real
low-energy house in Moravian Karst is demonstrated with references to other practical
applications.
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1. Introduction

Advanced building design is one of the new research branches of last decades. It is

motivated, driven and influenced namely by i) requirements of sustainable exploita-

tion of natural sources, ii) progress in physics, information science and mechanical,

civil, etc. engineering and its impact into industry and technology, iii) new trends in

society oriented to the quality of human life, reflected by architecture, urbanism and

art. To combine the knowledge and experience from i), ii), iii) to receive reasonable
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outputs is not easy, even under the special conditions at Brno University of Technol-

ogy (BUT) with both Faculty of Architecture and Faculty of Arts incorporated into

its structure (in addition to standard engineering faculties), although in many cases

just mathematics is the suitable candidate to act as a mediator in the communication

among i), ii), iii). However, many mathematicians are afraid of such a role because

their partners are rarely ready to understand their exact language and methods.

Consequently, if such collaboration cannot be avoided, they frequently turn atten-

tion to various statistical or soft computing approaches, which can be justified by the

seemingly non-deterministic character of numerous components of i), ii), iii). Unlike

this, we want to demonstrate, at least on one partial example, that certain reasonable

deterministic approach can be applied just in the multidisciplinary building design,

coupling i), ii), iii) naturally with the risk of the absence of standard well-defined

model problems, working with simple, clear and well-tried computational algorithms.

In general, planning and design of smart cities and buildings for the new period

of climate change is a great research challenge of last decades; for much more con-

siderations of this type see [25]. Although the interpretation of numerous results

concerning the global temperature increase on the Earth and its correspondence

with the production of greenhouse gases caused by human activities may not be

quite clear (cf. [18] for illustration), the development of the physical, mathematical

and numerical support of such planning and design, up to its hardware and software

implementation, is needed evidently. Namely a class of buildings with very low re-

quirement to energy supply and appropriate durability and good indoor environment

draws attention in many countries, although their terminology varies, as reviewed by

[3]: “high performance buildings” are popular in the U.S.A., “equilibrium houses”

in Canada, “low-energy houses”, “passive houses” (with more strict requirements),

or even “active houses” (producing more energy than consuming) in the European

Union, etc., but the objective is nearly the same. Especially the development of “pas-

sive houses” is based on the experience with good insulated experimental houses in

Darmstadt, built from advanced building materials and components, with controlled

air exchange, heat pumps, recuperation equipments, etc., by [9]; consequently, the

European directive [8], together with its subordinate national technical standards,

forces “passive houses” (slightly modified due to their regional location) as obligatory

for both new and reconstructed buildings from 2020.

2. A model problem: heating in a building

Our attention will be paid to the optimization of design of just introduced build-

ings. Exploitation of new materials, structures and technologies does not admit

traditional building design based on long-time experience and simple evaluations of
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thermal resistance of building claddings; consequently, much deeper analysis from

building physics by [31], coming from general principles of thermodynamics by [2], is

necessary. As the first (but non-avoidable) step, we shall start with a model problem

defined on a building part and explain its coupling, using thermal fluxes, to adja-

cent parts, certain substructures, up to the whole structure (Section 2). The main

result of this paper is the demonstration that the outputs from such direct prob-

lem can be used to design optimization effectively, relying, unlike soft-computing

approaches by [6] or [28], on certain class of deterministic algorithms (Section 3).

This is documented on one example of a real low-energy house (Section 4).

2.1. Direct formulation. We shall start with a rather simple case of non-

stationary heat conduction in isotropic materials (not homogeneous in general),

driven by boundary heat transfer from external environment, including such inter-

face transfer between adjacent subsystems, up to the level of particular elements.

Let one such element occupy a bounded domain Ω in the 3-dimensional Euclidean

space R
3. To avoid technical difficulties, we assume certain regularity of Ω, suf-

ficient for the validity of standard Sobolev embedding and trace theorems in the

sense of [32], p. 15. Let R
3 be supplied by some Cartesian coordinate system

x = (x1, x2, x3). Let the boundary ∂Ω of Ω in R
3 have a local vector of outward

unit normal ν(x) = (ν1(x), ν2(x), ν3(x)) almost everywhere. The usual notation for

Hamilton operators ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) will be used. (Similar considera-

tions with slightly stronger results can be performed in the Euclidean spaces of lower

dimensions R1 and R
2, too.) Moreover, let us consider a time interval J = [0, T ]

with some real positive T (the limit passage T → ∞ is not prohibited); the upper

dot symbol is reserved for partial derivatives with respect to the time t ∈ J . The

standard notation of Lebesgue, Sobolev, Bochner, etc. (abstract) function spaces will

be utilized in all our considerations, following [32], pp. 10, 22. Let (·, ·) denote scalar
products (for any fixed t) both in L2(Ω) and in L2(Ω)3, 〈·, ·〉 those in L2(∂Ω). Unlike

this, we shall use the central dots for scalar products in R
3 and later also in R

d of

other integer dimensions d. Similarly |·| will be used for Euclidean norms in Rd (not

only for absolute values in R
1) and ‖·‖ for spectral norms in R

d×d and I will be the

unit matrix in R
d×d.

Let us introduce two basic material characteristics on Ω: the thermal conductiv-

ity λ(x) (for the insulation ability) and the thermal capacity κ(x) (for the accumu-

lation ability, related to unit volume here). It is natural to suppose that λ and κ are

functions from L∞(Ω) (for homogeneous materials only constants), a.e. with values

greater than a certain positive constant. The following notations hold literally for

constructive, insulation, etc. elements of buildings, whereas their modification for

empty rooms (representing a majority of the volume of a building) needs to set zero
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values of thermal conductivity (unlike those of thermal capacity, acceptable as con-

stant, referring to air in rooms); potential generalizations will be mentioned later.

The weak formulation of a heat transfer equation, using the temperature ϑ(x, t) on

Ω×J as the reference variable and working with some volume sources f(x, t, ϑ(x, t))

on Ω × J and surface sources g(x, t, ϑ(x, t)) on ∂Ω × J , together with the Cauchy

initial condition with a priori known ϑ0 ∈ V , reads

(2.1) (v, κϑ̇) + (∇v, λ∇ϑ) = (v, f) + 〈v, g〉 on J,

ϑ(·, 0) = ϑ0.

Here v is an arbitrary test function from V and ϑ must be contained in L2(J,V)
with certain time derivative ϑ̇ in L2(J,H), where we set H = L2(Ω), V will be
specified later due to the particular choice of f and g crucial for the implementation

of the model. One can see immediately that the formal application of the Green-

Ostrogradskij theorem (at least in the sense of distributions) converts the 1st equation

of (2.1) to its strong form

(2.2) ε̇+∇ · q = f, ε = κϑ, q = −λ∇ϑ on Ω× J,

q · ν = g on ∂Ω× J,

compatible with [2], pp. 5, 14. In more physical details: (2.2) contains the principle

of conservation of energy ε related to unit volume due to some thermal flux q (the

1st equation), the quantification of thermal energy (the 2nd equation), the empiri-

cal Fourier constitutive relation between thermal fluxes and temperature gradients

(the 3rd equation), as well as a general boundary (or interface) condition (the 4th

equation).

For numerical computations it is useful to consider the temperature ϑ on Ω×J in

the form of multiplicative decomposition ϑ(x, t) = φi(x)θi(t) for any x ∈ Ω and t ∈ J ,

where i denotes the Einstein summation index from {1, . . . , n} for certain integer n
with the aim of the limit passage n → ∞, and φ1(x), . . . , φn(x) represents a basis of

some finite-dimensional approximation Vn of V . For simplicity let us assume Vn ⊂ V
(no “variational crimes” violating such assumption “not very much” are acceptable

here). Consequently, in (2.1) we are allowed to consider v = φj for an arbitrary

j ∈ {1, . . . , n}, i.e.

(2.3) (φj , κφi)θ̇i + (∇φj , λ∇φi)θi = (φj , f) + 〈φj , g〉 on J,

(φj , κφi)θi(0) = (φj , κϑ0),

the second equation follows from the least squares minimization of (θkφk − ϑ0,

κ(θiφi − ϑ0)), involving also the Einstein summation over k ∈ {1, . . . , n} formally,
with t = 0, referring to the 2nd equation of (2.1).
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For an efficient software implementation, e.g. the MATLAB-based used here, it is

useful to rewrite (2.3) into its (seemingly simple) matrix form

(2.4) Mθ̇ +Kθ = F on J,

Kθ0 = θ⋆,

where M and K are symmetric positive definite matrices from R
n×n, θ(t) =

(θ1(t), . . . , θn(t))
T is a column vector from R

n for any fixed t, as well as F (t),

covering the whole right-hand side of (2.3). In more details: M in (2.4) is generated

by (φj , κφi) from (2.3), K by (∇φj , λ∇φi) and F (t) by (φj , f) + 〈φj , g〉 similarly;
namely the evaluation of F (t) is not easy in general. Then (2.4) forms a system

of ordinary differential equations, which should be analysed analytically. Due to

practical reasons for m equidistant time steps (where environmental data needed

for the composition of F are measured in a usual way) the following quantities are

introduced: θr = θ(rh) with r ∈ {1, . . . ,m}, m being an integer number, h = T/m;

this is compatible with θ0 = θ(0) in the 2nd equation of (2.1) with θ⋆ (a column

vector from R
n again) generated by the right-hand side of the 2nd equation of (2.3).

Finite element approximations work usually with some continuous functions φi

for i ∈ {1, . . . , n} with small compact supports and values from [−1, 1] not exactly

orthogonal in L2(Ω), unlike classical Fourier analysis. The Lebesgue measure of sup-

ports of such functions on Ω is not greater than c−1n−3 and their Hausdorff measure

on ∂Ω is not greater than c−1n−2, where c is a positive (sufficiently small) constant in-

dependent of n. Both the endeavour to get effective software implementations and the

minimization of technical difficulties in proofs motivate then the following additional

assumptions: i) there exist some integer upper bound N for the number of functions

φi supported on the same part of Ω or ∂Ω of non-zero relevant measure, ii) this choice

guarantees also cn−3|a|2 6 a · Ma 6 c−1n−3|a|2, cn−1|a|2 6 a · Ka 6 c−1n−1|a|2
for all a ∈ R

n (considered as column vectors), iii) the last couple of inequalities is

valid also for K constructed with λ = 1 everywhere instead of the formally correct λ.

Namely ii) and iii) are then useful in the limit passage from (2.4), i.e. from (2.3)

with a finite n, to (2.1), taking n → ∞.
In the purely linear (not very realistic) case we are allowed to take f ∈ L2(J,H),

g ∈ L2(J,X ), where X = L4(∂Ω) with f and g independent of ϑ; in this case we

can take V = W 1,2(Ω). Using the method of lines, the estimates presented above,

the Eberlein-Shmul’yan theorem (due to the reflexivity of both V and L2(J,H))

and other standard arguments from functional analysis, from the limit passage from

(2.4) we come to the existence and uniqueness of ϑ ∈ L2(J,V) and ϑ̇ in L2(J,H).

The complete proofs, together with a lot of comments on how to handle various

generalizations, have been presented in [35]. Similar arguments can be repeated
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also for the limit case λ → 0: this is important for the simplification of temperature

development in empty rooms, where no more detailed information is available, unlike

constructive and insulation building parts; consequently ϑ(·, t) is constant for any
fixed t ∈ J .

To illustrate the difference between the rather simple analysis and more realistic

cases, conditioned by the choice of f and g, let us introduce five choices of f and g,

whose superpositions should be available, too. All such volume sources f and surface

sources g are able to generate additive contributions to F in (2.4). However, if

possible, the incorporation of some of their parts intoM and K of the same equation

can bring certain computational benefits.

The 1st choice is g = β(ϑ∗−ϑ) for the thermal transfer from external environment

with some prescribed external temperature ϑ∗ ∈ L2(J,X ) and some known a.e. pos-

itive transfer factor β ∈ L∞(∂Ω), taking the rigid body-air convection into account,

later used also for the thermal transfer between two neighbour domain through their

interface analogously.

One new additive term 〈v, βϑ∗〉 occurs on the left-hand side of the 1st equation
of (2.1); βϑ∗ can be hidden in g on its right-hand side. Consequently, some sparse

positive symmetric matrixKg can be added toK in the 1st equation of (2.4) formally,

even with certain regularizing effect.

The 2nd choice is f = α(ϑ∗ − ϑ) for the obligatory ventilation by technical stan-

dards, similar to i), but applied to the above-mentioned case of constant ϑ(·, t) for
a fixed t ∈ J , with some known a.e. positive transfer factor α ∈ L∞(Ω): this is needed

to include the heat exchange caused by various installed equipments (without deeper

analysis of their performance) between rooms and external environment.

One new additive term (v, αϑ) occurs on the left-hand side of the 1st equation

of (2.1); αϑ∗ can be hidden in f on its right-hand side. Consequently, some sparse

positive symmetric matrixKf can be added toK in the 1st equation of (2.4) formally,

even with certain regularizing effect.

The 3rd choice of g comes from the beam and diffuse components of solar radiation,

occurring just on the building envelope (not on internal interfaces) evaluable from

the climatic records of the so-called reference climatic year, due to the day and year

quasi-cycles, the mutual position of the Sun and the Earth, the geographical location

of our building object and on the slope and orientation of the relevant building

surface, under certain astronomical simplifications presented (including numerous

further references) in [16], with the resulting setting of g ∈ L2(J,X ).

This choice brings no new modification of the left-hand side in the 1st equation

of (2.1), unlike the 1st and 2nd choices; its significance lies in practical long evalua-

tions, accounting for all available environmental data: the triples compound from i)

the temperature ϑ∗ (transformable to θ∗ in (2.4)) needed in the 1st, 2nd and 4rd
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choices, too, ii) the beam component of solar radiation, iii) the diffuse component

of solar radiation, with separated components ii) and iii) required by evaluations

sketched above. The repeated application of annual data i), ii), iii) leads to certain

quasi-periodicity of the solution of the 1st equation of (2.1), suppressing the effect

of its 2nd equation for t → ∞ (after several years in practice).
The 4th choice is g = σ(ϑ4

∗
−ϑ4) for the thermal radiation on the building envelope

due to the physical Stefan–Boltzmann law and some known a.e. positive factor σ ∈
L∞(∂Ω), interpretable as the Stefan–Boltzmann constant (exact for the ideal black

body), modified by the empirical surface emissivity, which cannot be incorporated

to i) properly because of the presence of ϑ4; for the practical relevance of this choice

for advanced building surfaces cf. [19].

The rough heuristic approximation (acceptable for the usual range of temperature)

ϑ4 − ϑ4
∗
= (ϑ2 + ϑ2

∗
)(ϑ+ ϑ∗)(ϑ− ϑ∗) ≈ 4ϑ3

∗
(ϑ− ϑ∗) highlights certain quasilinearity

of the problem. Using the notation 〈·, ·〉 also for the duality between L5(∂Ω) and

L5/4(∂Ω), we are able to introduce V = {v ∈ W 1,2(Ω) : v ∈ L5(∂Ω)} (in the sense of
traces), supplied with the norm ‖v‖W 1,2(Ω) + ‖v‖L5(∂Ω) by [32], pp. 64, 253 (which

generates a reflexive Banach space, too), and, motivated by the 1st choice, to add

〈v, σ|ϑ|3ϑ〉 to the left-hand side and 〈v, σ|ϑ∗|3ϑ∗〉 to the right-hand side of the 1st
equation of (2.1). Consequently, in addition to the 2nd left-hand side additive term

of (2.4), we have the contribution of the type 1
5 |θ(t)|3/2θ(t) ·S|θ(t)|3/2θ(t), containing

certain sparse positive symmetric matrix S. The enrichment of the right-hand side

of (2.4) is evident. The existence and uniqueness of the solution of (2.1) can be then

verified similarly to the linear case; for more details see [35] again.

The 5th choice of f comes from the artificial heating (or air conditioning, too)

in the case similar to the 2nd choice, but with the requirement of the type ϑ > ϑ⋄

for some prescribed indoor temperature ϑ⋄ ∈ V (depending on the room categories
by technical standards) at least in the least square sense, due to the real maximal

power of heating equipments and to their expected (summer, winter, etc.) different

regimes; for more details see [16] again.

To handle this choice, the best idea is seemingly to convert the 1st equation of (2.1)

to the form of a variational inequality. However, the above sketched technical spec-

ifications bring serious complications to the design of an efficient computational al-

gorithm, thus another approach, avoiding general optimization strategies, based on

the careful control of a heating equipment, is considered: ϑ > ϑ⋄ is satisfied in every

time step just during the correct (a priori prescribed) heating season, thanks to the

controlled heating source f in a corresponding room; the maximum value for the

heating power is still considered if this is insufficient.
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2.2. Heating control. Now we are ready to develop a computational algorithm

based on (2.4) for the evaluation of time development of temperature in all selected

points, including the substantial effect of controlled heating. Since some sources are

frequently prescribed by their time derivatives in practice, namely those by the 2nd

and 5th choices of Section 2.1, it is useful to consider the right-hand side of (2.4)

as F (t) = Φ(t) + Ψ̇(t) for any t ∈ J , especially for t ∈ {h, 2h, . . . ,mh}; the reliable
construction of the limit passage m → ∞ depends on the environmental data from
the 3rd choice of Section 2.1. To derive the semi-analytic formulae for the evaluation

of θ in time, the spectral decomposition MV Λ = KV with the generalized real

diagonal eigenvalue matrix Λ and the matrix of eigenvectors V is then helpful.

For brevity, let us consider θ1, . . . θm instead of θ(h), . . . θ(mh) (a priori unknown

temperatures) and also Φ1, . . . ,Φm and Ψ1, . . . ,Ψm (characterizing all prescribed

thermal sources) in a similar sense. For the beginning, let us neglect all nonlinear

thermal sources by the 4th and 5th choices of Section 2.1. Following [35], applying

the classical integral calculus, namely the method of variations of constants, for any

time step index s ∈ {1, . . . ,m} we come to the direct evaluation formula

(2.5) θs − V exp(−Λh)V TMθs−1 = V Λ−1V TΦs − V Λ−1 exp(−Λh)V TΦs−1

+ V (I − exp(−Λh))
(
Λ−1V T Ψs −Ψs−1

h
− Λ−2V T Φs − Φs−1

h

)
,

exact for any Φ(t) and Ψ(t) with t ∈ J considered as a Lagrangian linear spline using

the nodes {0, h, 2h, . . . , T }. This holds for an arbitrary positive h, unlike the Euler
explicit or implicit, Crank–Nicholson, etc. discretization schemes.

To adopt (2.5) to handle the 4th choice of Section 2.1, at least for sufficiently

small h, we can add some |θ|3/2S|θ|3/2 to K, inserting some reasonable estimate

of θ, and apply the quasi-Newton iterations inside each sth time step; the exploita-

tion of the inexact Newton method is expected to reduce the number of algebraic

operations. The same is true for the 5th choice, where, using the least squares ap-

proach, some G must be added to Ψ̇ to minimize (if possible and required, due to

technical specifications) |θ − θ⋄|2; this can be modified by some prescribed weights
for particular rooms if needed. Since G is just a vector of constants Gs ∈ R

n for

(s − 1)h < t 6 sh, the total consumption of energy for heating can be evaluated

easily as Q = h(G1 + . . . + Gm). Fortunately, both corrections from the 4th and

5th choices can be unified in one iteration procedure; its details (together with the

instructive example), distinguishing between 4 typical heating regimes, are discussed

in [16].

2.3. Building as a thermal system. All five choices presented in Section 2.1

are useful for the development of a model of thermal behaviour of buildings; for more
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details and references to the idea of such system approach cf. [33]. Understanding Ω

as a building element at the lowest (most detailed) level, we are able to compose

substructrues at the finite number of levels, using the transfer conditions by the 1st

and 2nd choice in Section 2.1, up to the whole structure. If ϑ∗ (and consequently θ∗)

refers to the external environment, this contributes both to the matrix K in (2.4)

(using the matrices Kf and Kg from the preceding discussion) and to the right-hand

side of F . Usually such conditions are applied only in the case when some interface

to the room (in addition to the external environment) is present, otherwise it is ac-

ceptable to take α → ∞, i.e. to force the continuity of temperature on the interface in
the normal direction. Clearly the 3st and 4th choices occur only on the external in-

terfaces (building claddings). The existence and uniqueness considerations, handling

all possible interface types, can be repeated without substantial difficulties.

Such computational model is open to various generalizations. Namely physical

and mathematical homogenization approaches, trying to involve (even incomplete)

information on material microstructure, lead to effective anisotropic material char-

acteristics even in the case of composites with isotropic components, due to their

location, orientation, etc., typically e.g. in fibre concrete. Removing the isotropy

assumption, we come to the direction-dependent material characteristics λ and κ

on Ω and α, β and σ on ∂Ω, generating certain square matrices from L∞(Ω)3×3 or

L∞(∂Ω)3×3 (using the notation from the simple problem from Section 2.1 in this case

for brevity again). At least for the case that all such matrices are a.e. symmetrical

and positive definite, the above sketched existence and uniqueness considerations

can be repeated with only slight technical modifications. Even the more general

case with the material characteristics λ(·, ϑ), κ(·, ϑ) on Ω and α(·, ϑ, ϑ∗), β(·, ϑ, ϑ∗)

σ(·, ϑ, ϑ∗) on ∂Ω, important in building practice, can be handled as a quasilinear

problem, using selected results on pseudomonotone or weakly continuous mappings

by [32], p. 321. However, some additional growth assumptions are needed and all

proofs become much more complicated, as evident from [34].

Some simplified approaches for the analysis of parallel physical processes, as heat

and moisture transfer in porous media, are available: instead of ϑ we have the couple

of unknown variables (ϑ,U), where U evaluates certain moisture content (related to

the mass or volume unit), considering the conservation of mass (moisture in pores)

and (thermal) energy. The Fick constitutive relation between U and some moisture

flux η can be written in the similar way as the Fourier one between ϑ and q in (2.2);

however, in the complete system of two equations of evolution we need (and must be

able to identify in practice) additional material characteristics to handle the Dufour

effect (when time redistribution of ϑ depends not only on q, but also on η) and the

Soret effect (when time redistribution of u depends not only on η, but also on q).

The proper mathematical and numerical analysis is based on generalization of the
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results sketched above to the system of two equations; practical computations have

to take the slow moisture transfer in comparison with the thermal one together with

its partial irreversibility into account.

Still deeper generalizations cover both the 1st thermodynamic principle of con-

servation of mass, (linear and angular) momentum and energy (not only of thermal

energy as above) and the 2nd thermodynamic principle, handling the irreversibility of

some thermal processes. Unfortunately, there is a lot of open questions in the math-

ematical analysis of corresponding systems of equations of evolutions and related

inequalities, as well as in the suggestion of computational algorithms constructing

some sequences of reasonable approximate solutions; this is still true even in the

particular case of Navier-Stokes equations (cf. the “mysteriously difficult problem”

by [32], p. 257).

3. Nelder-Mead and related optimization methods

An auxiliary optimization problem, hidden in the heating control in Section 2.2,

has been overcome successfully, thanks to the deep knowledge of the solution of

a model direct problem from Section 2.1. Nevertheless, this is not available in most

problems of building design, even in the subsequent minimization of the total con-

sumption of energyQ by Section 2.2, summed up over the whole building, as sketched

in Section 2.3; thus we have to look for other methods, better than a naive compar-

ison of a finite number of selected design variants.

The usual gradient-based methods, as discussed in [23], are not suitable here be-

cause of very expensive evaluation of functions needed for optimization from the nu-

merical analysis of initial and boundary value problem for sparse systems of parabolic

partial differential equations of evolution. Some authors try to overcome such diffi-

culties using various soft-computing approaches; for more details including numerous

further references cf. [6] and [28]. Another potential remedy, discussed in this pa-

per, can be the replacement of the usual gradient-based methods by the downhill

simplex Nelder-Mead approach by [27], although a reasonable theory of its formal

convergence is still missing. For illustration, the interview of S. Senn with J.Nelder

(2003), recorded by [38], contains: Mathematicians hate it because you can’t prove

convergence; engineers seem to love it because it often works.

3.1. Ad hoc considerations. For our introductory analysis, let us consider

a real-valued function F of a finite integer number N of real variables p =

(p1, . . . , pN )T ∈ R
N . To avoid technical difficulties, let us suppose that F has some

infimum F× and the gradient of F , denoted by G(p) = (∂F(p)/∂p1, . . . , ∂F(p)/∂pn)
T,

is Lipschitz differentiable; G with no arguments will refer to G(pN ) for brevity. All
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vectors from R
N like p will be considered here as column ones for simplicity, lower

indices will refer to their components, upper ones will be reserved for special posi-

tions, namely in the ordered sets of simplex vertices: {p1, p2, . . . , pN+1} define such
simplex in R

N in the sense of [4], p. 317, that F(p1) 6 F(p2) 6 . . . 6 F(pN+1).

The following auxiliary notation will be used with i ∈ {1, . . . , N}: ui = pi − pN+1,

U ∈ R
N×N introduced as

U =



u1
1 . . . u

N
1

...
. . .
...

u1
N . . . uN

N


 ,(3.1)

δ = max(|u1|, . . . , |uN |),(3.2)

moreover p = (p1 + . . . + pN )/n (for the gravity centre of the N -dimensional sim-

plex facet non-containing pN+1), u = p − pN+1, DF i = F(pi) − F(pN+1), DF =

(DF1, . . . ,DFn)T. For a fixed simplex given by {p1, p2, . . . , pN+1}, our aim must
be to replace xN+1 by some “improved” point p∗, i.e. returning F(p∗) lower than

F(pN+1). Thus we shall take

(3.3) p∗ = pN+1 − aS,

where S is a directional search vector in R
N and a certain (a priori unknown) real

parameter.

The first simple choice for (3.3), avoiding any differentiation, coming from [27],

can be

(3.4) S = −u,

supplied by a testing set a ∈ {2, 3, 32 , 1
2} (a = 1, e.g. p∗ = p, is forbidden because of

the simplex degeneracy) known as i) reflection, ii) expansion, iii) outside contraction

and iv) inside contraction; if all such attempts are not satisfactory, the whole simplex

is reduced to the similar one, preserving its vertex p1 (with the lowest received value

of F) and the hyperplanes of N their facets, typically using the v) shrink of relevant
vertices to their half-length. (Some authors introduce extension instead of expansion

and/or reduction instead of shrink, but in the practically same sense.) Let us notice

that the computational steps i), ii), iii) and iv) need 1 evaluation of F , whereas
the step v) requires N evaluations of F (which is rather expensive). One possible
version of this sequential computational algorithm (probably the most frequently

used), following [13], p. 139, is:

(1) Sort {p1, p2, . . . , pN+1} to have F(p1) 6 F(p2) 6 . . . 6 F(pN+1).
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(2) Try reflection pR = pN+1 + 2ū.

If F(p2) < F(pR) < F(pn+1), then replace pN+1 by pR and go to step (6).

(3) If F(pR) > F(pN ), then go to step (4).

Try expansion pE = pR + ū.

If F(pE) < F(pR), then replace pN+1 by pE, otherwise replace pN+1 by pR,

and (in both cases) go to step (6).

(4) Try outside contraction pCO = pR − ū/2 and inside contraction pCI = p̄− ū/2.

If min(F(pCO),F(pCI)) > F(pN ), then go to step (5).

If F(pCO) 6 F(pCI), then replace pN+1 by pCO, otherwise replace pN+1 by

pCI , and (in both cases) go to step (6).

(5) Perform shrink : take (p1 + (p2 − p1)/2, . . . , p1 + (pN+1 − p1)/2) instead of

(p2, . . . , pN+1).

(6) Check convergence and stop, or go back to step (1).

Various formulae for the convergence check and numerous remarks to this algorithm

can be found in [12]. Just the same algorithm seems to be implemented in the

MATLAB function fminsearch from the toolbox optimization.

Such algorithm does not exploit any information from DF . This can be a moti-
vation for replacing (3.4) by

(3.5) S = UΞUTS̃

with S̃ coming from

(3.6) ΞDF = UTS̃,

supplied by some symmetric weight matrix Ξ ∈ R
3×3. We assume that ‖Ξ‖ 6 ξ,

where a positive constant ξ is independent of δ. We shall work with selected prop-

erties of special real matrices, discussed in [10], Chap. 2, too. Some special choices

of Ξ, applying U from (3.1) and δ from (3.2), can be:

a) Ξ = I,

b) Ξ = δ2(UTU)−1 (such inversion must be available because the simplex is not

allowed to degenerate),

c) Ξ = U for the matrix U ∈ R
3×3 with all elements equal to 1/n: consequently,

we have “averaging-friendly” U = U2, etc. (but without regularity).

For any i ∈ {1, . . . , N} the Lagrange theorem yields

(3.7) DF i = ui · G(p̃i) = ui · G + ui · (G(p̃i)− G),

316



where p̃i lies somewhere on the vertex between pN+1 and pi. Since we have |vi| 6 δ

and the assumed Lipschitz continuity forces

(3.8) |G(p̃i)− G| 6 Lδ,

with certain positive constant L, (3.7) can be rewritten as

(3.9) DF = UTG − δ2Lϕ,

where ϕ ∈ R
N contains some values from [−1, 1], thus |ϕ|2 6 N . Multiplying (3.9)

by Ξ from the left, comparing the result with (3.6), we receive

(3.10) UTS̃ = ΞUTG − δ2LΞϕ.

In particular, for b) we have S = S̃ directly, which corresponds, using the comparison
of (3.10) with (3.5), to the seemingly best choice of S, at least from the point of view
of gradient information, whereas for a) we have S = UUTS̃/δ2, which modifies b)
by certain weight UUT/δ2, whereas for b) S = S̃ directly. Using the notation
DF = (DF1 + . . . + DFN )/N , for c) we obtain S = (UU/h)(UDF) = NDFu; this

is, up to a positive multiplicative factor (because DF < 0 by the definition of DF),
identical with the classical Nelder-Mead proposal (3.4). Moreover, for a) we have

‖Ξ‖ = ‖I‖ = 1, and for c) ‖Ξ‖ = ‖U‖ = 1. For b) the evaluation of ‖Ξ‖ is not so easy:
introducing U∗ = δU , for its maximal eigenvalue N̂ and its minimal eigenvalue N we

have ‖U‖2 = ‖UTU‖ = δ2‖UT
∗
U∗‖ = δ2‖U∗‖2 = N̂δ2 (the cheaper upper estimate

from the Schur norm gives N̂ 6 N) and ‖U−1‖2 = ‖(UTU)−1‖ = δ−2‖(UT
∗
U∗)

−1‖ =

δ−2‖U−1
∗

‖2 = N−1δ−2, thus ‖Ξ‖ = N−1.

Figures 1, 2 and 3 document the application of c), b) and a) (first 7 simplex vertices

are supplied by small integers for better orientation) on the following very simple

example (where every reader knows the correct minimum, can imagine all circular

level sets, etc.): N = 2 and F(p1, p2) = p21 + p22. To enable an easy comparison

of results, for c) just the above presented algorithm is applied; for b) and a) the

exactly same approach, except the direction of S, is then utilized with the length
of S reduced to |S| = |ū|. Potential stagnation trends in the algorithm are handled
using the restart from the QR-decomposition by [30]. The original software code

in MATLAB (calling no specialized optimization function like fminsearch) has been

created for the support of the above sketched optimization problems for advanced

buildings. One can see immediately that b) here is most effective, wheras a) needs

no remeshing; however, other results in some more complicated cases hinders from

the formulation of such observation-based general conclusion.

317



−1

0

1

2

3

4

−1

0

1

2

3

4

0

5

10

15

20

25

30

35

  4

 p
1

  3

   6

  1

   5

algorithm 1: error 2.30276e−007, 26 iterations + 0 remeshings, 73 evaluations

  2

   7

 p
2

  
  

  
 F

 (
 p

1
, p

2
 )

Figure 1. Simple example of optimization with 2 parameters: the original Nelder-Mead
algorithm.
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Figure 2. Simple example of optimization with 2 parameters: the direct quasi-gradient
modification of the Nelder-Mead algorithm.
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Figure 3. Simple example of optimization with 2 parameters: the weighted quasi-gradient
modification of the Nelder-Mead algorithm.

To improve a), especially for N >> 2, [11] distinguishes between two algorithms:

SNMS (Standard Nelder-Mead Simplex) and ANMS (Adaptive Nelder-Mead Sim-

plex); in our notations both algorithms refer to a), SNMS with a ∈ {2, 3, 32 , 1
2} and

ANMS with some other 4 values of a, with recommended a ∈ {2, 2 + 2/N, 7/4 −
1/(2N), 1/4+1/(2N)}; for N = 2 such ANMS degenerates to SNMS. Unlike ANMS,

the algorithm GBNM (Globalized Bounded Nelder-Mead) by [22] relies on another

generalization (so-called globalization) of searching for a, together with probabilistic

restarts. An alternative approach to b), based on the quasi-gradient improvement of

SNMS, is presented in [29]. The derivative-free optimization algorithm of [5] cannot

be identified with b) or c) directly because of its original sparse grid numerical inte-

gration. Still other attempts to improve SNMS rely on its coupling with appropriate

soft computing techniques, as with artificial neural networks by [26], or with genetic

algorithms by [13], Chap. 6, or with particle swarm intelligence by [1].

3.2. Convergence results. The existing convergence theory for SNMS and re-

lated algorithms is far from being complete. The following results try to handle

strictly convex F with bounded level sets. Namely [21] verified SMNS to converge
to the minimizer for N = 1 (where, in our notation, the directions of −G and all S
by a), b), c) must be the same); for N = 2 [21] guaranteed only the convergence

319



of δ to zero during SMNS. Consequently, [24] invented the first simple example of

non-convergence for N = 2; for the survey of various examples or non-convergence

or stagnation cf. [38]. The partial result on the sufficient descent property of expan-

sion and shrink for a general integer N was derived by [11]. The strongest result,

up to now, for N = 2 seems to be that of [20]: SMNS with disabled expansion

converges always to the minimizer; the 25-page computer-assisted proof of this the-

orem is based on the step-by-step elimination of all possible non-convergent cases.

Unfortunately, for practical computations this result is not very useful because of

the typical presence of many expansions, namely for initial estimates not close to

the optimum; moreover, no generalization for N > 2 is available. The “convergent

variants” of SMNS suggest its various modifications with anomalous steps, as the

sufficient decrease motivated oriented restarts by [17] or the pseudo-expansion on

so-called “ghost simplices,” coupled with the sequences of quasi-minimal frames, re-

shaping the simplices using the matrix QR-decomposition, by [30], with the help

of the knowledge of properties of positive bases and frames from [7]. Nevertheless,

none of these results guarantees the convergence of SMNS for our simple exam-

ple F(p1, p2) = p21 + p22 (cf. Figure 1) with an arbitrary regular initial triangle!

Thus, some deeper analysis, oriented to reasonable practical computations, can be

helpful.

For the following formulations of several lemmas and theorems, covering a), b)

and c), as representing members of a wider class of simplex methods defined by (3.5)

and (3.6), we shall respect all above introduced notations from Section 3.1 without

any additional assumptions. However, some more assumptions may be required to

obtain sufficiently strong recommendations for practical computations, e.g. on the

regularity of Ξ. We shall work namely with the notation G from the first paragraph
of Section 3.1 and with S from (3.5), utilizing U by (3.1) and δ by (3.2). The weight
matrix Ξ has been introduced in (3.6) in general; the Lipschitz constant L comes
from (3.8). Moreover, we shall use also the notation F = (F1+ . . .+FN+1)/(N+1),

as well as the analogous notation F∗

, where F∗ replaces FN+1.

Lemma 3.1. The scalar product S · G satisfies the lower estimate

(3.11) S · G >
1

2δ2
|ΞUTG|2 − δ2

2
L2ξ2N.

P r o o f. By (3.5) and (3.10) we have

S · G =
1

δ2
(ΞUTG − δ2LΞϕ) · ΞUTG =

(1
δ
ΞUTG − δLΞϕ

)
· 1
δ
ΞUTG.
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This can be estimated as

S · G >
1

2δ2
|ΞUTG|2 − δ2

2
L2|Ξϕ|2 >

1

2δ2
|ΞUTG|2 − δ2

2
L2‖Ξ‖2|ϕ|2.

which (together with the estimates introduced in Section 3.1) implies (3.11). �

Lemma 3.2. The norm |S| satisfies the upper estimate

(3.12) |S|2 6
2

δ2
N̂ξ2|ΞUTG|2 + 2δ2L2

N̂ξ4.

P r o o f. By (3.5) and (3.10) we have

|S|2 =
1

δ4
|UΞUTS̃|2 =

1

δ4
|UΞ(ΞUTG − δ2LΞϕ)|2.

This can be estimated as

|S|2 6
2

δ4
|(UΞ)ΞUTG|2 + 2L2|(UΞ)Ξϕ|2

6
2

δ4
‖U‖2‖Ξ‖2|ΞUTG|2 + 2L2‖U‖2‖Ξ‖4|ϕ|2

which (together with the estimates introduced in Section 3.1) implies (3.12). �

Lemma 3.3. The difference F − F∗ satisfies the lower estimate

(3.13) (N + 1)(F − F∗) >
a

2δ2
|ΞUTG|2(1− 4aLN̂ξ2)− aδ2

2
L2ξ2(N + 4aN̂ξ2).

P r o o f. Considering (3.3), the Lagrange theorem guarantees

FN+1 −F∗ = aS · G(p̂∗) = aS · G + aS · (G(p̃∗)− G) > aS · G − a|S| |G(p̃∗)− G|

for some p̃∗ lying on the straight line between pN+1 and p∗. Thus |G(p̃∗) − G| 6
L|aS| = aL|S| and consequently

FN+1 −F∗
> aS · G − a2L|S|2.

Inserting the estimates (3.11) and (3.12) from Lemma 3.1 and Lemma 3.2, we obtain

FN+1 −F∗ >
a

2δ2
|ΞUTG|2 − aδ2

2
L2ξ2N − 2a2

δ2
LN̂ξ2|ΞUTG|2 − 2a2δ2L3

N̂ξ4

=
a

2δ2
|ΞUTG|2(1− 4aLN̂ξ2)− aδ2

2
L2ξ2(N + 4aN̂ξ2).

Since all values F1, . . . ,FN remain unchanged, the simple averaging then yields

(3.13). �
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Lemma 3.4. There exist such positive constants ζ and ζ̂, dependent on N but

independent of δ, and such strategy of choice of the parameter a that

(3.14) F − F∗ > ζ
∣∣∣1
δ
ΞUTG

∣∣∣
2

− ζ̂δ2

during the whole iteration process.

P r o o f. Following Lemma 3.3, let us set

ζ =
a

2(N + 1)
(1− 4aLN̂ξ2), ζ̂ =

a

2(N + 1)
L2ξ2(N + 4aN̂ξ2)

in (3.13), which gives (3.14). The inequality ζ̂ > 0 is evident; an arbitrary choice of

a 6 (1− ε)/(4LN̂ξ2) with 0 < ε < 1 implies ζ > 0, too. �

Theorem 3.1. i) Let δ(k), G(k) and UT (k) be δ, G and UT from the kth iteration,

k ∈ {1, 2, . . .} (k = 0 refers to the initial estimate formally). Let the choice of δ(k)

be controlled so that

(3.15)
∞∑

k=1

δ(k)
2
6 δ∗2,

where δ∗ is some finite positive constant. Then

(3.16) lim
k→∞

∣∣∣1
δ
ΞUT (k)G(k)

∣∣∣ = 0

exists. If, moreover, such a positive constant S exists that

(3.17)
∣∣∣1
δ
ΞUT (k)z

∣∣∣ > S|z|

is satisfied for any z ∈ R
N , then also

(3.18) lim
k→∞

|G(k)| = 0

and the sequence of p(k), generated by pN+1 in the kth iteration, has its cumulative

point in R
N .

ii) Let F (k)
be understood as F∗

from the kth iteration. All results from i)

remain true if the assumptions are satisfied only for an infinite number of selected

iterations k, whereas the sum of F (k) − F (k−1)
from all remaining iterations is not

greater than some real constant.
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P r o o f. i) Applying Lemma 3.4, excluding that

∣∣∣1
δ
ΞUT (k)G(k)

∣∣∣ = 0

is achieved for some finite k, we obtain

F (0) −F× >

∞∑

k=1

(F (k−1) −F (k)) > ζ

∞∑

k=1

∣∣∣1
δ
ΞUT (k)G(k)

∣∣∣
2

− ζ̂

∞∑

k=1

δ(k)
2
,

which together with (3.15) gives

(3.19)
∞∑

k=1

∣∣∣ 1

δ(k)
ΞUT (k)G(k)

∣∣∣
2

6
F (0) −F× + ζ̂δ∗2

ζ

with the obvious consequence (3.16). Inserting z = G(k) into (3.17), from (3.16) we

receive (3.18). The existence of some cumulative point for p(k) then follows from

(3.15), forcing

lim
k→∞

δ(k) = 0.

ii) Let −F̂ be the above-mentioned real constant, F̂ being positive (which is the
worst case). Repeating the considerations from i), omitting all kth elements of the

sequences where the assumptions from i) are not satisfied, we come to the analogy

of (3.19) with F̂ +F (0) −F× instead of F (0) −F×. Consequently, we are allowed to

derive the same results using the renumbered subsequences. �

Theorem 3.2. If F has a positive definite Hessian matrix then F attains its
unique minimum p̆ in R

N and the accumulation point from Theorem 3.1 coincides

with p̆.

P r o o f. The existence of exactly one minimum of F follows from the standard
differential calculus; for its overview see [23], p. 3. The limit passage

(3.20) lim
k→∞

|p(k) − p̆| = 0

is then evident by [23], p. 14. �

Theorem 3.1 presents rather strong sufficient conditions for the existence and

uniqueness of a minimum of F and for the convergence of above sketched algorithms
under weaker conditions of Theorem 3.2. For less smooth functions F , as well as
for the implementation of some additional bounds (occurring in most engineering
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applications, including the following practical example), some more detailed analysis

of particular assumptions of Theorem 3.1 is needed.

To satisfy (3.17) by c) without any modifications is not possible because of the

singularity of Ξ = U: UUUT = (UU)(UUT) is only positive, but cannot be positive

definite, thus, only the weaker result (3.16) in Lemma 4 is available, not (3.18). Fortu-

nately, thanks to ii) in Theorem 3.1, the remedy is to force (3.17) in carefully selected

kth iterations, taking e.g. Ξ as U+ ςI, motivated by b), or as U+ ςδ2(UTU)−1, moti-

vated by a), with some positive ς . However, the duty to guarantee (3.15) cannot be

avoided: a reasonable choice may be e.g. the geometrical sequence δ(k) = δ(k−1)/
√
2

for each k ∈ {1, 2, . . .} because δ(0)2 + δ(1)
2
+ δ(2)

2
+ . . . = δ(0)

2
(1 + 1

2 + 1
4 + . . .) =

2δ(0)
2
< ∞, thus we have δ∗ = δ(0)

√
2 for (3.15). The practical computational im-

plementation can be different: performing additional (more expensive) shrink steps,

various restarting tricks, etc., taking also the constant S in (3.17) into account. As

shown in [20], even for SMNS with N = 2 it is necessary to analyze the rules for the

increase of simplex flatness carefully because no sequences of nonobtuse simplices

like [4] can be derived.

4. Practical examples

The following practical example comes from [37], utilizing numerous results

from [15]. It refers to the low-energy atelier and family house from Figure 4 of the

architect M.Hudec in Ostrov u Macochy (built 2009), which is a village in Mora-

vian Karst, 30 km northern from Brno, situated on the plateau over Suchý Žleb

(“Dry Valley”) with numerous caves. The original software for the analysis of the

building as a thermal system, based on the physical, mathematical and numerical

analysis sketched in Section 2.1, Section 2.2 and Section 2.3, has been developed.

The 131 pages long dissertation thesis [15] (involving 92 text pages and 39 pages

of technical appendices, moreover 31 pages of its abbreviated version, available in

the information system of Brno University of Technology), contains its very detailed

documentation, as well as the crucial parts of the project of the house of M.Hudec

and numerous relevant graphs and photos; the same house is also presented as a

“passive house” from natural materials (wooden structure, straw balls, etc.) in [14],

p. 147, briefly, although it does not satisfy the criteria of [9], transformed to [8].

Computational evaluation of annual energy consumption of a building needs the

knowledge of triples of representative climatic input data, as introduced in the 3th

choice of Section 2.1, received in our case from the international airport Brno-Tuřany

(although some alternative climatic records are available from the long time series

of measurements at the Faculty of Civil Engineering of BUT) for the reference year
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Figure 4. M.Hudec: Low-energy house, Ostrov u Macochy (2009).

with h = 1 hour, with certain posteriori corrections due to the location of the house,

using the incomplete data measured on the plateau of Moravian Karst.

The house contains 2 floors and 4 rooms, whose 26 mutual interfaces, including

those to external environment (i.e. the building enclosure), are assumed to consist of

a finite number of homogeneous layers. Figure 5 shows the development of temper-

ature in some selected points of the 14th interface, namely the wall between the 3rd

room and the environment, in January of the 1st year, starting from hypothetical

θ0 = 20oC everywhere, and during the whole 3rd year; for the repeated usage of

the same annual data this can be considered as nearly periodic. The upper part of

Table 1, comparing various methods of evaluation of such consumption, highlights

the necessity of using the appropriate climatic data: for the location of the house on

the plateau some corrections of the climatic data from Brno seem to be sufficient,

whereas in the hypothetical case of its location on the bottom of the narrow part of

the valley the better estimate would be even to set the temperature to 8oC during

the whole year and no radiation, as observed inside most caves near Ostrov u Ma-

cochy. The rather low value of the real annual consumption of energy for heating

may be underestimated because of the non-standard exploitation of the house during

the first years of its existence, followed by several years with very mild winters.
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Figure 5. Development of temperature in particular layers of the 14th interface between
the largest room [3] and the external environment [0]: quasi-periodical, the 3rd
year (lower graph), from initial status, the 1st year / January (upper graph), not
quite sufficient heating power of the installed equipment—testing example for
switching heating regimes.
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consumption evaluation method

1.881 MWh new software, correction for building location

1.419 MWh new software, original climatic data from Brno-Tuřany

1.897 MWh software Energie 2009 (required by Czech technical specifications)

1.710 MWh qualified estimate from time series of user payments for energy

1.915 MWh heating on both floors: 2 devices, total power preserved

1.900 MWh heating in all rooms: 4 devices, total power preserved

1.849 MWh partial replacement of glass garden frontage

by non-transparent one

3.039 MWh replacement of straw balls in walls by clay blocks

1.841 MWh Nelder-Mead optimization, 1 parameter: vertical rotation 20.81◦

1.769 MWh Nelder-Mead optimization, 2 parameters: vertical rotation 21.37◦,

glass transparency factor 0.1

Table 1. Annual consumption of energy for heating obtained by various methods including
design optimization.

The simplest method of design optimization is the comparison of a finite number

of variants, to reach some sub-optimal solution. The central part of Table 1 compares

the real installation of only one heating device in the largest room, corresponding

to the first line in the upper part, to the hypothetical installation of 2 or 4 heating

devices per particular floors or rooms with the same total heating power, as well as

with the effect of partial reduction of the area of windows. The alternative replace-

ment of straw balls by clay blocks seems not to be successful; however, such analysis

could be useful for the reconstruction of some traditional village houses, within the

framework of care of historical monuments.

The lower part of Table 1 documents the application of slightly modified SNMS

(involving some regularization steps, as analyzed in Section 3.2) for the hypothetical

vertical rotation of the house (1st parameter) and certain glass transparency factor

(2nd parameter), with respect to their lower and upper bounds via a simple penalty

functions, similarly to [22], but not discussed in Section 3.2 properly. Figure 6 cor-

responds to the second item of this part of Table 1. Unlike the instructive Figures 1,

2, 3, only the successful iteration results are visible here, not particular attempts to

improve simplex locations. Since most differences in the energy consumptions are

rather small, no strong recommendations for the reconstruction of the house have

been obtained from these optimization attempts; however, their significance is in

validation of the new computational model, open to potential applications for larger

building actions.
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Figure 6. Example of optimization of energy consumption for heating with 2 parameters:
algorithm SNMS, slightly modified.

Another practical example, presented in [36] in details, refers to on the identifica-

tion procedure of material characteristics λ and κ from (2.5), taken in the simplest

case (at least in some small temperature range) as constants, from the laboratory

experiment, based on the the so-called “hot-wire” approach. Such approach works

with the cylindrical geometrical configuration, relying on the recording of tempera-

ture development in time by several (at least two) sensors; the temperature change is

caused by the carefully controlled heating, performed by a long and thin wire, located

in the cylinder axis. The practical applicability is needed at least to the temperature

range from (the standard room temperature) 20oC to 800oC in the laboratory oven,

to support the design of silicate-based sensible thermal containers, installed in some

advanced buildings. No penalty functions forcing additional obligatory conditions

by technical standards are needed there, thus one could expect to observe similar

preference of algorithms a), b), c) by Section 3.1 from the point of view of their

effectiveness (number of function evaluations) as in our simple example, presented

by Figures 3, 2, 1. However, [36] shows that this is more complicated because of

different number of restarts due to simplex degeneracy in particular cases.
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5. Conclusions and generalizations

Using the example of thermal design of a low-energy building, we have demon-

strated a class of downhill or quasi-gradient simplex optimization approaches, appli-

cable to numerous problems with high computational cost of getting particular values

of optimized functions without any probabilistic or soft computation tricks. Lemmas

and theorems of Section 3.2 show why and how some regularization steps must be

incorporated into any relevant computational algorithm to suppress the danger of

its non-convergence or stagnation.

The rest of this paper reminds a lot of potential generalizations and further appli-

cation possibilities, although the planning and design of smart cities and buildings,

as mentioned in the Introduction, cannot be reduced to the existence and uniqueness

analysis of formal (direct, sensitivity, inverse, general optimization, . . .) mathemati-

cal problems and to some convergence properties of sequences of their approximate

solutions. However, the presence of still open problems can be seen as an opportunity

for intensive research in the near future.
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