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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 2 , P A G E S 3 3 6 – 3 5 0

EXISTENCE, CONSISTENCY AND COMPUTER
SIMULATION FOR SELECTED VARIANTS OF MINIMUM
DISTANCE ESTIMATORS

Václav Kůs, Domingo Morales, Jitka Hrabáková and Iva Frýdlová

The paper deals with sufficient conditions for the existence of general approximate mini-
mum distance estimator (AMDE) of a probability density function f0 on the real line. It shows
that the AMDE always exists when the bounded φ-divergence, Kolmogorov, Lévy, Cramér,
or discrepancy distance is used. Consequently, n−1/2 consistency rate in any bounded φ-
divergence is established for Kolmogorov, Lévy, and discrepancy estimators under the con-
dition that the degree of variations of the corresponding family of densities is finite. A simula-
tion experiment empirically studies the performance of the approximate minimum Kolmogorov
estimator (AMKE) and some histogram-based variants of approximate minimum divergence
estimators, like power type and Le Cam, under six distributions (Uniform, Normal, Logistic,
Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum
likelihood/median) is provided for sample sizes n = 10, 20, 50, 120, 250. The simulation ana-
lyzes the behaviour of estimators through different families of distributions. It is shown that
the performance of AMKE differs from the other estimators with respect to family type and
that the AMKE estimators cope more easily with the Cauchy distribution than standard or
divergence based estimators, especially for small sample sizes.

Keywords: Kolmogorov distance, φ-divergence, minimum distance estimator, consistency
rate, computer simulation

Classification: 62B05, 62H30

1. INTRODUCTION AND BASIC CONCEPTS

Minimum distance estimators are increasingly being used when the classical maximum
likelihood theory breaks down (unbounded likelihood problems such as mixtures of con-
tinuous distributions, heavy tailed distributions with unknown location and scale pa-
rameters, or distributions with a parameter dependent support) and because they have
good robustness properties. Let us start with basic notations and definitions.

Let F(R) be the set of all cumulative distribution functions (cdf) on (R,B) with the
σ-algebra B of Borel subsets, and F ⊂ F(R) be a family of distributions dominated by a σ-
finite measure λ on (R,B). We denote by D the set of corresponding probability density
functions (pdf) in the Banach space L1(λ) containing the densities of all distributions
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from F. Further, X = (X1, . . . , Xn) denotes a random vector whose components are
independent and identically distributed (i.i.d.) from f0 ∈ D.

We say that a sequence of mappings f̂n : Rn+1 7→ [0,∞) is an estimator of f0 ∈ D if,

for every n ∈ N, f̂n is measurable and f̂n(· ,x) ∈ D for every realizations (observations)

x ∈ Rn of random variable X. In the rest of paper, F̂n denotes the distribution func-
tion corresponding to a density estimate f̂n and Fn denotes the empirical distribution
functions on R, i. e.

Fn(x) = Fn,X(x) =
1

n

n∑
i=1

I(−∞,x](Xi), n ∈ N,

where IA denotes the indicator function of A ⊂ R.
Let D denote a reflexive distance (disparity, divergence, score,...) on F× F̃ for some

F̃ ⊂ F(R). By the reflexivity of D we mean that D(F, F ) = 0 for F ∈ F
⋂
F̃. In case

of F ⊂ F̃, each D defines a pseudoreflexive (reflexivity a.e. µ) distance ρD on D by
ρD(f, g) = D(F,G), where F,G ∈ F are the distribution functions corresponding to
f, g ∈ D.

Definition 1.1. An estimator f̂n of f0 ∈ D is the approximate minimum D (distance)

estimator (AMDE) if the corresponding distribution estimator F̂n ∈ F satisfies the con-
dition

D(F̂n, Fn) ≤ inf
F∈F

D(F, Fn) + o(n−1/2) a.s. (1)

If the o(n−1/2) term is omitted then f̂n is the minimum D (distance) estimator (MDE)
of f0. In the setup of parametric statistical inference, we take F = {Fθ : θ ∈ Θ} for a

given parameter space Θ ⊂ Rk; the AMDE of p.d.f. and c.d.f. take the form f̂n = fθ̂n
and F̂n = Fθ̂n , respectively; and θ̂n is called AMDE or MDE of true θ.

Further, we say that an estimator f̂n of f0 ∈ D is consistent in an arbitrary ρD-
distance if ρD(f̂n, f0)→ 0 a.s., or consistent in the expected ρD-distance if EρD(f̂n, f0)→
0. We consider f̂n to be consistent of the order of rn ↘ 0 in the ρD-distance if
ρD(f̂n, f0) = Op(rn), or in the expected ρD-distance if EρD(f̂n, f0) = O(rn).

If D1, D2 are two reflexive distances on F× F̃ then D1 dominates D2 (D1 � D2) on

F with respect to F̃ if for every G ∈ F̃ and every ε > 0 there exists δ > 0 such that

D1(F,G) < δ implies D2(F,G) < ε for all F ∈ F.

Now, we introduce one of the most general and widely used class of distances called
φ–divergences (Liese and Vajda [20]).

Definition 1.2. Let F,G ∈ F(R), µ be a σ–finite measure on (R,B) such that {F,G} �
µ and f, g denote the corresponding Radon-Nikodym derivatives (densities) w.r.t. µ.
Then φ–divergence of F and G is defined by

Dφ(F,G) =

∫
X
g φ

(
f

g

)
dµ, (2)
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where φ : (0,∞) → R, φ(1) = 0, φ(t) is convex on (0,∞) and strictly convex at
t = 1. We put g φ(f/g) = g φ(0) if f = 0 and g φ(f/g) = f φ(∞)/∞ if g = 0, where
φ(0) := limt→0+ φ(t) and φ(∞)/∞ := limt→∞ φ(t)/t with the convention ’0 · ∞ = 0’.

The value of Dφ(F,G) does not depend on the choice of dominating measure µ. It is
known, see Csiszár [6, 7], that Dφ are all reflexive, φ(0) + φ(∞)/∞ > 0, and the range
of Dφ(F,G) is

0 ≤ Dφ(F,G) ≤ φ(0) + φ(∞)/∞, F,G ∈ F(R),

where the upper bound is achieved if F,G are two singular distributions.
Further, Dφ(F,G) are all invariant with respect to the linear transformation φ̃(t) =

φ(t) − φ′+(1)(t − 1), t ∈ (0,∞), where φ′+(1) denotes derivative of φ at t = 1 from

the right. Thus every φ-function has its nonnegative version φ̃ producing the same φ–
divergence while φ̃′+(1) = 0. For details on φ-divergences see Vajda [26], Liese and Vajda
[21] or Pardo [24]. For the corresponding approximate minimum φ–divergence estimator
we use the notation AMDφE.

If Dφ forms a metric distance on F(R) × F(R) then we yield classical approximate

minimum distance estimate f̂n of f0. By Vajda [26], Dφ is symmetric if and only if

φ̃(t) = tφ̃(1/t), t ∈ (0,∞). Every Dφ can be symmetrized by introducing φ∗(t) =
φ(t) + tφ(1/t), t ∈ (0,∞). Corresponding φ∗-divergence Dφ∗(F,G) is symmetric with
φ∗(0) + φ∗(∞)/∞ = 2φ(0) + 2φ(∞)/∞. By Kafka et al. [15], for a given α > 0, the
symmetric divergence Dα

φ is a metric (it satisfies the triangle inequality) if the function

(1 − tα)1/α/φ(t), t ∈ (0,∞), is nonincreasing in the domain t ∈ (0, 1). A necessary
condition for symmetric divergence Dα

φ to be a metric is the boundedness of Dφ in the
sense of φ(0) + φ(∞)/∞ <∞.

The well-known examples of such metrics are Hellinger squared metric (minimum
Hellinger distance estimators, see Beran [3], Győrfi et al. [11]), total variation (mini-
mum L1-distance estimates, see Győrfi et al. [10]), Le Cam squared metric distance (cf.
Le Cam [19]) or Matusita metric distance (Matusita [22]). As can be seen in Ősterreicher
[23], the class of φ-divergences contains the infinite parametric family of metric diver-
gences.

In Section 2 we give sufficient conditions for the existence of the approximate min-
imum distance estimators (AMDE) f̂n of a p.d.f. f0 on the real line. In Section 3 we
show that the AMDE always exists when the bounded φ-divergence or the Kolmogorov
distance are used, and its order of consistency in any bounded divergence is given. In or-
der to illustrate the application of AMDE and to get some insight on their small sample
size properties, a simulation experiment dealing with AMDE parameter estimation has
been carried out in Section 4. Throughout Sections 3-4 we also consider the Kolmogorov
distance on F(R) × F(R) given by K(F,G) = supx∈R |F (x) − G(x)|, which is not con-
tained in the class of Dφ divergences. We use the notation AMKE for this approximate
minimum Kolmogorov estimator.

It is important to point out here, that (1) cannot be used generally for arbitrary
distance D, or Dφ divergence defined above. If it happens that D(F, Fn) = ∞ for all

F ∈ F, than (1) fails down in defining a reasonable version of the estimator F̂n ∈ F.
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Also, using an unbounded divergence Dφ with φ(0) + φ(∞)/∞ = ∞, we face similar
difficulty in the case of lack of absolute continuity between empirical measure Pn and
PF , the probability measures corresponding to Fn and F , respectively. For those reasons
we mainly deal with bounded φ-divergences and distances in this paper, as in Theorems
3.2 and 3.4.

2. EXISTENCE OF AMDE IN GENERAL CASE

In this section we extend the existence results of Chapter 6 of Pfanzagl [25], established
for parametric M -estimators, to the dominated nonparametric case of AMDE. First, we
consider the total variational distance on F(R)× F(R)

V (F,G) = 2 sup
B∈B

∣∣∣∣∫
B

dF −
∫
B

dG

∣∣∣∣ , F,G ∈ F(R).

Since the supremum can be restricted to the ring generated by the semiring of intervals
[a, b) with rational values of a and b, the metric distance V is measurable in X for
all distribution functions Fn, Gn which are measurable in the arguments x ∈ R and
X ∈ Rn. If f, g ∈ D are the densities corresponding to distribution functions F, G ∈ F
then V (F,G) = ρV (f, g) =

∫
R |f − g|dλ. Since F is dominated by a σ–finite measure

λ on (R,B) then, by Berger [4], the metric space (F, V ) is separable which implies the
separability of the metric space (D, ρV ). This means that there exists a countable subset
D0 = {f0k : k ∈ N} ⊂ D which is dense in (D, ρV ). The corresponding set of distribution
functions F0 = {F0k : k ∈ N} ⊂ F is countable and dense in (F, V ).

Lemma 2.1. Let F, F̃ ⊂ F(R), F� λ and D be a reflexive distance on F× F̃. If D ≺ V
on F w.r.t. F̃ then for every ε > 0 and every G ∈ F̃ there exists F1 ∈ F0 such that
D(F1, G) < infF∈FD(F,G) + ε.

P r o o f . For a fixed arbitrary ε > 0 and G ∈ F̃ we define the set

M =

{
F ∈ F : D(F,G) < inf

F∈F
D(F,G) + ε

}
⊂ F.

By definition of infima we know that M 6= ∅. Denote r = infF∈FD(F,G)+ε. Since D ≺
V on F w.r.t. F̃ means simply that DG(F )

4
= D(F,G) is a continuous function in F on the

separable metric space (F, V ), then the set M = D−1G

(
(−∞, r)

)
is an open set in (F, V ).

Hence there exists F1 ∈ F0 such that F1 ∈M , i. e. infF∈FD(F,G) ≤ D(F1, G) < r.
�

Lemma 2.2. Let D be a reflexive distance on F × E, where E denotes the set of all
possible realizations of the empirical distribution functions Fn,X for a given n ∈ N. Let

us further define D̃ : F× Rn 7→ R by D̃(F,X) = D(F, Fn,X), F ∈ F. If it holds that
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A1) D̃(F,X) is measurable with respect to X ∈ Rn for all F ∈ F,

A2) D ≺ V on F w.r.t. E,

then infF∈F D̃(F,X) is a measurable function in (Rn,Bn) with the Borel σ-algebra Bn.

P r o o f . By Lemma 2.1, for all X ∈ Rn it holds infF∈F D̃(F,X) = infF∈F0
D̃(F,X)

which means that infF∈F D̃(F,X) is measurable in (Rn,Bn). �

Theorem 2.3. Let D be a reflexive distance on F × E satisfying assumptions A1 and
A2 of Lemma 2.2. Then there exists at least one AMDE f̂n of f0 ∈ D.

P r o o f . Let an = o(n−1/2), an > 0. We put for every X ∈ Rn

k(n)(X) = inf

{
k ∈ N : D̃(F0k,X) < inf

F∈F
D̃(F,X) + an, F0k ∈ F0

}
.

Lemma 2.1 ensures that k(n)(X) is well defined by this formula. For every fixed k ∈ N{
X ∈ Rn : k(n)(X) = k

}
= An ∩Bn,1 ∩Bn,2 ∩ · · · ∩Bn,k−1,

where

An =

{
X ∈ Rn : D̃(F0k,X) < inf

F∈F
D̃(F,X) + an, F0k ∈ F0

}
,

Bn,j =

{
X ∈ Rn : D̃(F0j ,X) ≥ inf

F∈F
D̃(F,X) + an, F0j ∈ F0

}
,

j = 1, 2, . . . , k − 1. By Lemma 2.2, infF∈F D̃(F,X) is measurable in X ∈ Rn. Hence
the sets An and Bn,j are all measurable so that the function k(n)(X) is also measurable.

Consequently, the composite functions f̂n(x) = f0k(n)(X)(x) are measurable in both

variables (x,X) ∈ Rn+1. Moreover, f̂n obviously satisfies the inequality (1) for its

corresponding distribution function F̂n. �

The existence of MDE’s requires stronger assumptions. The existence of a sequence
{f̂n} is ensured only if (D, ρV ) is locally compact. Under this assumption the nonpara-
metric modification of the “measurable selection theorem” (cf. Pfanzagl [25], Chap.6)

can be applied to the distance D to prove that there exist measurable versions of f̂n.

3. EXISTENCE AND CONSISTENCY IN SPECIAL CASES

Let us consider the special case D(F,G) = Dφ(F,G), or D(F,G) = K(F,G), on F(R)×
F(R). The next Lemma 3.1 presents a version of Proposition 8.27 in Liese and Vajda
[20], with a considerably simpler proof.
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Lemma 3.1. Let Dφ be a φ-divergence on F(R). Then for all F,G ∈ F(R) it holds

Dφ(F,G) ≤ [φ(0) + φ(∞)/∞]
V (F,G)

2
.

P r o o f . By using the convexity of φ we obtain for arbitrary τ > 1

φ(t) ≤


φ(0) (1− t) + φ(1) t, for 0 ≤ t ≤ 1,

τ − t
τ − 1

φ(1) +
t− 1

τ − 1
φ(τ), for 1 ≤ t ≤ τ.

Since φ(1) = 0, this implies

φ(t) ≤


φ(0) (1− t), for 0 ≤ t ≤ 1,

(t− 1) limτ→∞
φ(τ)

τ − 1
= (t− 1)φ(∞)/∞, for 1 ≤ t <∞.

For A = {f ≥ g} it follows that

Dφ(F,G) ≤
∫
X−A

g φ(0)

(
1− f

g

)
dµ+

∫
A

g

(
f

g
− 1

)
φ(∞)/∞ dµ

= φ(0)

∫
X−A

(g − f) dµ+ (φ(∞)/∞)

∫
A

(f − g) dµ

= φ(0)
V (F,G)

2
+ (φ(∞)/∞)

V (F,G)

2
.

where {F,G} � µ and f, g are the corresponding densities w.r.t. µ. �

Theorem 3.2. If Dφ is a bounded φ-divergence, i. e. φ(0) + φ(∞)/∞ < ∞, then an

AMDφE f̂n of the true density f0 ∈ D always exists. Also, the AMKE f̂n of the true
density f0 ∈ D always exists.

P r o o f . The existence of AMDφE f̂n follows directly from Theorem 2.3 since Lemma
3.1 ensures that Dφ ≺ V on F w.r.t. E and thus both the assumptions A1 and A2 of
Lemma 2.2 are accomplished. For the case of AMKE, it is sufficient to verify A1 and A2
for the Kolmogorov distance K. Concerning A1, we know that Fn,X(x) is measurable in
X ∈ Rn for all x ∈ R. Consequently, supx∈Q |F (x)− Fn,X(x)| is measurable in X ∈ Rn
for all F ∈ F(R). Then K(F, Fn,X) = supx∈R |F (x)−Fn,X(x)| = supx∈Q |F (x)−Fn,X(x)|
is also measurable. Assumption A2 is valid in the case of Kolmogorov distance due to
the fact that K(F,G) ≤ V (F,G)/2, valid for all F,G ∈ F(R). �

By the Theorem 3.2 we have proved the existence of all the previously considered
AMDφE for bounded φ–divergences, e. g. the ones mentioned in Section 1. Moreover,
the same or similar reasoning as we did in the proof of Theorem 3.2 can be employed



342 V. KŮS, D. MORALES, J. HRABÁKOVÁ AND I. FRÝDLOVÁ

also for the minimum Lévy (L), Cramér (C), and discrepancy (d) distance estimators
investigated in Hrabáková and Kůs [14], which are defined through the metric distances

L(F,G) = inf{ε > 0 : G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε,∀x ∈ R} , (3)

C(F,G) =

∫
R

(F (x)−G(x))2 dG(x) , (4)

d(F,G) = sup
B∈B
|P (B)−Q(B)| , (5)

respectively, where B is the set of all closed intervals in R (or the set of all closed balls
in Rs for multidimensional case), and P , Q are the probability measures corresponding
to the densities f , g. All these metric distances (3), (4), and (5), fulfill the measurability
assumption A1 of Lemma 2.2. Moreover, the following inequalities

L(F,G) ≤ K(F,G) ≤ V (F,G)/2 ,

C(F,G) ≤ [K(F,G)]2 ≤ [V (F,G)]2/4 ,

d(F,G) ≤ 2K(F,G) ≤ V (F,G) ,

induce accomplishment of the A2 domination assumption of Lemma 2.2 for AMLE,
AMCE, and AMdE estimators. Thus the AMLE, AMCE and AMdE always exist. The
same reasoning can be applied to the combined Kolmogorov–Cramér estimators from
Hrabáková and Kůs [13]. (For some other specific inequalities derived in spaces of
probability measures see Gibbs and Su [9]).

Now, we address briefly the consistency of AMKE, AMLE, AMCE and AMdE. In
the next Theorem 3.4 we apply the previously derived consistency results from Kůs [17]
which uses the concept called degree of variations of a family of densities D.

Definition 3.3. Let F � λ and D denote the set of densities corresponding to F.
Let f and g be two pdf’s and ν+ and ν− be the measures on (R,B) (the lower and
upper variations) with corresponding Radon-Nikodym derivatives (f−g)+ and (f−g)−,
respectively. We say that A ∈ B separates ν+ and ν− if either ν+(A) = ν+(R) and
ν−(R − A) = ν−(R) or ν+(R − A) = ν+(R) and ν−(A) = ν−(R). We define degree of
variation DV (D) of the family D as

DV (D) = sup
{
DV (f, g) : f, g ∈ D

}
where DV (f, g) = 0 if the support A = {x ∈ R : (f − g)+ > 0} of the component ν+

separates ν+ and ν− while λ(A) = 0. Otherwise we set

DV (f, g) = inf
{
m ∈ N : A =

m⋃
j=1

Ij , A separates ν+, ν−
}
,

where I1, . . . , Im are nonvoid intervals in R. If the minimized set is empty, i. e. if there
is no m of the required properties, we put DV (f, g) =∞.
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In brief, this parameter-free quantity DV (D) characterizes complexity of the family D
itself with respect to the maximum number of signum changes in differences of every two
arbitrarily chosen densities from D. The degree of variations covers all the parametric,
semi-parametric, and nonparametric families, thus the class D need not possess any
specific structure in general, and it does not require any continuity or differentiability
conditions or bounded supports imposed usually on the classes of densities in order to
guarantee some consistency properties of estimators under consideration.

Theorem 3.4. If the degree of variations of a family D is finite, i. e. DV (D) <∞, then

the approximate minimum Kolmogorov, Lévy and discrepancy estimators f̂n of f0 ∈ D
are all consistent of the order of n−1/2 in an arbitrary bounded φ-divergence Dφ and in
an arbitrary expected bounded φ-divergence Dφ.

P r o o f . The existence of AMKE, AMLE and AMdE f̂n was already proved above.
Kůs [17] proved that, under the condition DV (D) <∞, the AMKE f̂n is

√
n-consistent

in the L1-norm and in the expected L1-norm. Further, Hrabáková and Kůs [14] ex-
tended the same

√
n-consistency result to AMLE and AMdE. Thus, by the inequality

proved in Lemma 3.1, all the AMKE, AMLE, and AMdE, are also
√
n-consistent in arbi-

trary bounded φ-divergence Dφ. The same consistency rate in any expected bounded φ-

divergenceDφ is implied by the inequality EDφ(F̂n, F0) ≤ [φ(0)+φ(∞)/∞]EV (F̂n, F0)/2,

where F̂n and F0 are the distribution functions corresponding to the densities f̂n and f0
(the existence of both expectations follows simply from the the fact that both Dφ(F̂n, F0)

and V (F̂n, F0) are bounded random variables with respect to X ∈ Rn). �

The generalized quantity called partial degree of variations was introduced in Hra-
báková and Kůs [14] and it enables to extend the

√
n-consistency of AMKE, AMLE,

and AMdE, also to the families not satisfying the finiteness assumption DV (D) < ∞
required in Theorem 3.4. Notice also that the approximate minimum Cramér estimator
(AMCE) was not treated by Theorem 3.4 concerning consistency since the required

√
n-

consistency of AMCE in the (expected) L1-norm was not yet established theoretically
in the current literature. However, the computer simulation carried out on AMCE in
Hrabáková and Kůs [14] strongly indicates its n−1/2 consistency rate in the L1–norm.

Győrfi, Vajda and van der Meulen [12] deal with the parametric version of AMKE
fθ̂n of fθ for any parametric family F = {Fθ : θ ∈ Θ ⊂ Rk}. By Theorem 3.2 we
have proved the existence of their minimum Kolmogorov distance parameter estimates
θ̂n and by Theorem 3.4 we established the

√
n-consistency of their density estimators

fθ̂n in arbitrary (expected) bounded φ-divergence Dφ. To derive also classical Euclidean
√
n-consistency of their AMKE θ̂n by means of the results of this paper we would

need to establish stronger domination relations between the Euclidean distance on the
parametric space Θ and any bounded φ-divergence Dφ on D.

4. COMPUTER SIMULATION – AMDE’S PERFORMANCE

In this section we analyze the performance of approximate minimum divergence and
approximate minimum Kolmogorov estimators of f0. These AMDφE and AMKE esti-
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mators are compared with standard estimators (S) which are known to possess good
statistical properties for each considered family of distributions (see below). Through-
out the simulation we consider the Kolmogorov distance K as the representant selected
from the set of metric distances {K,L,C, d}. This is reasonable choice since in our pre-
vious simulations, carried out in Hrabáková and Kůs [14], the behaviour of approximate
minimum Kolmogorov, Lévy, Cramér, and discrepancy distance estimators was shown
to be quite similar in respect to sample sizes n and family of distributions undertaken.
Further, in our simulation of this Section, we treat two families of divergences. First
one is the power Iα-divergence family

Dφα(F,G) = Iα(F,G) =
1

α(α− 1)

(∫
fαg1−α dµ − 1

)
defined by means of the convex functions φα(t) = tα−1

α(α−1) , t > 0, α ∈ (0, 1), with the

limits φα(0) = 1
α(1−α) and φα(∞)/∞ = 0. Thus we treat the bounded divergences of

Theorem 3.2. Simulations are carried out for α = 1/4, 1/2 and 3/4 while we tabulate only
the case for α = 1/2 in this paper, which means that we deal in fact with the approximate
minimum Hellinger distance estimators obtained through the squared metric H2(F,G) =∫

(
√
f −√g)2dµ. Corresponding AMHE’s are denoted by φ1 in Table 1 and Figure 1.

The second family was selected from the class of extended Le Cam divergences

Dφβ (F,G) = LCβ(F,G) =
1

2

∫
(f − g)2

βf + (1− β)g
dµ

given by means of the convex functions φβ(t) = 1
2 (t−1)2/ [(1− β) + βt], t > 0, β ∈ (0, 1),

with the finite limits φβ(0) = 1
2(1−β) and φβ(∞)/∞ = 1

2β . Due to the fact that Dφβ

becomes the Pearson divergence χ2(F,G) for the extreme value β = 0 and the Neymann
divergence for β = 1, this extended Le Cam divergence is sometimes called blended
divergence or the blend of Pearson and Neyman divergences, see Kůs [16, 18] and further
references ibid. Simulation programs run for the values β = 1/4, 1/2 and 3/4 but here
we tabulate only the case for β = 1/2. These approximate minimum Le Cam distance
estimators (AMLCE) are denoted by φ2 in Table 1 and Figure 1.

We consider the following classes of distributions and standard (S) estimators:

Class F1: Uniform distributions U(a, b), a, b ∈ R, a < b, with standard moment

estimators âs = Xn −
√

3sn and b̂s = Xn +
√

3sn, where Xn = (1/n)
∑n

1 Xi and
s2n = (1/n)

∑n
1 (Xi −Xn)2.

Class F2: Gauss (normal) distributions N(µ, σ2), µ ∈ R, σ2 > 0, with standard
maximum likelihood estimators (MLE) µ̂s = Xn and σ̂2

s = s2n.

Class F3: Logistic distributions Lo(α, β) with the densities

f(x) =
1

β
exp

{
−x− α

β

}(
1 + exp

{
−x− α

β

})−2
, x ∈ R, α ∈ R, β > 0,

with standard moment estimators α̂s = Xn and β̂s =
√

3sn/π.
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Class F4: Laplace distributions La(α, β) with the densities

f(x) =
1

2β
exp

{
−|x− α|

β

}
, x ∈ R, α ∈ R, β > 0,

and standard moment estimators α̂s = Xn and β̂s = sn/
√

2.

Class F5: Cauchy distributions C(u, v) with

f(x) =
1

π

v

v2 + (x− u)2
, x ∈ R, u ∈ R, v > 0.

Standard estimators are ûs = X0.5 and v̂s = (X0.75 −X0.25)/2, i. e. the sample median
and semi-interquartile range.

Class F6: Weibull distributions W (m, c, b),

f(x) =
b

cb
(x−m)b−1 exp

{
−
(
x−m
c

)b}
, x ≥ m, m ∈ R, b > 0, c > 0,

with standard MLE estimators, m̂s, ĉs, b̂s, obtained by solving the likelihood equations
with quantile seeds

b̂0 =
ln(− ln 0.0263)− ln(− ln 0.8327)

lnX([0.9737n]) − lnX([0.1673n])
, m̂0 =

X(1)X(n) −X2
(2)

X(1) +X(n) − 2X(2)
,

where X(1), X(2), . . . , X(n) denote here the ordered sample statistics and ĉs is found by

direct substitution after the iterative procedure on m̂s and b̂s has been carried out.

Concerning the simulation experiments, we first generate L = 103 pseudorandom
realizations of the sample (X1, X2, . . . , Xn) i.i.d. F0, of sizes n = 10, 20, 50, 120, 250,
taken from one of the above described classes F1, . . . ,F6 and we calculate standard
(S), AMKE (K), AMDφ1

E (φ1) and AMDφ2
E (φ2) estimates of parameters of the true

distribution F0 (density f0). We calculate the mean values of these estimates and the
mean total variational distance of estimated densities fθ̂n,l from the true density f0, i. e.

V n(f0) :=
1

L

L∑
l=1

ρV (fθ̂n,l , f0) =
1

L

L∑
l=1

∫
R
|fθ̂n,l − f0|dλ, (6)

where fθ̂n,l denotes the parametric density estimate for the selected family of distribu-

tions and belonging to the lth repetition, l = 1, 2, . . . , L. We test the performance of
the estimators with each of the following source (generating) distributions, F0, individ-
ually: U(0, 1), N(0, 1), Lo(0, 1), La(0, 1), C(0, 1) and W (0, 1, 1). Weibull distribution is
treated during simulation as 3-parametric with all three parameters unknown and to be
estimated by the AMKE and AMDφE procedures.

From technical point of view, for the minimization of D(Fθ, Fn) we applied the nu-
merical method of successively condensed grids combined with gradient method. More
precisely, the procedure is the following:
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• choose the bounded range of estimated parameters θ,

• lay down the grid with node values,

• find 5 grid nodes with the lowest values of D(Fθ, Fn),

• for each of these 5 nodes continue in finding of the local minimum by the gradient
method,

• obtain five local extremal points,

• the one with the lowest value of D(Fθ, Fn) becomes the estimate θ̂ of parameters
θ for the considered n, l, Fj , and D.

For the case of D = K, the computation of K(Fθ, Fn) is simple. For D = Dφ1
and

D = Dφ2
we applied classical histogram density estimates f̂Hn and set g = f̂Hn to eval-

uate (2). Hence, we work with only approximative (near) AMDφ1
E and AMDφ2

E in
our simulation. There are some other approaches how to carry out the evaluating pro-
cedure for approximative minimum φ–divergence estimates, for example one can apply
various Kernel density estimates, Barron density estimates (cf. Barron [2]), or restrict
ourselves to only decomposable divergences avoiding the numerical difficulties such as
in Frýdlová et al. [8], cf. Broniatowski et al. [5]. Also, the kernel-based minimum dual
φ-divergence estimator (MDφDE) is newly proposed in Al Mohamad [1] (for symmetric
and asymmetric kernels), where its asymptotic properties are proved and the efficiency
versus robustness is treated through a comprehensive simulation study for two compo-
nent Gaussian mixture, Weibull mixture, and generalized Pareto distribution. But from
practical point of view, we choose our approach based on the well known classical his-
tograms f̂Hn to obtain the approximations to AMDφ1

E and AMDφ2
E. Finally, the total

variational integral in (6) was then calculated by the Simpson method applied to every
interval of the domain of (fθ̂n,l − f0) on which the integrand is continuous.

Table 1 presents the obtained values of V n(f0). Standard estimates (S) predominantly
achieve the best behavior for the normal, logistic and Weibull distributions. However, for
the uniform, Laplace and Cauchy distributions (the distributions not satisfying regular-
ity conditions for the asymptotic efficiency of maximum likelihood estimators) one can
find minimum distance estimates with better mean L1–performance that the standard
estimates. More precisely, for the uniform distribution, the AMDφ1E’s are significantly
best estimates throughout all sample sizes n = 10–250, while the AMKE’s are the worst
ones for small sample sizes n ≤ 50 and AMDφ2

E’s are significantly worst for remaining
sample sizes. For the normal distribution, for all n = 10–250, the standard estimates
are always the best and AMKE’s always the worst. In the case of logistic distribution,
the situation is exactly the same as for the normal case with the only exception that
for the larger sample sizes n ≥ 50 the AMDφ2E’s are very close (slightly under) to the
standard estimates. On the contrary, for both the Laplace and the Cauchy distribu-
tions, AMKE’s are predominantly the best estimates which can be applied, whilst the
AMDφ1

E’s do not perform well for small sample sizes. Standard estimates are even the
worst for Laplace case if n ≥ 50. However, within the Weibull family of distributions,
the standard estimates attain the lowest mean total variational distances for n ≤ 30,
while AMDφ1E’s slightly overcome them for n ≥ 50. AMKE’s are the worst estimates
for Weibull family for all n = 10–250.
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n T U(0, 1) N(0, 1) Lo(0, 1) La(0, 1) C(0, 1) W (0, 1, 1)
10 S 0.301 0.298 0.325 0.392 0.448 0.401

K 0.382 0.345 0.346 0.367 0.399 0.482
φ1 0.150 0.338 0.359 0.405 0.496 0.465
φ2 0.287 0.336 0.343 0.387 0.437 0.464

20 S 0.206 0.202 0.231 0.284 0.288 0.273
K 0.256 0.241 0.249 0.264 0.282 0.347
φ1 0.050 0.239 0.246 0.290 0.355 0.307
φ2 0.195 0.236 0.239 0.283 0.299 0.328

50 S 0.134 0.128 0.153 0.192 0.182 0.167
K 0.156 0.154 0.159 0.171 0.174 0.210
φ1 0.001 0.145 0.157 0.180 0.218 0.165
φ2 0.154 0.143 0.150 0.172 0.186 0.191

120 S 0.085 0.086 0.097 0.123 0.114 0.095
K 0.095 0.101 0.101 0.110 0.117 0.135
φ1 0.000 0.088 0.100 0.118 0.131 0.086
φ2 0.150 0.087 0.096 0.112 0.124 0.116

250 S 0.060 0.059 0.066 0.085 0.079 0.060
K 0.068 0.068 0.069 0.076 0.078 0.093
φ1 0.000 0.063 0.067 0.078 0.092 0.058
φ2 0.148 0.061 0.065 0.074 0.102 0.066

Tab. 1. Mean total variational distances V n(f0) for standard (S) and

selected variants of AMDE (K, Dφ1 , Dφ2) estimates.

Figure 1 enables to compare more distinctly the behaviour of our estimators through
different families of distributions (horizontal directions) and also illustrates their consis-
tency for selected family F (vertical directions). Notice that the behaviour of AMKE’s
differs from the other estimates with respect to family type considered for all sample
sizes n = 10–250. They achieve minimal L1–error trend along the normal, logistic and
Laplace distributions throughout all the six families F1, . . . ,F6. Moreover, the Kol-
mogorov estimates cope more easily with the Cauchy distribution than standard and
AMDφ1

E estimates since Cauchy family is the critical one for them especially for small
sample sizes n ≤ 50. On the contrary, the Weibull is the most problematic class of
distributions among F1, . . . ,F6, when applying AMKE’s or AMDφ2E’s for almost all
n = 10–250. The increasing horizontal trends in most parts of the graphs for standard,
φ1, and φ2, indicates that we have to increase the sample sizes in order to attain the
same values of L1–errors for the distributions from the right-hand part of the graphs.
For example, applying AMDφ1

E estimator, for obtaining the same L1–error around 0.15,
we need relatively small sample n = 10 observations for the uniform distribution whilst
we require moderate sample size around n = 50 observations for logistic or Weibull
distributions, etc.

If we consider the performances of power divergences Iα for α = 1/4, 3/4, or Le Cam’s
LCβ for β = 1/4, 3/4, we come to the overall conclusion that I1/4-based AMDE’s, as
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Fig. 1. Mean L1–errors V n(f0) for Uniform (U), Normal (N), Logistic

(Lo), Laplace (La), Cauchy (C), and Weibull (W) distributions under

standard (S), Kolmogorov (K), Dφ1 (phi1), and Dφ2 (phi2) AMDE’s.

well as LC3/4-based AMDE’s, preserve the main trends of Figure 1, however they lead
to a mild global downgrade of quality (higher L1-errors), whilst I3/4 and LC1/4 produce
a very slight global improvement of AMDE’s in L1–error, in comparison with Dφ1

and
Dφ2 estimates reported in Table 1 and Figure 1. The Laplace distribution forms the
only exception from this rule for the case of LC1/4, where we register significant increase
of L1–error for all sample sizes, even by up to 0.31 for n = 10. The downgrade of
quality is by around 0.05–0.14 for I1/4 divergence estimates and it is by about 0.01–0.05
for LC3/4 divergence estimates, depending on distribution family and sample size. The
most distinct increase of these L1-errors was obtained predominantly for small sample
sizes, up to n = 50, and the worst cases were obtained under the Cauchy distributions.
The reason of this L1 quality drop can be seen in the loss of symmetry of divergences
Iα and LCβ , apart from symmetry parameter α = β = 1/2, and also in the diminished

’weight’ (1 − β) of the histogram density estimate g = f̂Hn in denominator of LCβ .
However, further simulations are needed to evaluate convincingly the dependence of
AMDE on divergence parameters α and β.
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