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Abstract. We obtain a metrical property on the asymptotic behaviour of the maximal
run-length function in the Lüroth expansion. We also determine the Hausdorff dimension
of a class of exceptional sets of points whose maximal run-length function has sub-linear
growth rate.
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1. Introduction

The Lüroth expansion was introduced by Lüroth in [9] in 1883. Consider the

Lüroth transformation T : (0, 1] → (0, 1] defined by

T (x) := d1(x)(d1(x) − 1)
(

x− 1

d1(x)

)

,

where d1(x) = [1/x]+1 and [·] denotes the integer part function. Then every x ∈ (0, 1]

has the Lüroth expansion

(1.1) x =
1

d1(x)
+

1

d1(x)(d1(x)− 1)d2(x)
+ . . .

+
1

d1(x)(d1(x)− 1)d2(x) . . . dn−1(x)(dn−1(x)− 1)dn(x)
+ . . . ,

where the digits dn(x) > 2 are positive integers and are defined by dn(x) = d1(T
n−1x)

for all n > 1. Lüroth showed that every irrational number has a unique infinite
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expansion of the form (1.1) and each rational number has either a finite or an infinite

periodic expansion. For each x ∈ (0, 1], let {dn(x)}n>1 be the digits sequence in the
Lüroth expansion of x. Here, and in what follows, we denote the Lüroth expansion
of x by

x = [d1(x), d2(x), . . .].

Now we use an example to illustrate the algorithm of the Lüroth transformation.
Let x =

√
2− 1, expanding this irrational number as its Lüroth expansion, we find

d1(x) =
[ 1

x

]

+ 1 = [
√
2 + 1] + 1 = 3, T x = 3 · 2

(

x− 1

3

)

= 6x− 2 = 6
√
2− 8,

d2(x) =
[ 1

Tx

]

+ 1 = 3, T 2x = 6 · Tx− 2 = 36
√
2− 50,

d3(x) = 2, T 3x = 72
√
2− 101, d4(x) = 2, . . . ,

and then √
2− 1 = [3, 3, 2, 2, . . .].

We call

ln(x) = max
i>2

{k : dj+1(x) = . . . = dj+k(x) = i for some j, 0 6 j 6 n− k}

the nth maximal run-length function of x, which represents the longest run of the
same symbol in the first n digits of x.

In this paper, we first study the asymptotic behaviour of the maximal run-length
function in the Lüroth expansion from the global measure theoretic point of view.

We obtain a large number law for ln(x).

Theorem 1.1. For almost all x ∈ (0, 1],

(1.2) lim
n→∞

ln(x)

log2 n
= 1.

Our second objective is to determine the Hausdorff dimension of the exceptional
set of numbers which violate the above metrical property. We show that the corre-

sponding exceptional set is of Hausdorff dimension 1. This follows from the following
more general result. Let ϕ : N → R

+ be an increasing function for each pair of num-

bers α, β ∈ [0,∞] with α 6 β, define

Eϕ
α,β =

{

x ∈ (0, 1] : lim inf
n→∞

ln(x)

ϕ(n)
= α, lim sup

n→∞

ln(x)

ϕ(n)
= β

}

.
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Theorem 1.2. Let ϕ : N → R
+ be a monotonically increasing function satisfying

lim
n→∞

ϕ(n) = ∞ and lim
n→∞

(ϕ(n+ 1)− ϕ(n)) = 0. For any 0 6 α 6 β 6 ∞, we have

dimH Eϕ
α,β = 1,

where dimH denotes the Hausdorff dimension.

Example 1.3. There are several typical examples of ϕ which fulfill the assump-
tions of Theorem 1.2:

⊲ ϕ(n) = log2 n;

⊲ ϕ(n) = nγ , 0 < γ < 1;

⊲ ϕ(n) =
n

(log n)τ
, τ > 0.

Remark 1.4. The condition lim
n→∞

(ϕ(n + 1) − ϕ(n)) = 0 on ϕ in Theorem 1.2

cannot be weakened by requiring lim inf
n→∞

ϕ(n)n−1 = 0 or even lim
n→∞

ϕ(n)n−1 = 0 as

in [7], [8] for the case 0 < α 6 β < ∞. For example, if we take ϕ(n) = 22
k

when

22
2k

6 n < 22
2k+1

for k > 0, then lim
n→∞

ϕ(n)n−1 = 0, but one can verify directly

Eϕ
α,β = ∅ whenever 0 < α 6 β < ∞ by the fact that 0 6 ln+1(x)− ln(x) 6 1 for any

x ∈ [0, 1).

Analogous problems were first considered for the dyadic expansion. For any x ∈
[0, 1), let rn(x) be the dyadic run-length function of x, namely, the longest run of 1’s
in the first n digits of the terminating dyadic expansion of x. In a pioneering work,

Erdős and Rényi [2] proved that for almost all x ∈ (0, 1],

lim
n→∞

rn(x)

log2 n
= 1.

The Hausdorff dimension of various exceptional sets of points whose dyadic run-

length functions obey other asymptotic behaviour instead of log2 n were studied in
[10], [15], [7], [8], [13]. A result similar to Theorem 1.1 also holds in continued

fraction expansion, see [14]. For more details about run-length function and Haus-
dorff dimension, one can refer to the books [12], [3] and references therein. The

generalized Lüroth expansion dynamical system and several other concrete exam-
ples of number-theoretic dynamical systems were used to illuminate various aspects

of infinite ergodic theory by Kesseböhmer, Munday and Stratmann in their recent
book [6]; they also used these dynamical systems to analyze some explicit questions

to illustrate not only the powerful methods from the infinite ergodic theory but also
the strong connection between the infinite ergodic theory and the renewal theory.
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2. Preliminaries

This section is devoted to some elementary properties and dimensional results of

Lüroth expansion that will be used later. For a wealth of classical results about
Lüroth expansion and Hausdorff dimension, see the books by Galambos [4] and

Falconer [3], respectively.

2.1. Elementary properties.

Lemma 2.1 ([4]). The series expansion in (1.1) is the Lüroth expansion of some
x ∈ (0, 1] if and only if dn(x) > 2 for all n > 1.

Lemma 2.2 ([1]). The random variable sequence {dn(x)}n>1 is independent and

identically distributed.

Let Σ = {2, 3, 4, . . .}. For any n ∈ N and (d1, . . . , dn) ∈ Σn, we call

In(d1, . . . , dn) = {x ∈ (0, 1] : di(x) = di for 1 6 i 6 n}

a cylinder set of order n. The In(d1, . . . , dn) represents the set of numbers in (0, 1]

which have the Lüroth expansion beginning with d1, . . . , dn.

Lemma 2.3 ([4]). For any (d1, . . . , dn) ∈ Σn, n ∈ N, In(d1, . . . , dn) is the interval

with endpoints
n
∑

i=1

1

d1(d1 − 1) . . . di−1(di−1 − 1)di

and

n
∑

i=1

1

d1(d1 − 1) . . . di−1(di−1 − 1)di
+

1

d1(d1 − 1)d2(d2 − 1) . . . dn(dn − 1)
.

Thus

|In(d1, d2, . . . , dn)| =
1

d1(d1 − 1)d2(d2 − 1) . . . dn(dn − 1)
,

where |I| denotes the length of the interval I.

The next lemma and figure (see Figure 1) describe the positions of cylinders In+1

of order n+ 1 inside the nth order cylinder In.

Lemma 2.4 ([4]). Let In = In(d1, . . . , dn) be a cylinder of order n, which is par-

titioned into sub-cylinders {In+1(d1, . . . , dn, dn+1) : dn+1 ∈ Σ}. These sub-cylinders
are positioned from right to left, as dn+1 increases from 2 to ∞.
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In(d1, . . . , dn)

dn+1 = 3 dn+1 = 2. . .

Figure 1. Distribution of cylinders.

2.2. Dimensional results. We first recall the following lemma, which is an im-
portant tool to obtain a lower bound of the Hausdorff dimension.

Lemma 2.5 ([3]). Let E ∈ R and let f : E → R be an η-Hölder function, i.e., for

any x, y ∈ E,

|f(x)− f(y)| ≪ |x− y|η,
where the constant in ≪ is an absolute constant. Then

dimH f(E) 6
1

η
dimH E.

Lemma 2.6. For any M ∈ Σ, let

EM = {x ∈ (0, 1] : 2 6 di(x) 6 M for all i > 1}.

Then dimH EM = sM , where sM is given by the Moran formula

M
∑

k=2

( 1

k(k − 1)

)sM
= 1.

P r o o f. For any M > 2, we notice that the Cantor set EM is the attrac-

tor of the similitudes {fk(x) = x(k(k − 1))−1 + k−1}Mk=2 with contraction ratios
{(k(k − 1))−1}Mk=2. Then Lemma 2.6 follows from the classical dimensional result of

Moran [11] on self-similar sets (see also [3], [5]). �

By simple calculation, we have

Lemma 2.7. lim
M→∞

sM = 1.

Now we prove an elementary result which is similar to Lemma 4 in [10].

Lemma 2.8. Given a set of positive integers J = {j1 < j2 < . . .} and an infinite
bounded sequence {bi}i>1 with 2 6 bi 6 B for some B ∈ N, let

E(J , {bi}) = {x = [d1(x), d2(x), . . .] ∈ (0, 1] : di(x) = bi, ∀ i ∈ J }.

If the density of J is zero, that is,

lim
n→∞

#{i 6 n : i ∈ J }
n

= 0,

then dimH E(J , {bi}) = 1, where # denotes the number of elements in a set.
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P r o o f. The main idea of the proof is showing that E(J , {bi}) contains subsets
with Hausdorff dimensions converging to one. Let

EM (J , {bi}) = {x = [d1(x), d2(x), . . .] ∈ (0, 1] : di(x) = bi, ∀ i ∈ J
and 2 6 di(x) 6 M for i /∈ J }.

Clearly EM (J , {bi}) ⊂ E(J , {bi}). We will construct an (1 − ε)−1-Hölder function
f from EM (J , {bi}) to EM . By Lemma 2.5, this means that dimH EM (J , {bi}) >
(1 − ε) dimH EM and thus by Lemmas 2.6 and 2.7, dimH E(J , {bi}) > 1 − ε as we
desired.

Define f : EM (J , {bi}) → EM as follows. For any x = [d1(x), d2(x), . . .] ∈
EM (J , {bi}), let

f(x) = x̄ = lim
n→∞

[d1(x), . . . , dn(x)],

where the Lüroth expansion [d1(x), . . . , dn(x)] is obtained by eliminating the terms

di(x) with i ∈ J in the first n-digits of the Lüroth expansion [d1(x), . . . , dn(x)] of x.
Let M > B and ε > 0. It is clear from the construction f(EM (J , {bi})) = EM

for f . Now we show that f is an (1 − ε)−1-Hölder function. Let t(n) = #{i 6 n :

i ∈ J }, choose N such that 2nε > (M(M−1))t(n) for all n > N , this is possible since
lim
n→∞

t(n)n−1 = 0. For any x, y ∈ EM (J , {bi}) with |x − y| < (M(M − 1))−N and

x 6= y, let n be the greatest integer such that x, y are contained in the same cylinder of
order n. By Lemma 2.3, we see that n > N and n+1 /∈ J . Without loss of generality,
we assume x > y. Then there exist 2 6 d1, . . . , dn 6 M and 2 6 τn+1 < σn+1 6 M

such that x ∈ In+1(d1, . . . , dn, τn+1), y ∈ In+1(d1, . . . , dn, σn+1). From the construc-
tion of EM (J , {bi}) and the distribution of cylinders (Figure 1), we notice that |x−y|
is greater than the length of the cylinder In+2(d1, . . . , dn, τn+1,M + 1), that is

(2.1) |x− y| > |In+2(d1, . . . , dn, τn+1,M + 1)|

>
1

(M + 1)M

1

M(M − 1)
|In(d1, . . . , dn)| >

1

M4
|In(d1, . . . , dn)|.

On the other hand, we have x̄, y ∈ In−t(n)([d1(x), . . . , dn(x)]), i.e.,

dj(x̄) = dj(y), 1 6 j 6 n− t(n).

Thus

(2.2) |f(x)− f(y)| = |x̄− y| 6 |In−t(n)([d1(x), . . . , dn(x)])|
6 (M(M − 1))t(n)|In(d1, . . . , dn)|
6 2nε|In(d1, . . . , dn)| 6 |In(d1, . . . , dn)|1−ε.

Combined with (2.1), this yields the Hölder continuity exponent of f . The proof
of Lemma 2.8 is complete. �
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An application of the above lemma leads to the following technical result.

Lemma 2.9. Let {mk}k>1, {nk}k>1 be two increasing sequence of natural num-

bers satisfying the following conditions:

(1) ∃K > 1, nk < mk < nk+1 for any k > K;

(2) lim
k→∞

(mk − nk) = ∞;

(3) lim
k→∞

mk − nk

mk
= 0;

(4) lim
k→∞

mk − nk

nk+1 − nk
= 0.

For k > K, let tk be the largest integer such that mk + tk(mk − nk) < nk+1. Define

a set of positive integers D and an infinite sequence {ai}i>1 as follows:

D := D({mk}, {nk}) = {1, 2, . . . , nK − 1} ∪
⋃

k>K

{nk, nk + 1, . . . ,mk − 1,mk,

mk + (mk − nk)− 1, . . . ,mk + (tk − 1)(mk − nk)− 1,mk + tk(mk − nk)− 1,

mk + (mk − nk), . . . ,mk + (tk − 1)(mk − nk),mk + tk(mk − nk)}.

For 1 6 i < nK , set

ai = 3.

For k > K, set

ank
= 3, ank+1 = . . . = amk−1 = 2, amk

= 3;

amk+(mk−nk)−1 = amk+2(mk−nk)−1 = . . . = amk+tk(mk−nk)−1 = 2;

and

amk+(mk−nk) = amk+2(mk−nk) = . . . = amk+tk(mk−nk) = 3.

Then the set

E(D, {ai}) = {x = [d1(x), d2(x), . . .] ∈ (0, 1] : di(x) = ai, ∀ i ∈ D}.

is of Hausdorff dimension 1.

P r o o f. We need only to show that the density of D is zero. For any n > nK+1,
there exists k > K + 1 such that nk 6 n < nk+1, and

⊲ if nk 6 n 6 mk, then

#{i 6 n, i ∈ D} = nK +

k−1
∑

j=K

[(mj − nj + 1) + 2tj ] + n− nk;
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⊲ if mk + t(mk − nk) 6 n < mk + (t+ 1)(mk − nk) for some 0 6 t 6 tk − 1, then

#{i 6 n, i ∈ D} 6 nK +
k−1
∑

j=K

[(mj − nj + 1) + 2tj ] +mk − nk + 2t+ 1;

⊲ if mk + tk(mk − nk) 6 n < nk+1, then

#{i 6 n, i ∈ D} = nK +

k−1
∑

j=K

[(mj − nj + 1) + 2tj ] +mk − nk + 2tk.

It follows that

lim sup
n→∞

1

n
#{i 6 n, i ∈ D}

6 lim sup
k→∞

max
06t6tk

nK +
∑k−1

j=K [(mj − nj + 1) + 2tj] +mk − nk + 2t+ 1

mk + t(mk − nk)

6 lim sup
k→∞

{

nK +
∑k−1

j=K [(mj − nj + 1) + 2tj] +mk − nk + 1

mk
+

2

mk − nk

}

= lim sup
k→∞

∑k−1
j=K [(mj − nj + 1) + 2tj ]

mk
6 lim sup

k→∞

mk − nk + 1 + 2tk
mk+1 −mk

= 0.

Therefore, by Lemma 2.8, we have dimH E(D, {ai}) = 1. �

3. Proof of Theorem 1.1

In this section, we will give the details of the proof of Theorem 1.1. Our argument
utilizes ideas presented in [12], [14].

P r o o f of Theorem 1.1. We prove (1.2) in two stages. First, for any ε > 0, we

establish that

(3.1) lim sup
n→∞

ln(x)

log2 n
6 1 + ε, a.e.

From this inequality we instantly get

lim sup
n→∞

ln(x)

log2 n
6 1, a.e.,

which means that we need to obtain for any ε > 0

(3.2) lim inf
n→∞

ln(x)

log2 n
> 1− ε, a.e.

to complete the proof.
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For any a > 0 and n > m > 0, we put

A(a, n) = {x ∈ (0, 1] : ln(x) > a log2 n},
B(a, n) = {x ∈ (0, 1] : ln(x) < a log2 n},

and

lm,n(x) = ln−m(dm+1(x), . . . , dn(x)),

which represents the longest run of the same symbol in the first n−m digits in the

Lüroth expansion of Tmx. Before proceeding with the proof, we show the following
lemma.

Lemma 3.1. For any a > 0 and all large n > max{21/a, 4a2}, we have

(3.3) µ(A(a, n)) 6
8

na−1
,

and

(3.4) µ(B(a, n)) 6 e−n1−a/(2a log2 n),

where µ denotes the 1-dimensional Lebesgue measure.

P r o o f. For n > 21/a, by Lemmas 2.2 and 2.3 we have

µ(A(a, n)) =
∑

k>a log2 n

µ({x ∈ (0, 1] : ln(x) = k})

6
∑

k>a log2 n

∞
∑

i=2

n−k
∑

j=0

µ{x ∈ (0, 1] : dj+1(x) = . . . = dj+k(x) = i}

=
∑

k>a log2 n

∞
∑

i=2

n−k
∑

j=0

µ{x ∈ (0, 1] : d1(x) = . . . = dk(x) = i}

6
∑

k>a log2 n

∞
∑

i=2

n
( 1

i(i− 1)

)k

= n

∞
∑

i=2

∑

k>a log2 n

( 1

i(i− 1)

)k

6 n
∞
∑

i=2

(

1
i(i−1)

)a log2 n

1− 1
i(i−1)

6 2n
∞
∑

k=1

2k+1
−1

∑

i=2k

( 1

i(i− 1)

)a log2 n

6 2n

∞
∑

k=1

2k
( 1

2k(2k − 1)

)a log2 n

6 4n

∞
∑

k=1

( 1

2k

)a log2 n

6
8

na−1
,

which yields (3.3).
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Denote un = [a log2 n] and kn = [n/un]. For n > 4a2, we note that kn > 2 and

(3.5) {x ∈ (0, 1] : ln(x) 6 un} ⊂ {x ∈ (0, 1] : liun+1,(i+1)un
(x) 6 un, ∀ 0 6 i < kn}.

Hence, by (3.5) and Lemmas 2.2 and 2.3,

µ(B(a, n)) 6 µ({x ∈ (0, 1] : ln(x) 6 un})
= (µ{x ∈ (0, 1] : lun(x) 6 un})kn

=

(

1−
∞
∑

i=2

µ(Iun(i, i, . . . , i))

)kn

=

(

1−
∞
∑

i=2

( 1

i(i− 1)

)un
)kn

6

(

1−
(1

2

)un
)kn

6 e−knt2
un

6 e−n1−a/(2a log2 n),

so that the required (3.4) follows. �

We now consider µ(A(a, n)) for

a = 1 + ε, n = 2k, k > 1.

We have

µ({x ∈ (0, 1] : l2k(x) > (1 + ε)k}) 6 8

2kε
.

Hence the set on which l2k(x) > (1 + ε)k has infinitely many solutions has Lebesgue

measure zero by the Borel-Cantelli lemma, that is for a.e. x ∈ (0, 1], l2k(x) 6 (1+ε)k

ultimately. Thus, for a.e. x ∈ (0, 1],

lim sup
ln(x)

log2 n
6 lim sup

l2k+1(x)

log2 2
k

= lim sup
l2k+1(x)

k + 1
6 1 + ε.

This establishes (4.5).
For any 0 < ε < 1, we consider µ(B(a, n)) for a = 1− ε. Then for all large n,

µ({x ∈ (0, 1] : ln(x) < (1− ε) log2 n}) 6 e−nε/(2a log2 n)
6 e−nε/2

.

Again by the Borel-Cantelli lemma, we have for a.e. x ∈ (0, 1], ln(x) > (1− ε) log2 n

ultimately. It follows that

lim inf
n→∞

ln(x)

log2 n
> 1− ε a.e.,

which completes the proof of Theorem 1.1. �
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4. Proof of Theorem 1.2

P r o o f of Theorem 1.2. Assume without loss of generality that ϕ(n) > 1 and
ϕ(n+1)−ϕ(n) 6 1 for any n > 1. The proof relies on the application of Lemma 2.9

by constructing proper sequences {mk}k>1, {nk}k>1, and verifying that the corre-
sponding E(D, {ai}) is a subset of Eϕ

α,β . We divide the whole proof into two parts:

a detailed proof for the case 0 < α 6 β < ∞ and a sketch of proof for the remaining
cases.

Case 1 : 0 < α < β < ∞, let the sequence {nk}k>1 be defined by

nk = max
{

n : ϕ(n) <
(β

α

)k}

,

then

(4.1)
(β

α

)k

− 1 6 ϕ(nk) <
(β

α

)k

.

Take mk = nk + [βϕ(nk)]. Clearly, {nk}k>1 increases super-exponentially, since

lim
n→∞

(ϕ(n + 1) − ϕ(n)) = 0. One can verify that {mk}k>1 and {nk}k>1 satisfy the

conditions of Lemma 2.9. Let K > 1 be such that nk < mk < nk+1 for any k > K

and ϕ(n+ 1)− ϕ(n) < 1/β for any n > nK . We first prove the following two facts.

Fact 1 :

(4.2) lim
k→∞

ϕ(mk)

ϕ(nk)
= 1.

To obtain this, we note that

ϕ(mk) = ϕ(nk + [βϕ(nk)])

= ϕ(nk) + ϕ(nk + 1)− ϕ(nk) + . . .+ ϕ(nk + [βϕ(nk)])− ϕ(nk + [βϕ(nk)]− 1)

6 ϕ(nk) + [βϕ(nk)] max
nk6n<mk

{ϕ(n+ 1)− ϕ(n)}.

Thus, by the monotonicity of ϕ(n),

1 6
ϕ(mk)

ϕ(nk)
6 1 + β max

nk6n<mk

{ϕ(n+ 1)− ϕ(n)}.

This establishes (4.2) by the squeeze theorem.

Fact 2 : The function (n− nk)/ϕ(n) is monotonically increasing from nk+mk−1−
nk−1 to mk − 1 for k > K + 1.
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For any k > K + 1 and nk +mk−1 − nk−1 6 n 6 mk − 1, we have

(n− nk)(ϕ(n + 1)− ϕ(n)) <
1

β
βϕ(nk) = ϕ(nk) < ϕ(n),

which is equivalent to

(4.3)
n− nk

ϕ(n)
<

n+ 1− nk

ϕ(n+ 1)
.

For k > K, let tk be the largest integer such that mk + tk(mk − nk) < nk+1. Let

us recall the definition of

E(D, {ai}) = {x = [d1(x), d2(x), . . .] ∈ (0, 1] : di(x) = ai, ∀ i ∈ D},

where

D := D({mk}, {nk}) = {1, 2, . . . , nK − 1} ∪
⋃

k>K

{nk, nk + 1, . . . ,mk − 1,mk,

mk + (mk − nk)− 1, . . . ,mk + (tk − 1)(mk − nk)− 1,mk + tk(mk − nk)− 1,

mk + (mk − nk), . . . ,mk + (tk − 1)(mk − nk),mk + tk(mk − nk)}

and

ai =























3 if 1 6 i < nK ;

3 if i = nk,mk,mk + t(mk − nk) for some t, 1 6 t 6 tk, k > K;

2 if nk + 1 6 i 6 mk − 1 for some k > K;

2 if i = mk + t(mk − nk)− 1 for some t, 1 6 t 6 tk, k > K.

Now we prove that E(D, {ai}) ⊂ Eϕ
α,β . Fix x ∈ E(D, {ai}) for any n > nK+1,

let k be the integer such that nk 6 n < nk+1. From the construction of the set

E(D, {ai}), we see that

ln(x) =











mk−1 − nk−1 − 1 = [βϕ(nk−1)]− 1 if nk 6 n 6 nk +mk−1 − nk−1 − 1,

n− nk if nk +mk−1 − nk−1 6 n 6 mk − 1,

mk − nk − 1 = [βϕ(nk)]− 1 if mk 6 n < nk+1.

Thus, by (4.1), (4.2) and (4.3),

lim inf
n→∞

ln(x)

ϕ(n)
= lim inf

k→∞

min
{ lnk+mk−1−nk−1−1(x)

ϕ(nk +mk−1 − nk−1 − 1)
,
lnk+1−1(x)

ϕ(nk+1 − 1)

}

= lim inf
k→∞

min
{ [βϕ(nk−1)]− 1

ϕ(nk + [βϕ(nk−1)]− 1)
,
[βϕ(nk)]− 1

ϕ(nk+1 − 1)

}

= lim inf
k→∞

min
{ [βϕ(nk−1)]− 1

ϕ(nk)
,
[βϕ(nk)]− 1

ϕ(nk+1)

}

= α,
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and

lim sup
n→∞

ln(x)

ϕ(n)
= lim sup

k→∞

max
{ lnk

(x)

ϕ(nk)
,
lmk−1(x)

ϕ(mk − 1)

}

= lim sup
k→∞

max
{ [βϕ(nk−1)]− 1

ϕ(nk)
,
[βϕ(nk)]− 1

ϕ(mk)

}

= β.

Hence x ∈ Eϕ
α,β . Therefore, by Lemma 2.9, we have dimH Eϕ

α,β = 1.
Case 2 : 0 < α = β < ∞, let

(4.4) ε(n) = inf
k>n

(

max
{

ϕ(k + 1)− ϕ(k),
ϕ(k)

k

})

−1/2

.

Since ϕ(n) is monotonically increasing and ϕ(n) → ∞, ϕ(n + 1) − ϕ(n) → 0 as

n → ∞, it follows that ε(n) → ∞ as n → ∞ and the infimum in the definition of
ε(n) is achieved.

Take n1 = 2, nk+1 = nk + [ε(nk)ϕ(nk)] and mk = nk + [βϕ(nk)] for k > 1. There
is no difficulty in proving that the sequences {mk}k>1 and {nk}k>1 as defined above

satisfy the conditions of Lemma 2.9. The proof of the monotonicity of (n− nk)/ϕ(n)

from nk + mk−1 − nk−1 to mk − 1 is the same as that of (4.3) and the next fact
should be compared with (4.2).

Fact :

(4.5) lim
k→∞

ϕ(nk+1)

ϕ(nk)
= 1.

Clearly, the formula

ϕ(nk+1) = ϕ(nk + [ε(nk)ϕ(nk)])

6 ϕ(nk) + [ε(nk)ϕ(nk)] max
nk6n<nk+1

{ϕ(n+ 1)− ϕ(n)}

6 ϕ(nk) + ε(nk)ϕ(nk) max
n>nk

{ϕ(n+ 1)− ϕ(n)}

6 ϕ(nk)(1 + ε(nk)
−1)

implies (4.5).
Recall the notation of E(D, {ai}) in Lemma 2.9. For any x ∈ E(D, {ai}), we have

ln(x) =











mk−1 − nk−1 − 1 = [βϕ(nk−1)]− 1 if nk 6 n 6 nk +mk−1 − nk−1 − 1,

n− nk if nk +mk−1 − nk−1 6 n 6 mk − 1,

mk − nk − 1 = [βϕ(nk)]− 1 if mk 6 n < nk+1.

289



Thus, by (4.5),

lim inf
n→∞

ln(x)

ϕ(n)
= lim inf

k→∞

min
{ lnk+mk−1−nk−1−1(x)

ϕ(nk +mk−1 − nk−1 − 1)
,
lnk+1−1(x)

ϕ(nk+1 − 1)

}

= lim inf
k→∞

min
{ [βϕ(nk−1)]− 1

ϕ(nk + [βϕ(nk−1)]− 1)
,
[βϕ(nk)]− 1

ϕ(nk+1 − 1)

}

= lim inf
k→∞

min
{ [βϕ(nk−1)]− 1

ϕ(nk)
,
[βϕ(nk)]− 1

ϕ(nk+1)

}

= β,

and

lim sup
n→∞

ln(x)

ϕ(n)
= lim sup

k→∞

max
{ lnk

(x)

ϕ(nk)
,
lmk−1(x)

ϕ(mk − 1)

}

= lim sup
k→∞

max
{ [βϕ(nk−1)]− 1

ϕ(nk)
,
[βϕ(nk)]− 1

ϕ(mk)

}

= β.

We have thus proved that x ∈ Eϕ
α,β for the case 0 < α = β < ∞. Hence

E(D, {ai}) ⊂ Eϕ
α,β and dimH Eϕ

α,β = 1.

Since the proof for the remaining cases is similar to that of the cases 0 <

α < β < ∞ and 0 < α = β < ∞, we will only give the constructions of the
proper sequences {mk}k>1 and {nk}k>1. One can verify that the corresponding
D({mk}, {nk}) is of density zero and E(D, {ai}) is a subset of Eϕ

α,β for different

cases.

Case 3 : 0 = α < β < ∞, take nk = max{n : ϕ(n) < 22
k} and mk = nk +[βϕ(nk)]

for k > 1.

Case 4 : 0 < α < β = ∞, take n1 = 2, nk+1 = max{n : ϕ(n) < ε(nk)ϕ(nk)} and
mk = nk + [αε(nk)ϕ(nk)] for k > 1.

Case 5 : α = β = 0, take n1 = 2, nk+1 = nk + [ε(nk)ϕ(nk)] and mk = nk +

[logϕ(nk)] for k > 1.

Case 6 : α = β = ∞, take n1 = 2, nk+1 = nk + [ε(nk)ϕ(nk)] and mk = nk +
[
√

ε(nk)ϕ(nk)
]

for k > 1. �
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