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Abstract. Let V be the complex vector space of homogeneous linear polynomials in the
variables x1, . . . , xm. Suppose G is a subgroup of Sm, and χ is an irreducible character
of G. Let Hd(G,χ) be the symmetry class of polynomials of degree d with respect to G

and χ.
For any linear operator T acting on V , there is a (unique) induced operator Kχ(T ) ∈

End(Hd(G,χ)) acting on symmetrized decomposable polynomials by

Kχ(T )(f1 ∗ f2 ∗ . . . ∗ fd) = Tf1 ∗ Tf2 ∗ . . . ∗ Tfd.

In this paper, we show that the representation T 7→ Kχ(T ) of the general linear group
GL(V ) is equivalent to the direct sum of χ(1) copies of a representation (not necessarily

irreducible) T 7→ BG
χ (T ).

Keywords: symmetry class of polynomials; general linear group; representation; irre-
ducible character; induced operator
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1. Introduction

Symmetry classes of polynomials are introduced in [8], by Shahryari. In [7], Rodtes

studied symmetry classes of polynomials associated with the irreducible characters

of the semidihedral group. In [2], Zamani and Babaei studied symmetry classes of

polynomials with respect to irreducible characters of the direct product of permuta-

tion groups. In [1], [3], [9], [10], they computed the dimensions of symmetry classes

of polynomials with respect to irreducible characters of dihedral, symmetric, dicyclic

and cyclic groups, respectively. Also, they discussed the existence of an o-basis for

these classes. In [6], [11], the authors studied some algebraic and geometric properties
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of induced operators on symmetry classes of polynomials with respect to linear char-

acters of an arbitrary group and the space of homogeneous polynomials, respectively.

In this paper, we study representations of the general linear group over symmetry

classes of polynomials. We first give a review of symmetry classes of polynomials.

Let Hd[x1, . . . , xm] be the complex space of homogeneous polynomials of degree d

with independent commuting variables x1, . . . , xm. Let Γd,m be the set of all se-

quences α = (α1, . . . , αd) such that 1 6 αi 6 m for any 1 6 i 6 d. Suppose G is

a subgroup of Sm. Then G acts on Γd,m by

σα = (σ(α1), . . . , σ(αd)),

where α = (α1, . . . , αd) ∈ Γd,m and σ ∈ G. Also the symmetric group Sd acts on

Γd,m by

ασ = (α(σ(1)), . . . , α(σ(d))), α ∈ Γd,m, σ ∈ Sd.

Let Gd,m be the subset of Γd,m consisting of all nondecreasing sequences. We define

the weight of α ∈ Gd,m by

ω(α) =

d
∏

i=1

xα(i).

Then, the set B = {ω(α) : α ∈ Gd,m} is a basis of Hd[x1, . . . , xm]. An inner product

on Hd[x1, . . . , xm] is defined by

(ω(α), ω(β)) = δα,βν(α),

where ν(α) is the product of the factorials of the multiplicities of the distinct integers

appearing in α. If d = 1, then the inner product on Hd[x1, . . . , xm] is (xi, xj) = δij .

For any σ ∈ Sm, we define the linear operator Q(σ) by

Q(σ)q(x1, . . . , xm) = qσ(x1, . . . , xm) = q(xσ−1(1), . . . , xσ−1(m)),

for all q(x1, . . . , xm) ∈ Hd[x1, . . . , xm].

We prove that σ 7→ Q(σ) is a unitary representation of G.

Theorem 1.1. Suppose G is a subgroup of Sm. Then σ 7→ Q(σ) is a unitary

representation of G.

P r o o f. Observe that

Q(τ)Q(σ)q(x1, . . . , xm) = Q(τ)q(xσ−1(1), . . . , xσ−1(m))

= q(xσ−1(τ−1(1)), . . . , xσ−1(τ−1(m)))

= q(x(τσ)−1(1), . . . , x(τσ)−1(m))

= Q(τσ)q(x1 , . . . , xm),
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thus Q(τ)Q(σ) = Q(τσ) for all τ, σ ∈ G. Hence σ 7→ Q(σ) is a representation of G

on the vector space Hd[x1, . . . , xm].

For any α, β ∈ Gd,m, we have

(Q(σ)ω(α), ω(β)) = (ω(α)
σ
, ω(β))

= (ω(σ−1α), ω(β))

= (ω(σ−1ατ), ω(β)) τ ∈ Sd, σ−1ατ ∈ Gd,m

= δσ−1ατ,βν(β),

the last expression is equal to zero or ν(β), in this case ατ = σβ. On the other hand,

(ω(α), Q(σ)−1ω(β)) = (ω(α), ω(β)
σ−1

) = (ω(α), ω(σβ))

= (ω(α), ω(α)) = ν(α) = ν(β).

Hence

(Q(σ)ω(α), ω(β)) = (ω(α), Q(σ)−1ω(β)).

Therefore Q(σ)∗ = Q(σ)−1, σ ∈ G, so the result holds. �

Definition 1.1. Suppose G is a subgroup of the symmetric group Sm. Let χ

be an irreducible complex character of G. The image of Hd[x1, . . . , xm] under the

symmetrizer,

Sχ =
χ(1)

|G|

∑

σ∈G

χ(σ)Q(σ)

is called the symmetry class of polynomials of degree d with respect to G and χ, and

it is denoted by Hd(G,χ).

For any q ∈ Hd[x1, . . . , xm],

q∗ = Sχ(q)

is called a symmetrized polynomial with respect to G and χ. If χ is a linear character

of G, then Hd(G,χ) is the set of all q ∈ Hd[x1, . . . , xm] such that for any σ ∈ G, we

have qσ = χ(σ−1)q.

Lemma 1.1. Let G be a subgroup of Sm. Let χ be an irreducible character of G.

If τ ∈ G is fixed but arbitrary, then Q(τ)Sχ = SχQ(τ).
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P r o o f.

Q(τ)Sχ =
χ(1)

|G|

∑

σ∈G

χ(σ)Q(τ)Q(σ) =
χ(1)

|G|

∑

σ∈G

χ(σ)Q(τσ)

=
χ(1)

|G|

∑

σ∈G

χ(τ−1σ)Q(σ) =
χ(1)

|G|

∑

σ∈G

χ(στ−1)Q(σ)

=
χ(1)

|G|

∑

σ∈G

χ(σ)Q(στ) =
χ(1)

|G|

∑

σ∈G

χ(σ)Q(σ)Q(τ) = SχQ(τ).

�

Observe that

S∗

χ =
χ(1)

|G|

∑

σ∈G

χ(σ)Q(σ)∗ =
χ(1)

|G|

∑

σ∈G

χ(σ−1)Q(σ−1) = Sχ.

By using the orthogonality relations of characters, one can easily see that {Sχ :

χ ∈ Irr(G)} is a complete set of orthogonal idempotent operators, where Irr(G) is

the set of irreducible complex characters of G (see [4]).

Therefore, we have the following orthogonal direct sum decomposition:

Hd[x1, . . . , xm] =
⊕

χ∈Irr(G)

Hd(G,χ).

Notice that q ∈ Hd(G,χ) if and only if q = χ(1)|G|−1
∑

σ∈G

χ(σ)qσ .

For any 1 6 i 6 d, suppose

fi =
m
∑

j=1

aijxj .

It is clear that f1f2 . . . fd ∈ Hd[x1, . . . , xm]. The polynomial Sχ(f1f2 . . . fd) is called

a symmetrized decomposable polynomial and is denoted by f1 ∗ f2 ∗ . . . ∗ fd.

Example 1.1. Let G = S3. Consider the irreducible character χ = Fix − 1

of G, namely,

χ(1) = 2, χ((12)) = 0, χ((123)) = −1.

It is easy to see that the symmetry class Hd(G,χ) consists of all polynomials of three

variables which satisfy the equation

q(x, y, z) + q(z, x, y) + q(y, z, x) = 0.
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Let V be the complex vector space of homogeneous linear polynomials in the

variables x1, . . . , xm. For any linear operator T ∈ End(V ), there is a linear operator

P (T ) (see [11]) acting on Hd[x1, . . . , xm] by

P (T )q(x1, . . . , xm) = q(Tx1, . . . , T xm).

It is easy to see that P (T )Sχ = SχP (T ). So Hd(G,χ) is an invariant subspace

of P (T ). Denote by Kχ(T ) the restriction of P (T ) to Hd(G,χ). Then Kχ(T ) is

called the induced operator associated with G and χ. The induced operator Kχ(T )

acts on symmetrized decomposable polynomials by

Kχ(T )(f1 ∗ f2 ∗ . . . ∗ fd) = Tf1 ∗ Tf2 ∗ . . . ∗ Tfd.

Some algebraic and geometric properties of the induced operator Kχ(T ) have been

studied in [6]. The map T 7→ Kχ(T ) defines a representation of the general linear

group GL(V ) over the symmetry class Hd(G,χ). The main aim of this paper is to

study the representation Kχ.

2. Main results

Let χ be an irreducible character of the subgroup G of Sm. Suppose σ 7→ A(σ) =

(aij(σ)) is a representation of G that affords χ. For any 1 6 i 6 χ(1), the linear

operator Si(G,A) on Hd[x1, . . . , xm] is defined by

Si(G,A) =
χ(1)

|G|

∑

σ∈G

aii(σ)Q(σ).

Theorem 2.1. Let χ be an irreducible character of the subgroup G of Sm. Sup-

pose σ 7→ A(σ) = (aij(σ)) is a representation of G that affords χ. Then

(i) Si(G,A)Sj(G,A) = δijSi(G,A),

(ii)
χ(1)
∑

i=1

Si(G,A) = Sχ,

(iii) if A is a unitary representation, then Si(G,A) is Hermitian.
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P r o o f.

(i) By using Schur relations ([5], Theorem 4.21), we have

Si(G,A)Sj(G,A) =
(χ(1)

|G|

)2
(

∑

σ∈G

aii(σ)Q(σ)

)(

∑

τ∈G

ajj(τ)Q(τ)

)

=
(χ(1)

|G|

)2 ∑

σ,τ∈G

aii(σ)ajj(τ)Q(στ)

=
χ(1)

|G|

∑

τ∈G

(

χ(1)

|G|

∑

σ∈G

aii(σ)ajj(σ
−1τ)

)

Q(τ)

=
χ(1)

|G|

∑

τ∈G

δijaii(τ)Q(τ)

= δijSi(G,A).

(ii) It is trivial.

(iii) Since for any σ ∈ G, A(σ) is unitary, we have A(σ)A(σ)∗ = I. On the other

hand, A(σ)A(σ−1) = I, hence A(σ)∗ = A(σ−1). Thus aii(σ) = aii(σ
−1). Now,

by Theorem 1.1, Si(G,A) is Hermitian. �

Definition 2.1. Let χ be an irreducible character of the subgroupG of Sm. Sup-

pose σ 7→ A(σ) = (aij(σ)) is a representation of G that affords χ. Denote the image

of Si(G,A) by Hi
d(G,A). For any q(x1, . . . , xm) ∈ Hd[x1, . . . , xm], 1 6 i 6 χ(1), we

have q ∈ Hi
d(G,A) if and only if q = (χ(1)/|G|)

∑

σ∈G

aii(σ)q
σ .

Corollary 2.1. Let χ be an irreducible character of the subgroup G of Sm.

Suppose σ 7→ A(σ) = (aij(σ)) is a representation of G that affords χ. Then

(2.1) Hd(G,χ) =

χ(1)
⊕

i=1

Hi
d(G,A).

Moreover, if A is a unitary representation of G, then the direct sum in equation

(2.1) is orthogonal.

P r o o f. The result is an immediate consequence of Theorem 2.1 and Defini-

tion 2.1. �
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Example 2.1. Consider the representation A of S3 that affords the character χ

of S3 from Example 1.1, as follows:

A(1) =

(

1 0

0 1

)

, A((12)) =

(

0 1

1 0

)

,

A((23)) =

(

−1 −1

0 1

)

, A((123)) =

(

0 1

−1 −1

)

,

A((132)) =

(

−1 −1

1 0

)

, and A((13)) =

(

1 0

−1 −1

)

.

Then

S1(S3, A) =
1

3
(Q(1)−Q((23))−Q((132)) +Q((13))) ,

and

S2(S3, A) =
1

3
(Q(1) +Q((23))−Q((123))−Q((13))) .

Therefore,

H1
d(S3, A) = {q ∈ Hd[x, y, z] : 2q(x, y, z) + q(x, z, y) + q(y, z, x)− q(z, y, x) = 0},

H2
d(S3, A) = {q ∈ Hd[x, y, z] : 2q(x, y, z)− q(x, z, y) + q(z, x, y) + q(z, y, x) = 0}.

Since P (T ) commutes with Q(σ), σ ∈ Sm, it commutes with Si(G,A). Therefore,

Hi
d(G,A) is an invariant subspace of P (T ) and so it is an invariant subspace of

Kχ(T ). Denote by K
i
A(T ) the restriction of Kχ(T ) to H

i
d(G,A).

Theorem 2.2. Let χ be an irreducible character of the subgroup G of Sm. Sup-

pose σ 7→ A(σ) = (aij(σ)) is a representation of G that affords χ. If Hd(G,χ) 6= 0,

then Ki
A and Kj

A are equivalent representations of GL(V ), 1 6 i, j 6 χ(1).

P r o o f. By Lemma 1.1, Q(σ) commutes with Sχ, so Hd(G,χ) is an invariant

subspace of Q(σ), σ ∈ G. Denote the restriction of Q(σ) to Hd(G,χ) by Qχ(σ),

σ ∈ G. Hence σ 7→ Qχ(σ) is a representation of G and

χ(1)

|G|

∑

σ∈G

χ(σ)Qχ(σ) = IHd(G,χ)

is the identity operator on Hd(G,χ), because

χ(1)

|G|

∑

σ∈G

χ(σ)Qχ(σ)Sχ =
χ(1)

|G|

∑

σ∈G

χ(σ)SχQ(σ)

= Sχ

(

χ(1)

|G|

∑

σ∈G

χ(σ)Q(σ)

)

= Sχ.

273



Let ξ be an irreducible character of G different from χ, ξ 6= χ. Then

Z =
ξ(1)

|G|

∑

σ∈G

ξ(σ)Qχ(σ)

is a linear operator onHd(G,χ). Now, by using the generalized orthogonality relation

of characters, we have

Z = Z ◦ IHd(G,χ) =

(

ξ(1)

|G|

∑

σ∈G

ξ(σ)Qχ(σ)

)(

χ(1)

|G|

∑

τ∈G

χ(τ)Qχ(τ)

)

=
ξ(1)χ(1)

|G|2

∑

µ∈G

(

∑

σ∈G

ξ(σ)χ(σ−1µ)

)

Qχ(µ)

=
ξ(1)χ(1)

|G|2

∑

µ∈G

δξ,χχ(µ)Qχ(µ) = 0.

Hence

0 = tr(Z) =
ξ(1)

|G|

∑

σ∈G

ξ(σ)tr(Qχ(σ)) = ξ(1)(ξ̄, η)G,

where η is the character afforded by σ 7→ Qχ(σ), σ ∈ G. Clearly, the character η

contains no irreducible constituent different from χ̄. It follows that there exists

a basis B of Hd(G,χ) such that the matrix representation of Qχ(σ) with respect

to B is the direct sum of C(σ) = A(σ−1)t with itself N = (χ̄, η)G times. In other

words, with respect to B, the matrix representation of Qχ(σ) is

(2.2) [Qχ(σ)]B =











C(σ) 0 . . . 0

0 C(σ) 0 . . .
...

...
...

...

0 . . . 0 C(σ)











N×N

= IN ⊗ C(σ).

Now, we compute the matrix representation of Si(G,A) with its restriction to

Hd(G,χ) with respect to B. By equation (2.2) and Schur relations, we have

[Si(G,A)]B =
χ(1)

|G|

∑

σ∈G

aii(σ)([Qχ(σ)]B) =
χ(1)

|G|

∑

σ∈G

aii(σ)(IN ⊗ C(σ))(2.3)

= IN ⊗

(

χ(1)

|G|

∑

σ∈G

aii(σ)A(σ
−1)t

)

= IN ⊗ Eii,

where Eii is the χ(1)×χ(1) matrix whose only nonzero entry is a 1 in position (i, i).

Suppose T ∈ End(V ) is a (not necessarily invertible) linear operator on V . Parti-

tion the matrix [Kχ(T )]B = (Kst) intoN
2 blocksKst of size χ(1)×χ(1), 1 6 s, t 6 N .
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Since [Kχ(T )]B commutes with [Qχ(σ)]B = IN⊗C(σ), and C is irreducible, by Schur

lemma, we deduce that Kst is a multiple of Iχ(1), 1 6 s, t 6 N . In other words,

(2.4) [Kχ(T )]B =







b11Iχ(1) . . . b1NIχ(1)
...

. . .
...

bN1Iχ(1) . . . bNNIχ(1)






= B(T )⊗ Iχ(1)

for some N ×N matrix B(T ). By [5], page 147, there exists a permutation matrix Q

such that

Qt(B ⊗ C)Q = C ⊗B

for all B ∈ MN(C) and all C ∈ Mχ(1)(C). Similarity by Q merely permutes the ele-

ments of the ordered basis B into a new ordered basis B′. Thus, from equation (2.3),

[Si(G,A)]B′ = Eii ⊗ IN .

It follows that the first N elements of B′ form a basis B1 of H
1
d(G,A), the second N

elements form a basis B2 of H
2
d(G,A), and so on. Applying this observation to

[Kχ(T )]B′ = Iχ(1) ⊗B(T ),

we deduce that with respect to Bi, the matrix representation of K
i
A(T ) is B(T ),

1 6 i 6 χ(1). Therefore, Ki
A and Kj

A are equivalent. �

Denote the restriction of P (T ) to H1
d(G,A) by BG

χ (T ), T ∈ End(V ).

The matrix B(T ) that occurs in equation (2.4) is a matrix representation of the

linear operator BG
χ (T ).

It follows from Theorem 2.2 that, as long as Hd(G,χ) 6= 0, the representation

T 7→ Kχ(T ), T ∈ GL(V ), is equivalent to the direct sum of BG
χ (T ) with itself χ(1)

times,

Kχ(T ) =

χ(1)
⊕

i=1

BG
χ (T ).

Remark 2.1. If G = Sm, then proving the irreducibility of the representation

T 7→ BG
χ (T ) is more complicated and it is yet an open problem as far as we know.
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