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Abstract. We show that for a linear space of operators M ⊆ B(H1,H2) the following
assertions are equivalent. (i) M is reflexive in the sense of Loginov-Shulman. (ii) There
exists an order-preserving map Ψ = (ψ1, ψ2) on a bilattice Bil(M) of subspaces determined
by M with P 6 ψ1(P,Q) and Q 6 ψ2(P,Q) for any pair (P,Q) ∈ Bil(M), and such
that an operator T ∈ B(H1,H2) lies in M if and only if ψ2(P,Q)Tψ1(P,Q) = 0 for all
(P,Q) ∈ Bil(M). This extends the Erdos-Power type characterization of weakly closed
bimodules over a nest algebra to reflexive spaces.
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1. Introduction and preliminaries

In [3], Erdos and Power characterized the weakly closed bimodules of a nest al-

gebra in terms of order homomorphisms on the lattice of invariant subspaces of the

algebra. Deguang showed in [1] that, given any reflexive subalgebra σ-weakly gen-

erated by its rank one operators, the σ-weakly closed bimodules over the algebra

could analogously be characterized in terms of order homomorphisms on the lattice

of invariant subspaces of the algebra. Li and Li, see [8], Proposition 2.6, have ex-

tended the mentioned results to the realm of Banach spaces. It is worth noticing

that the bimodules considered in the Erdos-Power theorems are implicitly reflexive

subspaces in the sense of Loginov-Shulman (cf. [9]). The aim of the present paper

is to extend this type of characterization to all such reflexive subspaces. The main

result, Theorem 9, shows that for every reflexive spaceM of operators between two
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complex Hilbert spaces, there exists an order homomorphism on a bilattice of sub-

spaces determined byM which describes this subspace in the sense of Erdos-Power,

see [3], Theorem 1.5. We would like to point out that although some of our results

could potentially be deduced from those in [2], our proofs however use an approach

based on the considerably more recent notion of bilattices introduced by Shulman

and Turowska in [10] and investigated of late by Klís-Garlicka in [6], [7].

The proof of Theorem 9 requires some auxiliary results appearing in Section 2. In

the rest of the present section, apart from the notation, we shall also establish the

facts about bilattices needed in the sequel.

LetH be a complex Hilbert space, let B(H ) be the Banach algebra of all bounded

linear operators onH , and let P(H ) be the set of all orthogonal projections onH .

It is well known that P(H ) is a lattice when endowed with the partial order relation

defined for all P1, P2 ∈ H by P1 6 P2 ⇐⇒ P1H ⊆ P2H . The join P1 ∨ P2 is

the orthogonal projection onto P1H + P2H and the meet P1 ∧P2 is the orthogonal

projection onto P1H ∩ P2H . In fact, P(H ) is a complete lattice whose top and

bottom elements are, respectively, the identity operator I and the zero operator 0.

Recall that the lattice Lat(U) of invariant subspaces of a subset U of B(H ) is

given by

Lat(U) = {P ∈ P(H ) ; P⊥TP = 0 for all T ∈ U},

where P⊥ = I −P . It is clear that Lat(U) is a sublattice of P(H ) which is strongly

closed and therefore complete, i.e. for every subset F ⊆ Lat(U), the supremum
∨

F

and the infimum
∧

F lie in Lat(U) (see [5]).

If U ⊆ B(H ) is a nonempty subset, then let U∗ = {T ∗ ; T ∈ U}. We say that U

is selfadjoint if U∗ = U . It is obvious that P ∈ Lat(U) if and only if P⊥ ∈ Lat(U∗),

i.e. Lat(U∗) = Lat(U)⊥.

Let H1,H2 be complex Hilbert spaces. We endow the Cartesian product

P(H1)× P(H2) with the partial order � defined for all (P1, Q1), (P2, Q2) ∈

P(H1)× P(H2), by

(1.1) (P1, Q1) � (P2, Q2) if and only if P1 6 P2 and Q1 > Q2.

Hence, the operations of join and meet are given, respectively, by

(P1, Q1) ∨ (P2, Q2) = (P1 ∨ P2, Q1 ∧Q2) and(1.2)

(P1, Q1) ∧ (P2, Q2) = (P1 ∧ P2, Q1 ∨Q2).

It follows that P(H1)×P(H2) together with � is a lattice as it contains all the binary

joins and meets. From now on we write P(H1)×� P(H2) whenever we consider the

Cartesian product to be endowed with the partial order (1.1), i.e. with the lattice
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structure (1.2). The corresponding notation will also be used for Cartesian products

of subsets of P(H1)×P(H2). Unless otherwise stated, it is assumed that the partial

order under consideration will always be �.

Following [10], we call a subset L of P(H1) ×� P(H2) a bilattice if it is closed

under the lattice operations (1.2) and contains the pairs (0, 0), (0, I), and (I, 0).

Examples of bilattices are P(H1)×� P(H2), of course, and

(1.3) BIL(U) = {(P,Q) ∈ P(H1)×� P(H2) ; QTP = 0 for any T ∈ U},

where U ⊆ B(H1,H2) is an arbitrary nonempty set.

Recall that for a nonempty family F ⊆ P(H ),

Alg(F) = {T ∈ B(H ) ; P⊥TP = 0 for all P ∈ F}

is a weakly closed subalgebra of B(H ) that contains the identity operator. A subal-

gebra A of B(H ) is said to be reflexive if Alg Lat(A) = A. The notion of reflexive

algebras has been generalized in several different directions; see [4] for a general view

of reflexivity. The concept of reflexivity is naturally extended to spaces of operators

as follows.

For a nonempty family F ⊆ P(H1)×� P(H2) let

Op(F) = {T ∈ B(H1,H2) ; QTP = 0 for all (P,Q) ∈ F}.

It is easily seen that Op(F) is a weakly closed linear subspace of B(H1,H2). A sub-

spaceM ⊆ B(H1,H2) is said to be reflexive if OpBIL(M) = M. This definition is

equivalent to that of Loginov and Shulman in [9], where a subspaceM is said to be

reflexive ifM coincides with its reflexive cover

Ref(M) = {S ∈ B(H1,H2) ; Sx ∈ Mx for all x ∈ H1}.

In fact, OpBIL(M) = Ref(M) (cf. [10], page 298).

Remark 1. Notice that if A ⊆ B(H ) is an algebra containing the identity

operator, then Ref(A) = Alg Lat(A).
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2. Subspaces and modules

For a linear subspaceM ⊆ B(H1,H2) let

(2.1) AM = {A ∈ B(H1) ; TA ∈ M for all T ∈ M}

and

(2.2) BM = {B ∈ B(H2) ; BT ∈ M for all T ∈ M}.

It is easily seen that AM and BM are algebras containing the identity operator and

that M is BM-AM-bimodule. It is clear that these are the largest subalgebras of

B(H1) and B(H2), respectively, such that M is a bimodule over them. If M is

closed (weakly closed), then BM and AM are closed (weakly closed). Next we show

that AM and BM are reflexive wheneverM is a reflexive space.

Proposition 1. If M ⊆ B(H1,H2) is a reflexive space, then AM and BM are

reflexive algebras.

P r o o f. It will only be shown thatAM is reflexive since the reflexivity of BM can

be proved similarly. In view of Remark 1, it suffices to show that Ref(AM) = AM.

In other words, fixing S ∈ Ref(AM), we need to show that for all T ∈ M, the

operator TS lies inM. Since this is trivially satisfied for T = 0, henceforth we shall

assume that T 6= 0.

Let x ∈ H1 and ε > 0 be arbitrary. Since S ∈ Ref(AM), there exists Ax,ε ∈ AM

such that ‖Sx−Ax,εx‖ < ε/‖T ‖. Hence ‖TSx− TAx,εx‖ 6 ‖T ‖‖Sx−Ax,εx‖ < ε.

The operator TAx,ε lies inM therefore we can conclude that TS ∈ Ref(M) = M,

as required. �

Corollary 1. Let M be a linear subspace of B(H1,H2). Then Ref
(

AM

)

⊆

ARef(M) and Ref
(

BM

)

⊆ BRef(M).

P r o o f. Let A ∈ AM. If T ∈ Ref(M), then for any x ∈ H1 and any ε > 0 there

exists Sx,ε ∈ M such that ‖TAx − Sx,εAx‖ < ε. Since Sx,εA ∈ M, we conclude

that TA ∈ Ref(M). By Proposition 2, the algebra ARef(M) is reflexive, from which

follows that Ref
(

AM

)

⊆ Ref
(

ARef(M)

)

= ARef(M).

The proof of the second inclusion is similar. �

Let tr(·) be the trace functional and let C1(H ) ⊆ B(H ) be the ideal of trace-class

operators. The dual of C1(H ) can be identified with B(H ) by means of the pairing

〈C,A〉 = tr(CA∗) with C ∈ C1(H ), A ∈ B(H ). The preannihilator of a subset
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U ⊆ B(H ) is U⊥ = {C ∈ C1(H ) ; tr(CA∗) = 0 for all A ∈ U} and the annihilator

of V ⊆ C1(H ) is V⊥ = {A ∈ B(H ) ; tr(CA∗) = 0 for all C ∈ V}. It is obvious that

U⊥ and V⊥ are linear spaces and that a linear subspace M ⊆ B(H ) is σ-weakly

closed if and only ifM = (M⊥)
⊥.

If U , V are two nonempty sets of operators, then we denote by UV the set of all

products TS, where T ∈ U and S ∈ V .

Proposition 2. LetM be a linear subspace of B(H ). Then the following asser-

tions hold.

(i) (AM)∗ = BM∗ .

(ii) If M is σ-weakly closed, then AM = (M∗M⊥)
⊥ and BM = (MM⊥)

⊥.

(iii) If M is selfadjoint and σ-weakly closed, then AM = BM is a C
∗-algebra.

(iv) If M is selfadjoint, σ-weakly closed and reflexive, then AM = BM is a von

Neumann algebra.

P r o o f. (i) An operator A ∈ B(H ) lies in (AM)∗ if and only if TA∗ ∈ M for

every T ∈ M. However this is equivalent to AT ∗ ∈ M∗ for any T ∗ ∈ M∗, which by

the definition means that A ∈ BM∗ .

(ii) Let A ∈ AM. For arbitrary T ∈ M and C ∈ M⊥ we have tr(T
∗CA∗) =

tr(C(TA)∗) = 0, since TA ∈ M. This proves that A ∈ (M∗M⊥)
⊥. On the other

hand, if A ∈ (M∗M⊥)
⊥ and T ∈ M, then tr(C(TA)∗) = tr(T ∗CA∗) = 0 for any

C ∈ M⊥. Hence TA ∈ (M⊥)
⊥ = M. The second equality is similarly proved.

(iii) It follows from (ii) that AM = BM. By (i), the algebra AM is selfadjoint and

closed sinceM itself is closed. Hence AM is a C
∗-algebra.

(iv) By (iii), AM = BM is a C∗-algebra. However, since M is reflexive, it is

weakly closed and therefore AM is also weakly closed. �

3. A characterization of reflexivity

Let M ⊆ B(H1,H2) be a linear subspace and let AM and BM be the algebras

defined in (2.1)–(2.2). The associated bilattice BIL(M) (see (1.3)) is very large. For

our purposes it suffices to consider a smaller bilattice to be defined below. Firstly, we

state the following lemma which is just a formalization of a remark in [10], page 298.

We include a short proof.

Lemma 1. Let M be a linear subspace of B(H1,H2). For any pair (P,Q) ∈

BIL(M) there exists a pair (P ′, Q′) ∈ BIL(M) such that P ′ ∈ Lat(AM), Q′ ∈

Lat(BM)⊥, P 6 P ′, and Q 6 Q′.
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P r o o f. Let P ′ be the orthogonal projection onto AMPH1 and let Q
′ be the

orthogonal projection onto B∗
MQH2. It is obvious that AMPH1 is invariant for any

A ∈ AM and that B∗
MQH2 is invariant for any B

∗ ∈ B∗
M. Hence P

′ ∈ Lat(AM) and

Q′ ∈ Lat(B∗
M) = Lat(BM)⊥. Observe that PH1 ⊆ AMPH1 and QH2 ⊆ B∗

MQH2,

since both algebras contain the identity operator. Consequently, P 6 P ′ and Q 6 Q′.

To prove that (P ′, Q′) lies in BIL(M), we have to see that for any T ∈ M, the

equality Q′TP ′ = 0 holds, i.e. TP ′
H1 ⊥ Q′

H2. Let x ∈ H1 be arbitrary. For

any ε > 0 there exist Aε ∈ AM and xε ∈ H1 such that ‖P
′x − AεPxε‖ < ε, and

therefore ‖TP ′x − TAεPxε‖ < ε‖T ‖. For arbitrary B∗ ∈ B∗
M and y ∈ H2 we have

〈TAεPxε, B
∗Qy〉 = 〈QBTAεPxε, y〉 = 0, since BTAε ∈ M. Hence

|〈TP ′x,B∗Qy〉| = |〈TP ′x− TAεPxε, B
∗Qy〉|

6 ‖TP ′x− TAεPxε‖‖B
∗Qy‖ < ε‖T ‖‖B∗Qy‖,

yielding TP ′x ⊥ B∗QH2, from which it follows that TP
′H1 ⊥ Q′H2. �

Let

Bil(M) = BIL(M) ∩
(

Lat(AM)×� Lat(BM)⊥
)

.

It is clear that Bil(M) is a bilattice.

Proposition 3. LetM be a linear subspace of B(H1,H2). Then

OpBIL(M) = OpBil(M).

P r o o f. Since Bil(M) is a subset of BIL(M), it follows that OpBIL(M) ⊆

OpBil(M). To show that the reverse inclusion also holds, we begin by fixing an

operator T ∈ OpBil(M) and a pair of projections (P,Q) ∈ BIL(M). By Lemma 5,

there exists a pair (P ′, Q′) ∈ Bil(M) such that P 6 P ′ and Q 6 Q′. Hence P ′P = P

and QQ′ = Q. It follows that QTP = QQ′TP ′P = 0 and therefore T lies in

OpBIL(M), as required. �

LetM ⊆ B(H1,H2) be a linear space. Define ϕ : Lat(AM) → Lat(BM)⊥ by

(3.1) ϕ(P ) =
∨

{Q ∈ Lat(BM)⊥ ; (P,Q) ∈ Bil(M)},

and similarly define θ : Lat(BM)⊥ → Lat(AM) by

(3.2) θ(Q) =
∨

{P ∈ Lat(AM) ; (P,Q) ∈ Bil(M)}.
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Observe that none of the sets appearing in (3.1)–(3.2) is empty as (P, 0), (0, Q) ∈

Bil(M) for any P ∈ Lat(AM), Q ∈ Lat(BM)⊥. The next proposition lists some

properties of the maps ϕ and θ.

Proposition 4. Let M be a linear subspace of B(H1,H2) and let ϕ, θ be the

maps defined in (3.1)–(3.2). Then the following assertions hold.

(i) ϕ and θ are order-reversing maps.

(ii) (P, ϕ(P )), (θ(Q), Q) ∈ Bil(M) for any P ∈ Lat(AM) and Q ∈ Lat(BM)⊥.

(iii) If C ⊆ Lat(AM) and D ⊆ Lat(BM)⊥ are nonempty sets, then ϕ(
∨

C) =
∧

ϕ(C)

and θ(
∨

D) =
∧

θ(D).

(iv) P 6 θϕ(P ) and Q 6 ϕθ(Q) for all P ∈ Lat(AM) and Q ∈ Lat(BM)⊥.

(v) ϕθϕ = ϕ and θϕθ = θ.

P r o o f. Assertions (i)–(iv) will only be proved for the map ϕ, since the cor-

responding assertions concerning the map θ can be proved similarly. For the same

reason, only the first equality in (v) will be proved.

(i) If P1, P2 ∈ Lat(AM) are such that P1 6 P2, then P1P2 = P1 = P2P1. Hence,

if Q is a projection in P(H2) with (P2, Q) ∈ Bil(M), then for every T ∈ M we have

QTP1 = QTP2P1 = 0, yielding (P1, Q) ∈ Bil(M). It follows that

ϕ(P2) =
∨

{Q ∈ Lat(BM)⊥ ; (P2, Q) ∈ Bil(M)}

6
∨

{Q ∈ Lat(BM)⊥ ; (P1, Q) ∈ Bil(M)} = ϕ(P1).

(ii) Let P ∈ Lat(AM). We have to show that ϕ(P )TP = 0 for every T ∈ M.

Let T ∈ M, x ∈ H1, y ∈ H2 be arbitrary, and let Q ∈ P(H2) be a projection

such that (P,Q) ∈ Bil(M). Then 〈TPx,Qy〉 = 〈QTPx, y〉 = 0, that is to say that

TPH1 ⊥ QH2. Since ϕ(P ) is the orthogonal projection onto the closed linear span

of all the spaces QH2, where Q is an orthogonal projection in P(H2) such that

(P,Q) ∈ Bil(M), we conclude that TPH1 ⊥ ϕ(P )H2, i.e. ϕ(P )TP = 0.

(iii) Let C ⊆ Lat(AM) be a nonempty set. Then for all P ∈ C, P 6
∨

C and, since

Lat(AM) is complete,
∨

C ∈ Lat(AM). It follows that for all P ∈ C, ϕ(
∨

C) 6 ϕ(P ),

as ϕ is an order-reversing map. Therefore ϕ(
∨

C) 6
∧

ϕ(C).

To show that this inequality can be reversed, we shall prove firstly that
(
∨

C,
∧

ϕ(C)
)

∈ Bil(M). Let T ∈ M be arbitrary. Then for every P ∈ C we have
∧

ϕ(C) 6 ϕ(P ), from which it follows that
(
∧

ϕ(C)
)

ϕ(P ) =
∧

ϕ(C). Hence, for all

P ∈ C,
(

∧

ϕ(C)
)

TP =
(

∧

ϕ(C)
)

ϕ(P )TP = 0

and, consequently,
(
∧

ϕ(C)
)

T
(
∨

C
)

= 0, i.e.
(
∨

C,
∧

ϕ(C)
)

∈ Bil(M). It follows, by

the definition of ϕ(
∨

C), that
∧

ϕ(C) 6 ϕ(
∨

C).
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(iv) Let P ∈ Lat(AM). By assertion (ii) we have (P, ϕ(P )), (θ(ϕ(P )), ϕ(P )) ∈

Bil(M). Since by the definition (3.1), the projection θ(ϕ(P )) is the largest P ′ ∈

Lat(AM) such that (P ′, ϕ(P )) ∈ Bil(M), we conclude that P 6 θ
(

ϕ(P )
)

.

(v) Let P ∈ Lat(AM) be arbitrary. By assertion (iv), we know that ϕ(P ) 6

ϕθϕ(P ). Moreover, since by (ii) of this proposition, (P, ϕ(P )) and (θϕ(P ), ϕθϕ(P ))

lie in the bilattice Bil(M), we have
(

P ∧ θϕ(P ), ϕ(P ) ∨ ϕθϕ(P )
)

∈ Bil(M). Notice

however that (iv) implies P ∧ θϕ(P ) = P and ϕ(P ) ∨ ϕθϕ(P ) = ϕθϕ(P ). Thus,

(P, ϕθϕ(P )) ∈ Bil(M). By the definition of ϕ, the projection ϕ(P ) is the largest

Q ∈ Lat(BM)⊥ having the property (P,Q) ∈ Bil(M). Hence, ϕθϕ(P ) 6 ϕ(P ).

Consequently, for all P ∈ Lat(AM) we have ϕθϕ(P ) = ϕ(P ). �

Let Ψ1,Ψ2 : Bil(M) → Bil(M) be defined by

Ψ1(P,Q) = (θϕ(P ), ϕ(P )) and(3.3)

Ψ2(P,Q) = (θ(Q), ϕθ(Q)), (P,Q) ∈ Bil(M).

Observe that Proposition 7 (ii) guarantees that the maps Ψ1 and Ψ2 are well defined.

Corollary 2. Let M be a linear subspace of B(H1,H2) and let Ψ1,Ψ2 :

Bil(M) → Bil(M) be the maps defined in (3.3). Then Ψ1, Ψ2 are order-preserving

maps and Ψ1(Bil(M)) = Ψ2(Bil(M)).

P r o o f. It easily follows from Proposition 7 (i) that Ψ1 and Ψ2 are order-preser-

ving maps. The coincidence of the images of Ψ1 and Ψ2 is an immediate consequence

of Proposition 7 (v). �

We are now able to prove our main result.

Theorem 1. LetM be a linear subspace of B(H1,H2) and let AM, BM be the

algebras defined in (2.1)–(2.2). The following assertions are equivalent.

(i) M is a reflexive space.

(ii) There exists a map Ψ = (ψ1, ψ2) : Bil(M) → Bil(M) such that P 6 ψ1(P,Q)

and Q 6 ψ2(P,Q) for any pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1,H2) ; ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M)}.

(iii) There exists a map ψ1 : Lat(BM)⊥ → Lat(AM) such that P 6 ψ1(Q) for any

pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1,H2) ; QTψ1(Q) = 0 for all Q ∈ Lat(BM)⊥}.
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(iv) There exists a map ψ2 : Lat(AM) → Lat(BM)⊥ such that Q 6 ψ2(P ) for any

pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1,H2) ; ψ2(P )TP = 0 for all P ∈ Lat(AM)}.

P r o o f. Firstly we show that (i)⇐⇒ (ii). Assume thatM is a reflexive space.

Let Ψ be the map Ψ1 defined in (3.3), and let F = Ψ(Bil(M)). Clearly, F ⊆ Bil(M)

and therefore Op(F) ⊇ OpBil(M) = M.

To reverse the inclusion, fix T ∈ Op(F). Observe that by Proposition 7 (iv) for any

pair (P,Q) ∈ Bil(M), P 6 θϕ(P ) = ψ1(P,Q) and, by the definition of the map ϕ,

Q 6 ϕ(P ) = ψ2(P,Q). Hence, for all (P,Q) ∈ Bil(M), P = θϕ(P )P , Q = Qϕ(P )

and, consequently,

QTP = Qϕ(P )Tθϕ(P )P = 0.

It follows that T ∈ OpBil(M) = M, as required.

Conversely, suppose that there exists a map Ψ = (ψ1, ψ2) as stated in (ii). It has

to be shown thatM = OpBil(M). Since it is clear thatM ⊆ OpBil(M), it remains

to show thatM ⊇ OpBil(M). Let S ∈ OpBil(M) be arbitrary. Hence, for any pair

(P ′, Q′) ∈ Bil(M) we have Q′SP ′ = 0. In particular, since for (P,Q) ∈ Bil(M), the

image (ψ1(P,Q), ψ2(P,Q)) lies also in BilM, it follows that ψ2(P,Q)Sψ1(P,Q) = 0.

Finally, this yields that S lies in the set

{T ∈ B(H1,H2) ; ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M)},

which coincides withM, by the assumption.

The remaining equivalences are proved similarly. Notice that to prove the impli-

cation (i) ⇒ (iii) and (i) ⇒ (iv), we set ψ1 = θ and ψ2 = ϕ, respectively. �

Observe that the maps appearing in the equalities characterizing a reflexive space

M in Theorem 9 need not be unique (see [3], Remark, page 223). In particular, the

map Ψ in Theorem 9 (ii) can be chosen to be order-preserving.
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