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Abstract. Let G be a connected graph with vertex set V(G) = {v1,v2,...,vn}. The dis-
tance matrix D(G) = (d;;)nxn is the matrix indexed by the vertices of G, where d;; denotes
the distance between the vertices v; and v;. Suppose that A1(D) > X2(D) > ... = An(D)
are the distance spectrum of G. The graph G is said to be determined by its D-spectrum
if with respect to the distance matrix D(G), any graph having the same spectrum as G is
isomorphic to G. We give the distance characteristic polynomial of some graphs with small
diameter, and also prove that these graphs are determined by their D-spectra.

Keywords: distance spectrum; distance characteristic polynomial; D-spectrum deter-
mined by its D-spectrum

MSC 2010: 05C50

1. INTRODUCTION

All graphs considered here are simple, undirected and connected. Let G be a graph
with vertex set V(G) = {v1,v2,...,v,} and edge set E(G). Two vertices u and v
are called adjacent if they are connected by an edge, denoted by u ~ v. Let Ng(v)
denote the neighbor set of v in G. The degree of a vertex v, written by dg(v) or d(v),
is the number of edges incident with v. Let X and Y be subsets of vertices of G. The
induced subgraph G[X] is the subgraph of G whose vertex set is X and whose edge
set consists of all edges of G which have both ends in X. We denote by F[X,Y] the
set of edges of G with one end in X and the other end in Y, and denote by ¢[X,Y]
their number. The distance between vertices v and v of a graph G is denoted by
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dg(u,v). The diameter of G, denoted by diam(G), is the maximum distance between
any pair of vertices of G. The complete product G; 7 G2 of graphs GG; and G5 is the
graph obtained from G; U G2 by joining every vertex of G; to every vertex of Gs.
Denote by K,,, C,, P, and S,, the complete graph, the cycle, the path and the star,
respectively, each on n vertices. Let K denote the complement of K.

The distance matrix D(G) = (dij)nxn of a connected graph G is the matrix
indexed by the vertices of G, where d;; denotes the distance between the vertices
v; and vj. Let Ai(D) = Xa(D) > ... > Ay(D) be the spectrum of D(G), that is,
the distance spectrum of G. The polynomial Pp(A\) = det(A] — D(G)) is defined
as the distance characteristic polynomial of a graph G. Two graphs are said to
be D-cospectral if they have the same distance spectrum. A graph G is said to be
determined by its D-spectrum if there is no other non-isomorphic graph D-cospectral
to G.

Which graphs are determined by their spectrum seems to be a difficult and in-
teresting problem in spectral graph theory. This question was raised by Giinthard
and Primas in [3]. For surveys of this question see [10], [11]. Up to now, ounly a few
families of graphs were shown to be determined by their spectra, most of which were
restricted to the adjacency, Laplacian or signless Laplacian spectra. In particular,
there are much fewer results on which graphs are determined by their D-spectra.
In [7], Lin et al. proved that the complete graph K, the complete bipartite graph
Ky, n, and the complete split graph K, 7 K} are determined by their D-spectra,
and the authors proposed a conjecture that the complete k-partite graph Ky, n,,... n,
is determined by its D-spectrum. Recently, Jin and Zhang in [4] have confirmed
the conjecture. Lin, Zhai and Gong in [8] characterized all connected graphs with
An—1(D(G)) = —1, and showed that these graphs are determined by their D-spectra.
Moreover, in their paper, they also proved that the graphs with A,_2(D(G)) > —1
are determined by their distance spectra. In [6], Lin showed that connected graphs
with A, (D(G)) > —1 — /2 are determined by their distance spectra. Cioaba et al.
in [1] affirmed that the famous friendship graph F¥, k # 16, is determined by its
adjacency spectrum. Lu, Huang and Huang in [5] showed that all graphs with ex-
actly two distance eigenvalues (counting multiplicity) different from —1 and —3 are
determined by their D-spectra, and particularly, F* is determined by its distance
spectrum.

Next, we introduce a class of graphs K'*'"2» " as shown in Figure 1.
> KPuvneetes = (K, UK,,U...UK,,)wVv {v}, where k > 2.

In this paper, we first show that three special classes of graphs in K'1:"2: "%
that is, K! = KM=l 4 < h<n—1, K3 s >4 and t > 4, and KPvnzs-nk
1 < n; < 2, are determined by their D-spectra. Clearly, the friendship graph FF
belongs to the third class.

2



Figure 1. Graph K12 "k,

Secondly, we prove that K3 s > 2, t > 2 (see Figure 2), is also determined by
its D-spectrum.

t t k
K:* K EP
Figure 2. Graphs K, K31t K5' and FF.

> K3 the graph obtained by adding one edge joining a vertex of K to a vertex
of Kt.

2. PRELIMINARIES

In this section, we give some useful lemmas and results. The following lemma is
the well-known Cauchy interlacing theorem.

Lemma 2.1 ([2]). Let A be a Hermitian matrix of order n with eigenvalues
A(A) = Ma(4) = ... > M\ (4), and B a principal submatrix of A of order m with
eigenvalues 1 (B) = po(B) = ... 2 um(B). Then Ay pyi(A) < pi(B) < N (A) for
i=1,2,...,m.

Applying Lemma 2.1 to the distance matrix D of a graph, we have

Lemma 2.2. Let G be a graph of order n with distance spectrum A\ (G) >
X2(G) = ... 2 M(G), and H an induced subgraph of G on m vertices with the
distance spectrum pi(H) > po(H) > ... = pm(H). If D(H) is a principal subma-
trix of D(G), then Ap—m+i(G) < pi(H) < Xi(G) fori=1,2,...,m.



Lemma 2.3 ([7]). Let G be a connected graph and D the distance matrix of G.
Then A\, (D) = —2 with multiplicity n — k if and only if G is a complete k-partite
graph for all k, 2 < k<n—1.

Lemma 2.4 ([12]). Let G be a graph with order n and d(G) = 2. If G’ has the
same distance spectrum as G, then

> |E(G)| = |E(G)| when d(G") = 2;
> |E(G)| < |E(G")| when d(G") > 3.

Theorem 2.5. Let 4 < h < n — 1. The distance characteristic polynomial of
K is
Pp(\) = A+ D" 2N+ 2)" N3 4+ (h+4 —2n))\2
+ (5 — 2h — 2nh 4 2h* — n)A — nh + h? — 2h + 2].

Let A\ > Ao > ... > A\, be the distance spectrum of K,’j Then

> A >0, 1< X< —1/2and \3 = —1;
> A\p—1 € {—1,-2} and A\, < —2.

Proof. It is clear that the diameter of K is 2, and the distance matrix of K is

0 1 1 2 2
0 1
D= 1 0 1 1
2 1 0
2 2 1 2 0
Then
A -1 -1 =2 -2
-1 ... X -1 -2 ... =2
det(\ [ -D)=|-1 ... -1 Xx -1 ... -1
-2 -2 -1 A -2
-2 -2 -1 -2 A




A=(h=2) -1 ... =1 -1 -2-2(n—h—-1) -2 ... =2

0 A+1... 0 0 0 0 ... 0

0 0 ...A+10 0 0 ... 0
=|-1-(h-2) -1 ... =1 A —-1—-(n—h-1) -1 ... -1
—2-2h—-2) -2 ... =2 -1 A=2(n—h—-1) -2 ... =2

0 0 0 0 0 A+2 ... 0

0 0 0 0 0 0 A+ 2

A—(h—-2) -1 —-2-2(n—h-1)
A+ 22" 1 —(h—2) A —1-(n—h-—1)
—2-2h—-2) -1 A=2(n—h-1)
=M+ D20+ 2" N 4+ (h+4 —20)A2 + (5 — 2h — 2nh + 2h% — n)A
—nh+h? —2h +2].

In the following, we will prove the remaining part of Theorem 2.5. Consider the
cubic function on x

flx)=a® 4+ (h+4—2n)z* + (5 — 2h — 2nh + 2h* —n)x —nh + h® — 2h + 2.

From a simple calculation, we have

f(0)=—nh+h?—-2h+2=—h(n—h)—(2h—2) <0,
f=3)=5-3h <0,
f(=)=h—n+nh—h*=(n-h)(h—1)>0,
f(=2) = 6h — 6n + 3nh — 3h* = (n — h)(3h — 6) > 0.

Note that f(z) — oo, * — oo, and f(0) < 0, so there is at least one root in (0, c0).
Since f(—1/2) < 0 and f(—1) > 0, there is at least one root in (—1,—1/2). By
f(z) = —o0, x = —o0, and f(—2) > 0, there is at least one root in (—oo, —2). Thus
there is exactly one root in each of the three intervals. O

Using a similar method to compute the distance characteristic polynomials of K3**
and K3, we have the following two results.

Theorem 2.6. Let s > 2,t > 2 and n = s +t. Then the distance characteristic
polynomial of K3 is
Pp(A\) = A+ D" 4N\ 4 (—s — t +4)A3 + (2t + 25 — 8st + 4)\?
+ (6s + 6t — 14st)\ — bst + 2s + 2.



Let A\1 = Ay > ... >\, denote the distance spectrum of Ki*'. Then
> /\1>O, —1<)\2<—1/2and/\3=—
> —2< A1 < —land )\, < —2.

Proof. The distance matrix of Kfﬁt is

0 11 2 3 3

1 01 2 3 3

1 1 1 2 2
D= 0

2 21 01 1

3 3 2 10 1

3 ... 3 211 ...0

Similarly to the proof of Theorem 2.5, by a simple calculation, we have

A—(s—2) -1 —2 —3-3(t—2)
—1-(s—2) A -1 —2-2(t-2)

—2-2(s—2) -1 X —1—(t—2)

—3-3(5—2) -2 -1 A—(t—2)

= A+ D" A (s — £+ 4N + (2t + 25 — 8st + 4)\
+ (6s + 6t — 14st)\ — Bst + 2s + 2.

det(\[ = D) = (A+1)"*

Consider the quartic function on x
f(z) =2 + (—s —t+4)x> + (2t + 25 — 8st +4)x* 4 (65 + 6t — 14st)x — 55t + 25 + 2t.

Note that (s —1)(t —1) = st —s—t+ 1> 0, hence st + 1 > s+ t. Then we obtain
that

f(0) = —bst+2s +2t < 2(st+1) —bst =2 — 3st <0,
f(=H =5 -3s-3t <o,
f(-1)=1—-s—t+st>0,
f(=2) =654 6t —9st < 6(st +1) —9st =6 — 3st < 0.

Note that f(z) — oo, z — oo, and f(0) < 0, so there is at least one root in (0, c0).
Since f(—1/2) < 0 and f(—1) > 0, there is at least one root in (—1,—1/2). Since
f(=1) > 0 and f(—2) < 0, then there is at least one root in (—2,—1). By f(z) — oo,
x — —oo, and f(—2) < 0, there is at least one root in (—oo,—2). Thus there is
exactly one root in each of the three intervals. The proof is completed. ([l
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Theorem 2.7. Let s > 4,t > 4 andn = s+t—1. Then the distance characteristic

polynomial of K3* is
Po(A) =N+ D" 3N (=s —t +4)N2+ (2+ 5+t — 3st) A+ s+t — 2st].

Let Ay > Ao > ... > \, denote the distance spectrum of Kf;t. Then

> A >0, -1 <A< —2/3and A3 = —1;
> A1 = —1and )\, < —2.

Proof. The distance matrix of K3* is

0 1 1 2 2
1 0 1 2
D = 0 1 1
2 210 1
2 ....2 11 ...0

Similarly to the proof of Theorem 2.5, we have

A—(s—2) -1 —2-2(t—2)
detOM —D)=A+1)"3| -1—-(s—2) X —1—(t—2)
—2-2(s—=2) -1 A—(t—2)

=A+D)" PN+ (—s—t+ 4N+ (24 s+t —3st)\ + s+t — 2st].

Consider the cubic function on =
fla)=a®+(—s—t+4)2® + (24 s+t —3st)x + s+t — 2st.

Note that (s —1)(t —1) = st —s—t+ 1 > 0, hence st + 1 > s+ ¢. By a simple
calculation, we have

fO)=s+t—2st<1—st<0,
T AT
F(-1)=1—s—t+st>0.

Note that f(z) — 0o, 2 — oo and f(0) < 0, so there is at least one root in (0, c0).
Since f(—2/3) < 0 and f(—1) > 0, there is at least one root in (—1,—2/3). Since
f(=1) >0 and f(x) - —o0, x — —o0, there is at least one root in (—oo, —1). Thus
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there is exactly one root in each of the three intervals. This means that A; > 0,
1< A< —=2/3, A3 =A,—1 =—1land )\, < —1.

Obviously, the diameter of K2*! is 2, and P3 is an induced subgraph of K$?.
Moreover, D(P3) is a principal submatrix of D(K$?). It is easy to calculate that
A3(P3) = —2, then by Lemma 2.2, \,(K3') < A\3(P;) = —2. Furthermore, K5 is
not a complete k-partite graph, hence by Lemma 2.3, we have A\, < —2. O

By Theorems 2.5, 2.6 and 2.7, we obtain the following corollary.

Corollary 2.8. No two non-isomorphic graphs of K", K:™* and K3' are
D-cospectral.

Proof. From the distance characteristic polynomials of K", K3+t and K3 for
any two non-isomorphic graphs belonging to the same type, the result is obvious.

It is clear that K:'' and K?' have distinct distance spectra, since —1 is the
distance eigenvalue of K3 with multiplicity n —4, and it is the distance eigenvalue
of K2t with multiplicity n — 3.

Now we only need to prove that K" has a distance spectrum distinct from K3+
and K35*t.

Suppose that K" and K3*! are D-cospectral. Note that —1 is the distance eigen-
value of K3t with multiplicity n — 4, then —1 is also the distance eigenvalue of K/
with multiplicity n — 4. On the other hand, notice that —2 is not the distance eigen-
value of K3t then it follows that —2 is not the distance eigenvalue of K/ either,
thus n = h + 1. Then —1 is the distance eigenvalue of K with multiplicity n — 3,
a contradiction.

Assume that K and K2! are D-cospectral. Note that —2 is not the distance
eigenvalue of K3* then it follows that —2 is not the distance eigenvalue of K"

n

either, so n = h + 1. So we have

Ppgmy(A) = A+ 1" 2N + (—n + 3)A% + (=5n + 9)A — 3n + 5],
Ppigsty(N) = A+ 1)" PN 4 (=s =t +4)A° + (2 + 5 +1 = 3st)A + 5+ 1 — 2st].

Note that they have the same distance characteristic polynomial, hence

—3In+5=s+1—2st,
n=s+t—1.

Solving the two equations we get ¢ = 2 or t = n — 1, a contradiction. O



3. MAIN RESULTS

In this section, our first task is to show that K" K3*! and K?* are determined

by their D-spectra. First, we give some useful graphs and their distance spectra.

R I L N A
N, N oo 11,

H3 H4 H5 H6 H7
Hyg Hy Hyg Hyo "
XN )
Hys By By Bs

Figure 3. Graphs Py, Ps, Cy4, C5, Hi—H13 and B1—Bs.

A1 Ao A3 A As A6

Py 5.1623 —0.5858 —1.1623 —3.4142

Ps 8.2882 —0.5578 —0.7639 —1.7304 —5.2361

Cy 4.0000 0.0000 —2.0000 —2.0000

Cs 6.0000 —0.3820 —0.3820 —-2.6180 —2.6180

Hy 5.2926 —0.3820 —0.7217 —1.5709 —2.6180

H, 6.2162 —0.4521 —1.0000 —1.1971 —3.5669

Hj; 6.6375 —0.5858 —0.8365 —1.8010 —3.4142

Hy 5.7596 —0.5580 —0.7667 —2.0000 —2.4348

Hj 9.3154 —0.5023 —1.0000 —1.0865 —2.3224 —4.4042
Hg 9.6702 —0.4727 —1.0566 —2.0000 —2.0000 —4.1409
H; 10.0000 —0.4348 —1.0000 —2.0000 —2.0000 —4.5616
Hyg 9.6088 —0.4931 —1.0000 —1.0924 —2.0000 —5.0233
Hy 4.4495 —0.4495 —1.0000 —1.0000 —2.0000

Hyp 5.3723 —0.3723 —1.0000 —2.0000 —2.0000

Hyp 6.1425 —0.4913 —1.0000 —1.0000 —1.0000 —2.6512
Hi, 6.4641 —0.4641 —1.0000 —1.0000 —1.0000 —3.0000
His 7.8526 —0.6303 —1.0000 —1.0000 —2.2223 —3.0000
B, 7.4593 —0.5120 —1.0846 —2.0000 —3.8627

By 3.5616 —0.5616 —1.0000 —2.0000

Bs 4.9018 —0.5122 —1.0000 —1.0000 —2.3896




Next, we first show that K is determined by its D-spectrum. Let G be a graph
D-cospectral to K. We call H a forbidden subgraph of G if G contains no H as an
induced subgraph.

Lemma 3.1. If G and K" are D-cospectral, then Cy, Cs and H;, i € {1,4,9,10,
11,12,13}, are forbidden subgraphs of G.

Proof. Let G and K have the same distance spectrum. Suppose that H is an
induced subgraph of G and H € {Cy, Cs5, H;, i € {1,4,9,10,11,12,13}}. Note that
diam(H) = 2, obviously D(H) is a principal submatrix of D(G). Let |V(H)| = m,
then by Lemma 2.2, A\2(G) = Aa(H), A3(G) = A3(H) and A\p—1(H) = A—1(G).
By Theorem 2.5, we know that —1 < A\(G) < —1/2, A\3(G) = —1 and \,—1(G) €
{—1,—2}. Hence we have Ao (H) < —1/2, \3(H) < —1 and A\,,,—1(H) > —2. However,
A2 = —1/2 for Cy, C5 and H;, i € {1,9,10,11,12}; A3 > —1 for Hy and A1 < —2
for Hi3, a contradiction. ([

Us Us Vg Us
V1 V2 VU3 U4 V1 V2 VU3 U4 V1 V2 VU3 U4
H, H, H;

U1 V2 U3z V4 Vs
Ps

Figure 4. The labeled graphs of P55, Ho, H3 and Hs.

For any S C V(G), let Dg(S) denote the principal submatrix of D(G) obtained
by S.

Lemma 3.2. If G and K" are D-cospectral, then Ps and H;, i € {2,3,5,6,7,8},
are forbidden subgraphs of G.

Proof. For Ps: Suppose that Ps is an induced subgraph of G, then dg(v1,vs5) €
{2,3,4}. If dg(v1,vs) = 4, then D¢ ({v1,v2,vs,v4,v5}) = D(Ps) is a principal sub-
matrix of D(G). By Lemma 2.2, we have A3(G) > A3(P5) = —0.7639 > —1, a contra-
diction. If dg(v1,vs) € {2,3}, let dg(vi,v4) = a, dg(v1,v5) = b and dg(va, v5) = ¢,
then a,b,c € {2,3}. We get the principal submatrix of D(G)

DG({’Ul,UQ,’U?,, V4, 1)5}) =

N RN = O
QO N = O =
N = O =N
— O = NS
O = N O
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By a simple calculation, we have

(@.0,0) (3,3,3) (3,2,2) (3,2,3) (3,3,2) (2,3,3) (2,3,2) (2,2,2) (2,2,3)

A2 —0.4348 —0.3260 0 —0.3713 —0.3713 —0.1646 —0.2909 —0.3260

By Lemma 2.2 we have A2(G) = A2(Dg({vi,v2,v3,v4,v5})) > —1/2. Note that
A2(G) < —1/2, a contradiction. Hence Pj is a forbidden subgraph of G.

For Hy: Assume that Hs is an induced subgraph of G, then dg(vi,v4) € {2,3}.
If dg(vi,v4) = 3, then D(Hz) is a principal submatrix of D(G). By Lemma 2.2, we
have A2(G) > A2(Hz) = —0.4521 > —1/2, a contradiction. If dg(vi,vq) = 2, it is
easy to calculate that Ao (Dg ({v1,v2,vs,v4,v5})) = —0.2284 > —1/2. By Lemma 2.2
and Theorem 2.5, we also get a contradiction. Therefore H; is a forbidden subgraph
of G.

For Hjz: Suppose that Hs is an induced subgraph of G, then dg(v1,v4) € {2,3}.
If dg(vi,v4) = 3, then D(Hs) is a principal submatrix of D(G). By Lemma 2.2,
we have A\3(G) > A3(H3) = —0.8365 > —1, a contradiction. If dg(v1,vs) = 2, it is
easy to check that Ay(Dg({v1,v2,vs3,v4,05})) = —0.3820 > —1/2. By Lemma 2.2
and Theorem 2.5, we also obtain a contradiction. Hence Hj is a forbidden subgraph
of G.

For Hs: Assume that Hs is an induced subgraph of G. If dg(v1,v4) = dg(va, v5) =
dg(ve,v6) = 3, then D(Hs) is a principal submatrix of D(G). By Lemma 2.2, we
have A\,—1(G) < As(Hs) = —2.3224 < —2, a contradiction. Otherwise, there exists
at least one equal to 2 among dg(vi,vs),dg(va,vs) and dg(vs,ve). Without loss
of generality, we may assume that dg(vi,v4) = 2. Note that Hj is an induced
subgraph of G, hence there exists a vertex v € V(G) \ {v1, v, vs3,v4,v5} such that
vuy, vy € E(G). Then Glovivgvzvy] = Cs, Gloviveuzvy] = Hy, Glovausvy] = Cy
or Gvvivgvs] = Cy. By Lemma 3.1, Cy, C5 and H; are forbidden subgraphs of G,
a contradiction. Hence Hj is a forbidden subgraph of G.

For Hg, H7 and Hg: Suppose that they are induced subgraphs of GG, respectively.
If D(Hg), D(H7) and D(Hs) are principal submatrices of D(G), respectively. By
Lemma 2.2, A2(G) > A\o(H;) > —1/2 where i € {6, 7,8}, a contradiction. Otherwise,
similarly to the discussion for Hs, we can also obtain the same contradictions. Thus
Hg, H7 and Hg are forbidden subgraphs of G. (]

Theorem 3.3. The graph K" is determined by its D-spectrum.

Proof. Let G be a graph D-cospectral to K. By Lemma 3.2, Ps is a forbidden
graph of G, thus diam(G) < 3. By A.(G) < —2, we have diam(G) > 2.

Case 1: diam(G) = 3.

If |V(G)| = 4, then G = Py, and it is easy to check that G is not D-cospectral
to K3, a contradiction. Next we assume that [V (G)| > 5. Note that diam(G) = 3,

11



then there exists a diameter-path P = u@ov with length 3 in G. Let X = {u, @, 0, v},

hence G[X] = P;. Denote by V;, i = 0,1,2,3,4, the vertex subset of V' \ X whose
4
each vertex is adjacent to i vertices of X. Clearly V\ X = |J V;.
=0
Claim 1: V; = 0.

Suppose not, then there exists a vertex vy € Vj such that Gluguatv] = Hy,
a contradiction. Hence Claim 1 holds.

Claim 2: V3 = 0.

Suppose not, then there exists a vertex vs € V3 such that vs is adjacent to {u, 4, v},
{@,0,v}, {u,a,v} or {u,v,v}. Then G contains an induced subgraph Hy or Cj,
a contradiction.

Let V3 = {vg € Va: vou,vat € E(GQ)} and Vi’ = {ve € Va: vav,v20 € E(G)}.

Claim 3: Vo = V3* UVY, G[V5'|(G[VY]) = Ky (Kjvy|) and E[Vy, Vy'] = 0.

For any vy € V4, it is impossible that vs is adjacent to u and v since d¢(u,v) = 3.
If vy is adjacent to u and ¢ (or @ and v), then Gveutd] = Cy (or Glvautv] = Cy),
by Lemma 3.1, a contradiction. If v, is adjacent to @ and o, then Gvauatv] = Hs,
a contradiction. Thus Vo = V3*UVY. For any ve, v5 € V3", we then have vov} € E(G).
Otherwise G[vpvsuad] = Hy, a contradiction. This means that G[Vy'] = Ky
Similarly, G[Vy’] = Kyp|. If vovi € E(G) for any v € V3' and v5 € V3, then
Glvaviav] = Cy, a contradiction. Hence E[V3*, V'] = 0.

Claim 4: |V1| < 1.

Let v1 € V4. Obviously, v; can only be adjacent to @ or o, otherwise G[vyuatv] =
Ps, a contradiction. Now we assume that |V4| > 2. Let v1,v7 € V4. If they are
adjacent to the same vertex of X, then Glviviutdv] = Hs or Hg, a contradiction.
Otherwise, G[vyviuttv] = Hy or Glviviut] = Cy, a contradiction. Hence Claim 4 is
completed.

Claim 5: Only one set of V7 and V5 is nonempty.

Suppose not, then there exist two vertices v; € V; and v € V4. Without loss of
generality, we may assume that vs is adjacent to u and u. If v; is adjacent to @, then
Glviveuttv] = Hs or Glvyvautit] = Hy, a contradiction. If vy is adjacent to @, then
Glvivauttv] = Hg or Gvjvetd] = Cy, a contradiction. Thus Claim 5 holds.

Claim 6: Vo = 0.

Suppose not, then there exists a vertex vy € V; such that vov* € E(G), where
v* € V1 UV;. Then Glugv*atv] = Ps or Glugv*uiid] = Ps, a contradiction.

By Claims 1-6, we have V = V; UV U X. If |V4]| = 1, then by Claim 5, V2 = 0.
This means that G = B;. It is easy to check that By has D-spectrum distinct from
K%, a contradiction. So we have Vi = (), then V» # (), and thus G = K:*!. By
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Corollary 2.8, K:*! has D-spectrum distinct from K, a contradiction. It follows
that there is no graph G with diameter 3 D-cospectral to K.

Case 2: diam(G) = 2.

There exists a diameter-path P = xyz with length 2 in G. Let X = {x,y, z}, then
G[X] = P;. Obviously, V'\ X # 0 since n > 4. Denote by V;, i = 0,1,2,3 the
vertex subset of V'\ X whose each vertex is adjacent to ¢ vertices of X. Clearly

VAX = UV

Claim 7: |V3] <1

Suppose not, then there exist two vertices vz, v§ € V3. If vgvf € E(G), then
Glvsvizyz] = Hy, a contradiction. Otherwise vsvs ¢ F(G), then Glusvizz] = Cy,
a contradiction. Therefore Claim 7 holds.

Let Voy = {v2 € Va: vaz,voy € E(G)}, Vi = {v2 € Vo vy, v2z € E(G)}.

Claim 8: Vo = Vi UV, GV [(G[Vy2]) = Ky, (K, |), and E[Vyy, V] = 0.

For any ve € V5, it is impossible that vy is adjacent to = and z since Glvazyz| = Cy.
Hence Vi = Vg, UV,,. For any va,v3 € V,,, we then have vov; € E(G). Otherwise
Glvavizyz] = Hy, a contradiction. This means that G[V.,] = K)y,,|. Similarly,
GVy.] = K,.|- If E[Vay,V,z] # 0, then there exist two vertices vo € Vi, and
v3 € V., such that vev3 € E(G), and thus Glvevizyz] = Hi, a contradiction. Hence
EVyy, Vy] = 0.

Claim 9: If v; € V4, then v; must be adjacent to y.

Suppose not, then vy is adjacent to x or z. Without loss of generality, we may
assume that viz € E(G). Note that diam(G) = 2, then there exists a vertex u € V\ X

such that wvi,uz € E(G), and thus u € U Vi. If uw € V4, then Gluvizyz] = Cs,

a contradiction. If u € V3, then by Clalm 8 u is adjacent to y and z, and then
Gluvizy] = Cy, a contradiction. If u € V3, then Gluvizyz] = Hip, a contradiction.
Thus Claim 9 holds.

Claim 10: Vo = 0.

Suppose not, then there exists a vertex vg € Vj such that vy is adjacent to some
vertices of V1 U V4, U V3. If vy is adjacent to only one vertex u of V3 U Vo U V3, then
u € V3 since diam(G) = 2, and thus Gvguxyz] = Hy, a contradiction. So vg must be
adjacent to at least two vertices of V3 UV, U Va; we always find an induced subgraph
C4 of G in each case, a contradlctlon Therefore Claim 10 is obtained.

By Claim 10, 0 # V\ X = U V;. Next we distinguish the following four subcases.

Subcase 2.1: V3 # ().
By Claim 7, |V3| = 1. Note that Hy and Hio are forbidden subgraphs of G,
then V4 = 0. Let V5 = {v3}. Obviously, vevs € E(G) for each vy € V5. Otherwise
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Glvavsayz| = Hy, a contradiction. If |Va] < 2, i.e., there exist two vertices vy, v} €
Va, then Glugvivsayz] = Hqip or His, a contradiction. So we have |Vo| < 1. If
Va2 =0, then G = Bs, and it is easy to check that By has distance spectrum distinct
from K3, a contradiction. If [Vz| = 1, then G = Bs. Clearly, Bs is not D-cospectral
to K, a contradiction.

Subcase 2.2: V3 =0, Vo # ) and Vi = ().

By Claim 8, G = K"~ or G = K3*. By Corollary 2.8, K3 and K" have distinct
distance spectra, a contradiction. Hence G =2 K"~ 1.

Subcase 2.8: V3 =0, Vo # ) and V; # (.

For any v; € Vi, we claim that d(vy) = 1. In fact, if d(vy) > 2, then there exists
a vertex vy € V4 such that vivy € E(G), and then G[vivexyz] = Hy, a contradiction.
Furthermore, we claim that only one set of V, and V,,, is nonempty. Otherwise, let
vy € Vyy and v3 € V., then Glvaviayz] = Hiz, a contradiction. Hence G = K.

Subcase 2.4: V3 =10, Vo =0 and V1 # (.

Let Vi* = {v € Vi: d(v) > 2}. If V¥ = 0, then G = K;,_1. Note that
A (K1 —1) = —2, then K7 ,,_1 is not D-cospectral to K", a contradiction. If V* # (),
we claim that G[V}*] = Kjy|. If not, there exist u,v € V" such that uv ¢ E(G).
If there exists a vertex w € Vi* such that wu,wv € E(G), then Glwuvzry] = Hy,
a contradiction. Otherwise, there exist two distinct vertices w; € Vi* and wy € Vi
such that wiu € E(G) and wyv € E(G), then wyws € E(G) since Hy3 is a forbidden
subgraph of G. Thus Glwiwauvy] = Hi, a contradiction. Hence G[V*] = Ky,
which means that G = K. g

Theorem 3.4. The graph K:'t is determined by its D-spectrum.

Proof. Let G be a graph D-cospectral to K:™*. From Theorem 2.6, we know
that —1 < A2(G) < —1/2, A3(G) = —1 and —2 < \,—1(G) < —1. Similarly to
the proof of Lemmas 3.1 and 3.2, we also get P5, C4, C5 and H;, i = 1,2,...,13,
are forbidden subgraphs of G. Note that P5 is a forbidden subgraph of G and
An(G) < =2, hence 2 < diam(G) < 3. By the above forbidden subgraphs, similarly
to the proof of Theorem 3.3, we have:
> If diam(G) = 3, then G = By or G = K5,
> If diam(G) = 2, then G = By, G 2 B3, G 2 K" or G =2 K3,

From D-spectra of B;, i = 1,2,3, and Corollary 2.8, then we must have G & K5t
Thus the theorem follows. O

Theorem 3.5. The graph K3 is determined by its D-spectrum.

Proof. Let G be a graph D-cospectral to K3*. By Theorem 2.7, then —1 <
A2(G) < =2/3 < —1/2, A3(G) = A\,—1(G) = —1. Hence we can still use P, Cy4, Cs
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and H;,i=1,2,...,13, as the forbidden subgraphs of G. Note that P; is a forbidden
subgraph of G and A\, (G) < —2, hence 2 < diam(G) < 3. Similarly to the proof of
Theorem 3.3, then:
> If diam(G) = 3, then G = By or G = K3t
> If diam(G) = 2, then G = By, G 2 B3, G 2 K! or G = K3t

By D-spectra of B;, i = 1,2,3, and Corollary 2.8, then G = K2*'. Thus K5 is
determined by its D-spectrum. O

In [9], Liu et al. give the distance characteristic polynomial of Kt:"2: "k

k k
ni(2/\—|—1)
A S+ 1.

pat )\+ni+1)H(/\+n +1)

i=1

Pp(\) = (A4 1)kt ()\ -

Next, we will show that K 1"2-" 1 < n; < 2, is determined by its D-spectrum.

Theorem 3.6. K" ~" 1 < n; <2, is determined by its D-spectrum.

Proof. Let G := KJv"2" where 1 < n; < 2. Let ¢; and t2 be two
nonnegative integers with ¢; + t2 = k. Suppose that ny = ... = n,;, = 1 and
Niy41 = --. = Ng 41, = 2. Clearly, if t; = 0, then G is the friendship graph FF. If
to = 0, then G is a star. Recall that the star is determined by its D-spectrum. So
we assume that to > 1. Note that the distance characteristic polynomial of G is

Pp(\) = A+ 1) 2= )7 (N 4 3) 271 (A3 4 (5 — 4ty — 2t1)\?
+ (6 — 10t — Tt1)\ — 3t1 — 4ts).

Consider the cubic function
f()\) =) + (5 — 4ty — 2t1)/\2 + (6 — 10ty — 7t1))\ — 3t1 — 4to.

By calculation, we have

f(0) = —=3t; — 4ty < 0,
fl=3) =%,
F(=1)=2t; + 2t — 2 >0,
f(—2) =3t =20,
f(=3)=—10t, < 0

Then the three roots of f(A) = 0 belong to the intervals (0,00), [-1,—1/2) and
(=3, —2], respectively. Consequently, we have —1 < A\3(G) < —1/2, A3(G) = —1 and
An(G) = =3.
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Suppose that G’ is D-cospectral to G, that is —1 < A2 (G') < —1/2, A3(G') = -1
and A\, (G’) = —3. In the following, we only need to show that G’ = G. It is easy
to see that G’ cannot contain P, as an induced subgraph, otherwise we would have
M (G') < My(Py) = —3.4142, which contradicts A, (G') = —3. Thus the diameter of
G’ is 2. Let P = zyz be a diameter path of G.

Claim 1: dg(y) = n— 1. If there exists a vertex v € V(G’) such that vy ¢ E(G’),
then dg (v, y) = 2, and thus

1 0 1 2
Do ({z,y,z,v}) =2 1 0 b
a 2 b 0

Then a,b € {1,2}, and by a simple calculation we have

(a,0) (1,1 (1,2) (2,1) (2,2)
A2 0.0000  —0.3820  —0.3820  —0.6519

By Lemma 2.2, only the case a = 2, b = 2 satisfies Ao(G’) < —1/2. Thus there exists
a vertex w such that the subgraph of G’ induced by vertices v, w, x, y, z is Ty, T
or T3 (see Figure 5). We get a principal submatrix of D(G’) for each case:

01 2 2 2 01 2 1 2 01 2 1 2
1 01 1 2 1 01 1 2 1 01 1 2
Di=]12 10 2 2|,D;=12 10 2 2|,D3=]2 101 2
21 2 01 1 1 2 01 1 1101
2 2 210 2 2 2 10 2 2 2 10
v v v
w {w {w
x Yy z x Yy z x Yy z
Tl T2 T3

Figure 5. Graphs Ty, T», T3.

A simple calculation gives A2(D1) = —0.2248, A2(D3) = —0.3820 and A3(D3) =
—0.7667. For each case, the Cauchy interlacing theorem implies Ao (G') > Ao(D1) =
—0.2248, XA2(G") = A2(D3) = —0.3820 and A\3(G’) > A\3(D3) = —0.7667, a contradic-
tion. Thus Claim 1 holds.

Claim 2: G' —y is the disjoint union of some cliques. According to Lemma 2.4, we
obtain G’ has n—1+t; edges. It follows from Claim 1 that G’ —y has ¢ edges. Since
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to < [(n —1)/2], there are at least two connected components in G’ — y. Suppose
that there is a component which is not a clique. Then we can see that H,4 is an
induced subgraph of G’. Therefore A3(G') > A3(H4) = —0.7667, a contradiction.
Thus Claim 2 holds.

Combining Claims 1 and 2, we have G' = K1 V (K,y UK,;; U...UK,). According
to the distance characteristic polynomial of G and G’, we have ¢t = k and n} = n;,
ie. G’ = G, as desired. O

The following result follows from Theorem 3.6 immediately.

Corollary 3.7 ([5]). The friendship graph F¥ is determined by its D-spectrum.
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