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Abstract. A Banach space X has Pe lczyński’s property (V) if for every Banach space Y

every unconditionally converging operator T : X → Y is weakly compact. H. Pfitzner
proved that C∗-algebras have Pe lczyński’s property (V). In the preprint (Krulišová, (2015))
the author explores possible quantifications of the property (V) and shows that C(K) spaces
for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this
paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we prove that
in dual Banach spaces a quantitative version of the property (V) implies a quantitative
version of the Grothendieck property.
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1. Introduction

In 1994, H. Pfitzner proved that C∗-algebras have Pe lczyński’s property (V)

(see [10]). The aim of this paper is to prove a quantitative version of Pfitzner’s

result. In this way we continue the study of quantitative versions of Pe lczyński’s

property (V) presented in the preprint [8].

Section 2 summarizes all essential definitions and basic facts contained mostly in

the preprint [8]. In Section 3 we slightly improve Behrends’s quantitative version of

Rosenthal’s ℓ1-theorem, see [2], Section 3, which we use to prove the main theorem

in Section 4. Section 5 is devoted to the relationship of quantitative versions of

Pe lczyński’s property (V) and the Grothendieck property in dual Banach spaces.

The research was supported by Grant No. 142213/B-MAT/MFF of the Grant Agency of
the Charles University in Prague and by Research grant GA ČR P201/12/0290.

DOI: 10.21136/CMJ.2017.0242-16 937



2. Preliminaries

We follow the notation of [8] with one exception. Because we deal also with

C∗-algebras, we write X ′ (instead of X∗) for a dual to a Banach space X , since

the ∗ in C∗-algebras is already reserved for the involution. All Banach spaces are

considered either real or complex, unless stated otherwise. The closed unit ball of

a Banach space X is denoted by BX .

2.1. Pe lczyński’s property (V) and its quantification. Let us recall some

essential definitions and facts (explained in more detail in [8] with many comments).

A series
∞
∑

n=1
xn in a Banach space X is said to be

⊲ unconditionally convergent if the series
∞
∑

n=1
tnxn converges whenever (tn) is

a bounded sequence of scalars,

⊲ weakly unconditionally Cauchy (wuC) if for all x′ ∈ X ′ the series
∞
∑

n=1
|x′(xn)|

converges.

A bounded linear operator T : X → Y between Banach spaces X and Y is called

unconditionally converging if
∑

n
Txn is an unconditionally convergent series in Y

whenever
∑

n
xn is a weakly unconditionally Cauchy series in X . It is not difficult to

show that T is unconditionally converging if and only if for every series
∑

n
xn in X

with

sup
x′∈BX′

∞
∑

n=1

|x′(xn)| < ∞

the series
∑

n
Txn converges. We say that a Banach space X has Pe lczyński’s prop-

erty (V) if for every Banach space Y every unconditionally converging operator

T : X → Y is weakly compact.

To quantify the property (V) means to replace the implication

(2.1) T is unconditionally converging ⇒ T is weakly compact

by an inequality

(measure of weak non-compactness of T )

6 C · (measure of T not being unconditionally converging),

where C is a positive constant depending only on X , and the two measures are pos-

itive numbers for each operator T and are equal to zero if and only if T is weakly

compact or unconditionally converging, respectively. This inequality is a strength-

ening of the original implication (2.1).
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For this purpose we use the following quantities. For a bounded sequence (xn) in

a Banach space X we define

ca((xn)) = inf
n∈N

sup{‖xk − xl‖ : k, l ∈ N, k, l > n}.

It is a measure of non-cauchyness of a sequence (xn), hence in Banach spaces it

measures non-convergence. Let T : X → Y be a bounded linear operator between

Banach spaces X and Y . We set

uc(T ) = sup

{

ca

(( n
∑

i=1

Txi

)

n

)

: (xn) ⊂ X, sup
x′∈BX′

∞
∑

n=1

|x′(xn)| 6 1

}

.

Then uc(T ) measures how far is the operator T from being unconditionally converg-

ing.

Let A be a bounded subset of a Banach space X . The De Blasi measure of weak

non-compactness of the set A is defined by

ω(A) = inf{d̂(A,K) : ∅ 6= K ⊂ X is weakly compact},

where

d̂(A,K) = sup{dist(a,K) : a ∈ A}.
De Blasi has proved that ω(A) = 0 if and only if A is relatively weakly compact

(see [4]). Other quantities which measure relative weak non-compactness are for

example

γ(A) = sup
{∣

∣

∣lim
n

lim
m

x′
m(xn)− lim

m
lim
n

x′
m(xn)

∣

∣

∣ : (xn) is a sequence in A,

(x′
m) is a sequence in BX′ , and the limits exist

}

or

wckX(A) = sup{dist(clust(X′′,w∗)(xn), X) : (xn) is a sequence in A},
where clust(X′′,w∗)(xn) stands for the set of all w∗-cluster points of the sequence (xn)

in X ′′. The quantities γ(A) and wckX(A) are equivalent by [1], Theorem 2.3, in the

following sense:

(2.2) wckX(A) 6 γ(A) 6 2wckX(A).

However, the quantity ω(A) is not equivalent to the other two (see [1], Corollary 3.4).

We have only

(2.3) wckX(A) 6 ω(A)

by [1], Theorem 2.3.
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For measuring weak non-compactness of a bounded linear operator T : X → Y

between Banach spaces X and Y we use the quantities ω(T (BX)), γ(T (BX)), and

wckY (T (BX)), which we denote simply by ω(T ), γ(T ), and wckY (T ).

We say that a Banach space X has a quantitative version of Pe lczyński’s prop-

erty (V)—we denote it by (Vq)—if there is a constant C > 0 such that for every

Banach space Y and every operator T : X → Y

(2.4) γ(T ) 6 C · uc(T ).

If it is possible to replace γ(T ) in (2.4) by ω(T ), we say that X has the property (Vq)ω.

If γ(T ) in (2.4) is replaced by ω(T ′), where T ′ : Y ′ → X ′ denotes the dual operator

to T , we say that X has the property (Vq)∗ω.

In [8], Proposition 3.2, it is proved that a Banach space X has the property (Vq)

if and only if there exists a constant C > 0 such that for each bounded subset K of

the dual space X ′

γ(K) 6 C · η(K),

where

η(K) = sup

{

lim sup
n

sup
x′∈K

|x′(xn)| : (xn) ⊂ X, sup
x′∈BX′

∞
∑

n=1

|x′(xn)| 6 1

}

.

Using the above-described characterization we will prove in Section 4 that C∗-alge-

bras have the property (Vq).

Note that the quantity η is translation-invariant, that is,

(2.5) η(K) = η(K + z′), K ⊂ X ′, z′ ∈ X ′.

This follows from the fact that (xn) is weakly null whenever
∑

xn is a wuC series

in X .

2.2. Measures of weak and weak∗ non-cauchyness of sequences in Banach

spaces. In Sections 4 and 5 we will use the following standard quantities, analogous

to the above defined quantity ca(·), which measure how far is a sequence in a (dual)

Banach space from being weakly (weak∗) Cauchy.

Let X be a Banach space and let (xn) be a bounded sequence X . We set

δ(xn) = sup
x′∈BX′

lim
n→∞

sup
k,l>n

|x′(x′
k)− x′(x′

l)|.
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This quantity is a measure of weak non-cauchyness of the sequence (xn). Further-

more, let us set

δ̃(xn) = inf{δ(xnk
) : (xnk

) is a subsequence of (xn)}.

It measures how close the subsequences of (xn) can be to be weakly Cauchy.

If (x′
n) is a bounded sequence in X ′, we set

δw∗(x′
n) = sup

x∈BX

lim
n→∞

sup
k,l>n

|x′
k(x) − x′

l(x)|.

The last quantity is a measure of weak∗ non-cauchyness of the sequence (x′
n). The

quantity δ(xn) equals 0 if and only if the sequence (xn) is weakly Cauchy. Analo-

gously, δw∗(x′
n) = 0 if and only if (x′

n) is weak∗ Cauchy. If δ̃(xn) = 0, it is not clear

whether (xn) admits a weakly Cauchy subsequence.

2.3. Selfadjoint elements and selfadjoint functionals. Let A be a C∗-algebra.

Let us denote by Asa the selfadjoint elements of A, that is Asa = {a ∈ A : a = a∗}.

Then Asa is a real Banach space and A = Asa + iAsa. If f is a bounded linear

functional on A, f∗ is the functional defined by f∗(x) = f(x∗), x ∈ A. Let (A′)sa
denote the set {f ∈ A′ : f = f∗} of selfadjoint functionals on A. Then (A′)sa is

a real Banach space, and is isometrically isomorphic to (Asa)
′. We will write A′

sa for

both these spaces. Every functional x′ ∈ A′ can be decomposed as x′ = f + ig where

f, g ∈ A′
sa. It suffices to set f = (x′ + (x′)∗)/2, g = (x′ − (x′)∗)/(2i).

3. A quantitative version of Rosenthal’s ℓ1-theorem

For proving the main result we need the quantitative version of Rosenthal’s

ℓ1-theorem proved by Behrends in [2], Section 3. In this section we revise his the-

orem, because it turns out that one of the estimates there can be easily improved.

We will then use this improved version.

Let us recall Behrends’s definition [2], Definition 3.1.

Definition. Let (xn) be a bounded sequence in a Banach space X and ε > 0.

We say that (xn) admits ε-ℓ1-blocks if for every infinite M ⊂ N there are scalars

a1, . . . , ar with
∑ |ar| = 1 and i1, . . . , ir in M such that

∥

∥

∑

a̺xi̺

∥

∥ 6 ε.

The revised version of the quantitative Rosenthal’s ℓ1-theorem for complex Banach

spaces is the following.
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Theorem 3.1. Let X be a complex Banach space X and ε > 0. Let (xn) be

a sequence in X which admits ε-ℓ1-blocks. Then there is a subsequence (xnk
) of

(xn) such that for every x′ ∈ X ′ with ‖x′‖ = 1 the diameter of the set of cluster

points of the sequence (x′(xnk
))k is at most πε.

Remark. In the original Behrends’ theorem, see [2], Theorem 3.3, there is a larger

constant 8/
√
2 in place of π. A similar result with the better constant π has been

obtained (in a different way) by Gasparis in [5].

S k e t c h o f t h e p r o o f of Theorem 3.1. The proof is essentially the same as

the original one. Suppose that the conclusion were not true. We can find δ > 0 such

that the number

sup
x′∈SX′

{diameter of the set of accumulation points of (x′(xnk
))k}

is greater than πε + δ for any subsequence (xnk
) of (xn). Fix τ ∈ (0, 1) such that

(

2 + sup
n

‖xn‖
)

τ < δ/π. �

Similarly to the one in the proof of [2], Theorem 3.3 (or 3.2), we can prove the

following lemma.

Lemma. The sequence (xn) admits a subsequence (without loss of generality still

denoted by (xn)) which satisfies the following conditions:

(i) Whenever C and D are disjoint finite subsets of N, there are z0, w0 ∈ C with

|w0| > πε+ δ and x′ ∈ X ′ with ‖x′‖ = 1 such that |x′(xn)− z0| 6 τ for n ∈ C

and |x′(xn)− (z0 + w0)| 6 τ for n ∈ D.

(ii) There are i1 < . . . < ir in N and a1, . . . , ar ∈ C which satisfy

r
∑

̺=1

|a̺| = 1,

∣

∣

∣

∣

r
∑

̺=1

a̺

∣

∣

∣

∣

6 τ,

∥

∥

∥

∥

r
∑

̺=1

a̺xi̺

∥

∥

∥

∥

6 ε.

P r o o f. Finally, the time has come for the modification. By [11], Lemma 6.3, we

find D ⊂ {1, . . . , r} such that

∣

∣

∣

∣

∑

̺∈D

a̺

∣

∣

∣

∣

>
1

π

r
∑

̺=1

|a̺| =
1

π

.
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Set C = {1, . . . , r} \ D. For these sets C and D we find z0, w0, and x′ from (i) of

the lemma. It follows that

ε >

∥

∥

∥

∥

r
∑

̺=1

a̺xi̺

∥

∥

∥

∥

>

∣

∣

∣

∣

r
∑

̺=1

a̺x
′(xi̺ )

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

̺∈C

a̺x
′(xi̺ ) +

∑

̺∈D

a̺x
′(xi̺ )

∣

∣

∣

∣

>

∣

∣

∣

∣

∑

̺∈C

a̺z0 +
∑

̺∈D

a̺(z0 + w0)

∣

∣

∣

∣

− τ

r
∑

̺=1

|a̺| =
∣

∣

∣

∣

∑

̺∈D

a̺w0 +

r
∑

̺=1

a̺z0

∣

∣

∣

∣

− τ

> |w0|
∣

∣

∣

∣

∑

̺∈D

a̺

∣

∣

∣

∣

− |z0|
∣

∣

∣

∣

r
∑

̺=1

a̺

∣

∣

∣

∣

− τ >
|w0|

π

− |z0|τ − τ >
πε+ δ

π

− (1 + |z0|)τ

= ε+
δ

π

− (1 + |z0|)τ > ε+
δ

π

−
(

2 + sup
n

‖xn‖
)

τ > ε,

which is a contradiction. �

4. Main theorem

This section is devoted to our main result—a quantitative version of Pfitzner’s

theorem (Theorem 4.1 below). We also prove a “real version” of this theorem (The-

orem 4.2).

Theorem 4.1. Let A be a C∗-algebra. Then for every bounded K ⊂ A′

(4.1) wckA′(K) 6 π · η(K).

Therefore A has the property (Vq).

P r o o f. The quantities γ(K) and wckA′(K) are equivalent by [1], Theorem 2.3,

more specifically, the inequality (4.1) implies γ(K) 6 2π ·η(K). If this holds for each

bounded K ⊂ A′, [8], Proposition 3.2, mentioned also in Section 2 gives that A has

the property (Vq). Let us show the inequality (4.1).

Let K ⊂ A′ be bounded. The case wckA′(K) = 0 is trivial. Suppose that

wckA′(K) > 0 and fix an arbitrary λ ∈ (0,wckA′(K)). By the definition of the

quantity wckA′(K) we find a sequence (x′
n) in K such that

dist(clust(A′′′,w∗)(x
′
n), A

′) > λ.

Since every dual of a C∗-algebra is a predual of a von Neumann algebra, we de-

duce from [13], Theorem III. 2.14 (see also [6], Example IV. 1.1 (b)) that A′ is

L-embedded—it means that A′ is complemented in A′′′ by a projection P satisfying

‖x′′′‖ = ‖Px′′′‖+ ‖x′′′ − Px′′′‖, x′′′ ∈ A′′′.
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Consequently, from [7], Theorem 1, we have

δ̃(x′
n) = inf{δ(x′

nk
) : (x′

nk
) is a subsequence of (x′

k)}
> 2 dist(clust(A′′′,w∗)(x

′
n), A

′) > 2λ.

Fix an arbitrary ε > 0. We now prove the following claim.

Claim. There is a sequence of self-adjoint elements (xk) in BA satisfying xixj = 0,

i, j ∈ N, i 6= j, and a subsequence (x′
nk
) of the sequence (x′

n) such that

|x′
nk
(xk)| > (1 − ε)2

λ

π

, k ∈ N.

P r o o f. Each x′
n is canonically decomposed in the following way: x′

n = fn + ign,

where fn, gn ∈ A′ are selfadjoint functionals. It suffices to find (xk) and (x′
nk
) such

that

|fnk
(xk)| > (1− ε)2

λ

π

or |gnk
(xk)| > (1− ε)2

λ

π

.

Indeed, since selfadjoint functionals attain real values on selfadjoint elements of A,

we have

|x′
nk
(xk)| = |fnk

(xk) + ignk
(xk)| >

{

|Re(fnk
(xk) + ignk

(xk))| = |fnk
(xk)|,

| Im(fnk
(xk) + ignk

(xk))| = |gnk
(xk)|.

We begin by proving that there is a strictly increasing sequence of indices (nk)

such that δ̃(fnk
) > λ or δ̃(gnk

) > λ. If δ̃(fn) > λ, the proof is over, so suppose that

δ̃(fn) 6 λ. Let us find τ > 0 satisfying δ̃(x′
n) > 2λ + 2τ . By the definition of δ̃(fn)

there is a subsequence (fnk
) of the sequence (fn) with δ(fnk

) < λ + τ . We claim

that the corresponding subsequence (gnk
) of (gn) satisfies δ̃(gnk

) > λ. To obtain

a contradiction, suppose that δ̃(gnk
) 6 λ. Using the definition of δ̃(gnk

) we find

a strictly increasing sequence of indices (kl) such that δ(gnkl
) < λ+ τ . Then

δ(x′
nkl

) = δ(fnkl
+ ignkl

)

= sup
x′′∈BA′′

lim
l→∞

sup
p,q>l

|x′′(fnkp
+ ignkp

)− x′′(fnkq
+ ignkq

)|

6 sup
x′′∈BA′′

lim
l→∞

sup
p,q>l

(|x′′(fnkp
)− x′′(fnkq

)|+ |x′′(gnkp
)− x′′(gnkq

)|)

6 sup
x′′∈BA′′

lim
l→∞

sup
p,q>l

|x′′(fnkp
)− x′′(fnkq

)|

+ sup
x′′∈BA′′

lim
l→∞

sup
p,q>l

|x′′(gnkp
)− x′′(gnkq

)|

= δ(fnkl
) + δ(gnkl

) < λ+ τ + λ+ τ = 2λ+ 2τ,

which contradicts the fact that δ̃(x′
n) > 2λ+ 2τ .
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Without loss of generality we may assume that we have found a subsequence

(fnk
) of the sequence (fn) with δ̃(fnk

) > λ and such that (fnk
) = (fn). By passing

to a further subsequence we can also ensure that

infn∈N ‖fn‖
supn∈N

‖fn‖
> 1− ε.

Indeed, the sequence (fn) is bounded, hence we can find its subsequence (fnk
) such

that the lim
k→∞

‖fnk
‖ exists. This limit is nonzero, because otherwise we would have

δ̃(fn) = 0. We thus obtain the desired subsequence by omitting finitely many mem-

bers of (fnk
).

The inequality δ̃(fn) > λ says that for every subsequence (fnk
) of (fn) there is

some x′′ ∈ A′′ with ‖x′′‖ = 1 such that the diameter of the set of accumulation

points of the sequence (x′′(fnk
))k is greater than λ. By Theorem 3.1 the sequence

(fn) does not admit (λ/π)-ℓ1-blocks, i.e., there is an infinite M ⊂ N such that

whenever a1, . . . , ar ∈ C satisfy
r
∑

i=1

|ai| = 1, and n1 < . . . < nr are indices in M ,

we have
∥

∥

∥

r
∑

i=1

aifni

∥

∥

∥ > λ/π. Hence there is a subsequence (fnk
) of (fn) such that for

each nonzero (αk) ∈ ℓ1 and N ∈ N large enough

∥

∥

∥

∥

N
∑

k=1

αk
∑N

k=1 |αk|
fnk

∥

∥

∥

∥

>
λ

π

.

By letting N → ∞ we obtain

λ

π

∞
∑

k=1

|αk| 6
∥

∥

∥

∥

∞
∑

k=1

αkfnk

∥

∥

∥

∥

.

Therefore we have for each (αk) ∈ ℓ1

λ

π sup
k∈N

‖fnk
‖

∞
∑

k=1

|αk| 6
λ

π

∞
∑

k=1

|αk|
‖fnk

‖ 6

∥

∥

∥

∥

∞
∑

k=1

αk
fnk

‖fnk
‖

∥

∥

∥

∥

6

∞
∑

k=1

|αk|.

Let us set

r =
λ

π supk∈N
‖fnk

‖ and θ = (1− ε) r inf
k∈N

‖fnk
‖.

Then

θ = (1− ε)
λ

π

infk∈N ‖fnk
‖

supk∈N ‖fnk
‖ > (1− ε)

λ

π

infn∈N ‖fn‖
supn∈N ‖fn‖

> (1 − ε)2
λ

π

.
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Without loss of generality we can assume that (fnk
) = (fn). Then (fn/‖fn‖)n is

a basic sequence consisting of selfadjoint elements which satisfies

r

∞
∑

k=1

|αk| 6
∥

∥

∥

∥

∞
∑

k=1

αk
fk

‖fk‖

∥

∥

∥

∥

6

∞
∑

k=1

|αk|, (ak) ∈ ℓ1,

that is (36) of [10] (where a′k = fk). By Pfitzner’s proof of [10], Theorem 1, we

obtain a sequence (xk) in A and a subsequence (fnk
) of (fn) for which (35) of [10] is

valid (where a′nk
= fnk

), i.e., xk are selfadjoint elements in BA such that xixj = 0,

i, j ∈ N, i 6= j, and |fnk
(xk)| > θ > (1 − ε)2λ/π, k ∈ N. This completes the proof of

the claim. �

Let (xk) and (x′
nk
) be sequences obtained by the claim. Since |x′

nk
(xk)| >

(1− ε)2λ/π, k ∈ N, we have

lim sup
k→∞

sup
x′∈K

|x′(xk)| > (1− ε)2
λ

π

.

But
∑

xk is a wuC series in A satisfying sup
x′∈BA′

∑ |x′(xk)| 6 1. Indeed, all xk are

contained in a commutative subalgebra B of A, which can be identified with the

space C0(Ω) for some Ω by the Gelfand representation. Then xk, k ∈ N, are real

continuous functions on Ω with ‖xk‖ = sup
ξ∈Ω

|xk(ξ)| 6 1 and {xi 6= 0}∩ {xj 6= 0} = ∅,

i 6= j. Let x′ ∈ A′, and let us set µ = x′ ↾B∈ B′ = C0(Ω)
′ = M(Ω). For each N ∈ N

we get

N
∑

k=1

|x′(xk)| =
N
∑

k=1

|µ(xk)| =
N
∑

k=1

∣

∣

∣

∣

∫

Ω

xk dµ

∣

∣

∣

∣

6

N
∑

k=1

∫

{xk 6=0}

|xk| d|µ|

6

∫

Ω

1 d|µ| = ‖µ‖ 6 ‖x′‖.

Therefore sup
x′∈BA′

∞
∑

k=1

|x′(xk)| 6 1.

We thus obtain η(K) > (1 − ε)2λ/π. Since ε > 0 and λ < wckA′(K) were chosen

arbitrarily, it follows that η(K) > wckA′(K)/π, which completes the proof. �

Remark. It is not clear whether C∗-algebras have also the property (Vq)∗ω.

From [8], Theorem 4.1, it follows that the answer is affirmative for commutative

C∗-algebras. In fact we do not know any example of a Banach space with the

property (Vq) but not (Vq)∗ω. Regarding the property (Vq)ω, we know from [8],

Proposition 4.3, that some (commutative) C∗-algebras enjoy this property and some

do not.

The following theorem is a kind of “real version” of Theorem 4.1.
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Theorem 4.2. Let A be a C∗-algebra. Then the space A
sa
has the property (Vq),

more precisely, for every bounded K ⊂ A′
sa

(4.2) wckA′(K) 6 η(K).

P r o o f. The proof is analogous to the previous one, it suffices to use real versions

of the theorems that have allowed us to prove Theorem 4.1. Let us sketch it briefly.

Consider a bounded set K ⊂ A′
sa with wckA′

sa
(K) > 0 and an arbitrary

λ ∈ (0,wckA′

sa
(K)). We find (fn) in K such that

dist(clust((A′

sa
)′′,w∗)(fn), A

′
sa) > λ.

Since A′ is L-embedded, the real version of A′ (let us denote it by (A′)R) is also

L-embedded. But (A′)sa is a 1-complemented subspace of (A′)R and is therefore

L-embedded by [6], Proposition IV. 1.5. We thus get

δ̃(fn) > 2λ

from [7], Theorem 1. Let us fix ε > 0. By passing to a subsequence we achieve that

infn∈N ‖fn‖
supn∈N

‖fn‖
> 1− ε.

By the real version of the quantitative Rosenthal’s ℓ1-theorem [2], Theorem 3.2, the

sequence (fn) admits λ-ℓ1-blocks, which yields a subsequence (fnk
) of the sequence

(fn) that for every (αn) ∈ ℓ1 satisfies

λ

supk∈N
‖fnk

‖
∞
∑

k=1

|αk| 6
∥

∥

∥

∥

∞
∑

k=1

αk
fnk

‖fnk
‖

∥

∥

∥

∥

6

∞
∑

k=1

|αk|.

Then we proceed exactly as in the proof of Theorem 4.1 to obtain the desired con-

clusion. �
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5. Relation to the Grothendieck property

Let us recall that a Banach space X has the Grothendieck property if every weak∗

convergent sequence in its dual is weakly convergent. It is well known that for dual

Banach spaces the property (V) implies the Grothendieck property. In this section

we prove that this implication holds even for suitable quantitative versions of these

properties.

One possible quantification of the Grothendieck property has already been stud-

ied in [3] and [9]. Let us recall the definition: Let c > 0. A Banach space X is

c-Grothendieck if

(5.1) δ(x′
n) 6 c · δw∗(x′

n)

whenever (x′
n) is a bounded sequence in X ′.

A Banach space X has the Grothendieck property if and only if for every sequence

(x′
n) in X ′ the following implication holds:

(x′
n) is weak∗ Cauchy ⇒ (x′

n) is weakly Cauchy.

The inequality (5.1) quantifies this implication. But we can look at the Grothendieck

property also in another way: X has the Grothendieck property if and only if every

sequence (x′
n) in X ′ satisfies the implication

(x′
n) is weak∗ Cauchy ⇒ {x′

n : n ∈ N} is a relatively weakly compact set.

If we replace this implication by an inequality

wckX′({x′
n : n ∈ N}) 6 c · δw∗(x′

n)

where c > 0 is a constant not depending on (x′
n), we obtain another quantitative

version of the Grothendieck property. We will prove that all dual Banach spaces with

the property (Vq) have this kind of quantitative Grothendieck property (see Corol-

lary 5.2). We do not know whether the latter quantitative Grothendieck property

implies the former one (with a larger constant).

Theorem 5.1. Let X be a Banach space. Then for every bounded sequence (x′′
n)

in X ′′

η({x′′
n : n ∈ N}) 6 1

2
δw∗(x′′

n).

P r o o f. Let (x′′
n) be a bounded sequence in X ′′. The case η({x′′

n : n ∈ N}) = 0

is trivial. Suppose that η({x′′
n : n ∈ N}) > 0 and fix δ ∈ (0, η({x′′

n : n ∈ N})).
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Let us find ε > 0 such that η({x′′
n : n ∈ N}) > δ + ε. By the definition of the

quantity η we can find a wuC series
∞
∑

k=1

x′
k in X ′ with sup

x′′∈BX′′

∞
∑

k=1

|x′′(x′
k)| 6 1

such that lim sup
k→∞

sup
n∈N

|x′′
n(x

′
k)| > δ+ε. Since (x′

k) is a weakly null sequence, there are

subsequences (y′′n) of (x′′
n) and (y′k) of (x′

k) which for all n ∈ N satisfy |y′′n(y′n)| > δ+ε.

The sequence (y′n) is weakly null in X ′ and (y′′n) is a bounded sequence in X ′′, hence

by Simons’ extraction lemma, see [12], Theorem 1, there is a strictly increasing

sequence of indices (nk) such that for all k ∈ N

∑

m∈N

m 6=k

|y′′nk
(y′nm

)| < ε.

Let us define

αk =

{

(−1)k sgn−1(y′′nk
(y′nk

)), y′′nk
(y′nk

) 6= 0,

0, y′′nk
(y′nk

) = 0,
k ∈ N,

where sgn denotes the complex signum function, i.e. sgn(z) = z/|z|, z ∈ C \ {0}. Set

x′ = w∗- lim
N→∞

N
∑

k=1

αky
′
nk

∈ X ′.

Then x′ ∈ BX′ because for all x ∈ BX

|x′(x)| =
∣

∣

∣

∣

∞
∑

k=1

αkz
′
nk
(x)

∣

∣

∣

∣

6

∞
∑

k=1

|z′nk
(x)| 6

∞
∑

n=1

|x′
n(x)| 6 sup

x′′∈BX′′

∞
∑

n=1

|x′′(x′
n)| 6 1.

For each k ∈ N even

Re y′′nk
(x′) = αky

′′
nk
(y′nk

) + Re





∑

m∈N

m 6=k/2

y′′nk
(α2my′n2m

)





− Re

(

∑

m∈N

y′′nk
(α2m−1y

′
n2m−1

)

)

> |y′′nk
(y′nk

)| −
∑

m∈N

m 6=k/2

|y′′nk
(y′n2m

)| −
∑

m∈N

|y′′nk
(y′n2m−1

)|

= |y′′nk
(y′nk

)| −
∑

m∈N

m 6=k

|y′′nk
(y′nm

)|

> (δ + ε)− ε = δ.
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Analogously, for each k ∈ N odd

Re y′′nk
(x′) = αky

′′
nk
(y′nk

) + Re

(

∑

m∈N

y′′nk
(α2my′n2m

)

)

− Re





∑

m∈N

m 6=(k+1)/2

y′′nk
(α2m−1y

′
n2m−1

)





6 − |y′′nk
(y′nk

)|+
∑

m∈N

m 6=k

|y′′nk
(y′nm

)|

< − (δ + ε) + ε = −δ.

Therefore

inf
n∈N

sup
k,l>n

|y′′nk
(x′)− y′′nl

(x′)| > inf
n∈N

sup
k,l>n

|Re(y′′nk
(x′)− y′′nl

(x′))| > 2δ.

It follows that δw∗(x′′
n) > δw∗(y′′nk

) > 2δ. Since δ < η({x′′
n : n ∈ N}) has been chosen

arbitrarily, we obtain the desired inequality. �

Corollary 5.2. Let X be a Banach space and C > 0. Suppose that each bounded

K ⊂ X ′′ satisfies

(5.2) wckX′′(K) 6 C · η(K)

(i.e. X ′ enjoys the property (Vq)). Then for every bounded sequence (x
′′
n) in X ′′

wckX′′({x′′
n : n ∈ N}) 6 1

2
C · δw∗(x′′

n).

P r o o f. It suffices to combine the previous theorem with the inequality (5.2)

applied to K = {x′′
n : n ∈ N}. �

Corollary 5.3. Let A be a von Neumann algebra. Then A has a quantitative

version of the Grothendieck property—more precisely, for every bounded sequence

(x′
n) in A′

wckA′({x′
n : n ∈ N}) 6 1

2
π δw∗(x′

n).

P r o o f. Since every von Neumann algebra is a C∗-algebra and a dual Banach

space, the assertion follows from Theorem 4.1 and Corollary 5.2. �
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