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Abstract. Numerical analysis of a model Stokes interface problem with the homogeneous
Dirichlet boundary condition is considered. The interface condition is interpreted as an
additional singular force field to the Stokes equations using the characteristic function. The
finite element method is applied after introducing a regularization of the singular source
term. Consequently, the error is divided into the regularization and discretization parts

which are studied separately. As a result, error estimates of order h1/2 in H1 × L2 norm
for the velocity and pressure, and of order h in L2 norm for the velocity are derived. Those
theoretical results are also verified by numerical examples.
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1. Introduction

In the study of multi-phase flow problems of viscous incompressible fluids, we often

encounter the Navier-Stokes equations with an interface condition

∂u

∂t
+ (u · ∇)u− ν∆u+

1

̺
∇p = h(x, t), ∇ · u = 0 in Ω× (0, T ),(1a)

u = 0 on ∂Ω× (0, T ),(1b)

[u] = 0, [τ ] = g(x, t) on Γ× (0, T ),(1c)

u(x, 0) = u(0)(x) in Ω,(1d)

where u and p denote the velocity and pressure, respectively, and T < ∞. Herein, Ω
denotes a fixed bounded domain in Rd, d = 2, 3, with the boundary ∂Ω, and Γ is
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a closed surface/curve included in Ω which represents the interface. The coefficient

of kinetic viscosity ν is assumed to be a piecewise constant function (ν = ν1 inside Γ

and ν = ν2 outside Γ for example). The traction (or stress) vector is denoted

by τ (see Section 2 for the precise definition). Moreover, [·] stands for the jump
across the interface Γ. Here h(x, t), g(x, t), and u(0)(x) are given functions. There

is numerous literature devoted to numerical methods for these kinds of interface

problems (see [5], [9], [18] for example). In particular, the variational formulation

of (1) is directly discretized by the finite element method (see [2] and [19]). However,

it is non-trivial to implement the boundary integral term
∫

Γ g(x, t)v(x) dx for the

finite difference and finite volume methods. Even if we use the finite element method,

the approximation of the boundary integral term is quite technical. In order to avoid

those difficulties, the immersed boundary (IB) method is frequently applied, which

was proposed by Peskin [15] originally for solving a class of fluid-structure interaction

problems [13], [14]. In the IB method, the interface problem (1) is equivalently

reformulated to partial differential equations stated below. Let Γ(t) be parameterized

as Γ(t) = {X(θ, t) = (X1(θ, t), . . . , Xd(θ, t)) ; θ ∈ Θ} for the Lagrangian coordinate
θ ∈ Rd−1. Here Θ ⊂ Rd−1 is the set of all θ and denotes the reference configuration.

Then the interface condition (1c) is interpreted as an outer force field f defined on Ω

and included in the Navier-Stokes equations such that

∂u

∂t
+ (u · ∇)u − ν∆u+∇p = h+ f, ∇ · u = 0 in Ω× (0, T ),(2a)

u = 0 on ∂Ω× (0, T ),(2b)

u(x, 0) = u(0)(x) in Ω,(2c)

f(x, t) =

∫

Θ

F (θ, t)δ(x −X(θ, t)) dθ.(2d)

Herein, F denotes the force density distributed along Γ(t), and δ is the Dirac delta

function. For computation, we solve (2) together with the equation of the interface

motion ∂X/∂t = u(X, t). The problem (2) was first introduced to investigate blood

flow in the presence of cardiac valves, in which Γ(t) corresponded to the position of

heart valves regarded as a thin elastic structure, and F (θ, t) represented the effect of

them. The main advantage of this method is that we can use fixed uniform meshes.

Consequently, the equation can be discretized not only by the finite element method

but also by the finite difference method. Moreover, f(x, t) is replaced by a regularized

outer force f ε(x, t) using a smooth approximation to Dirac delta function. Then the

value of f ε(x, t) is calculated by simple quadrature formulas. The IB method is

recognized to be one of most powerful methods for the interface problems of fluid-

structure interaction and it is widely applied at present. However, there are only

a few results about the theoretical convergence analysis in contrast to a huge number
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of applications. In a previous paper, Saito and Sugitani [17], we have studied the

convergence of the IB method for a model stationary Stokes problem, where the

immersed force field is approximated using a regularized delta function and the error

in the W−1,p norm is examined for 1 6 p 6 d/(d − 1). Then we consider the

immersed boundary discretization of the Stokes problem and study the regularization

and discretization errors separately. Consequently, error estimate of order h1−α in

the W 1,1×L1 norm for the velocity and pressure is derived, where α is an arbitrarily

small positive number. Error estimate of order h1−α in the Lr norm for the velocity

is also derived with r = d/(d−1−α). However, optimal order and L2 error estimates

are still open at present.

At this stage, it is worth recalling that a simpler reformulation method for (1) was

proposed by Fujita et al. [6] in 1995. Their reformulation reads as

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = h+ g̃(∇χ · ñ), ∇ · u = 0 in Ω× (0, T ),(3a)

u = 0 on ∂Ω× (0, T ),(3b)

u(x, 0) = u(0)(x) in Ω.(3c)

Herein, χ denotes the characteristic function of the region surrounded by Γ(t) in Ω,

and n is the unit normal vector to Γ(t). Functions g̃ and ñ stand for the smooth

extensions of g and n into Ω, respectively. The reformulation (3) is discretized

by the finite element and finite difference methods using fixed uniform meshes as

well as the IB reformulation. Formulation (3) is essentially equivalent to the IB

formulation (2), whereas (3) seems to be easier to deal with both mathematically and

practically since there are no Lagrangian coordinates and no need to generate moving

fine mesh along Γ(t) for each time step. In [6], the derivation of the reformulation and

some numerical results are presented. However, no mathematical analysis including

convergence is given.

Our ultimate objective is to study the convergence of the above reformulation

using the characteristic function. In this paper, as a first step, we deal with a model

interface problem for the stationary Stokes equations with fixed interface Γ (supposed

to be a thin elastic body) since the Stokes problem naturally arises when solving

FSI problems for Navier-Stokes equations using the weak coupling approach. Then,

following [17], we study the regularization and discretization errors separately. We

state our model problem in the classical form and its weak formulation in Section 2.

Then, since the derivative of the characteristic function ∇χ has singularities on Γ,

regularization is required. We state our regularization procedure and examine its

error in Section 3. As a matter of fact, the H1 × L2 error between regularized and

original problems is estimated to be of order ε1/2 (see Proposition 3.2). Section 4

is devoted to the finite element approximation by MINI (P1b/P1) finite element.
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Theorem 4.1, the main result of this paper, offers error estimates for the discretization

parameter h > 0. That is, the H1 × L2 error for velocity and pressure converges at

order h1/2, while the L2 error for velocity has a first order convergence. Finally, we

confirm our results by numerical experiments in Section 5. We verify that desired

convergence rates are obtained with uniform mesh.

2. Stokes interface problem

2.1. Geometry and notation. Let Ω be a polyhedral domain in Rd(d = 2, 3)

with boundary ∂Ω. We suppose that Ω is divided into two disjoint subdomains Ω0

and Ω1 by a simple Lipschitz curve (d = 2) or surface (d = 3) denoted by Γ. We

assume that the interface Γ is closed (∂Ω ∩ Γ̄ = ∅), or goes across Ω (∂Ω ∩ Γ̄ 6= ∅).
For example, see Figure 1. In both cases, the boundaries ∂Ωi(i = 0, 1) are Lipschitz

boundaries.

Ω0

Ω1

Γ

Ω0 Ω1

Γ

Figure 1. Example of Ω with ∂Ω ∩ Γ̄ = ∅ (left) and ∂Ω ∩ Γ̄ 6= ∅ (right).

For function spaces and their norms, we follow the notation of [1]. The stan-

dard Lebesgue and Sobolev spaces such as L2(Ω), H1(Ω),W 1,∞(Ω), L2(Γ), and

W 2−1/p,p(Γ) with some p > d will be used. We set H1
0 (Ω) = {v ∈ H1(Ω); v|∂Ω = 0}

and L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω
q dx = 0}. For a function space X , the symbol Xd

denotes the product space X × . . .×X . The norm notation is abbreviated by

(4) ‖u‖H1 = ‖u‖H1(Ω)d , ‖p‖L2 = ‖p‖L2(Ω).

The symbol H−1 stands for the dual space of H1
0 (Ω) and the dual product between

H−1(Ω)d and H1
0 (Ω)

d is written as 〈·, ·〉 = 〈·, ·〉H−1,H1

0

. Moreover, the inner product

of L2(Ω)d is denoted by (·, ·)L2 .

2.2. Model Stokes interface problem and equivalent formulations. We

consider the following model Stokes interface problem:

− ν∆ui +∇pi = 0, ∇ · ui = 0 in Ωi,(5a)

ui = 0 on ∂Ωi \ Γ, i = 0, 1,(5b)

u0 = u1, τ0 + τ1 = g on Γ,(5c)
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for velocity ui and pressure pi with density ̺ = 1 and kinetic viscosity ν0 = ν1 =

ν > 0, respectively, in Ωi, i = 0, 1. Here τi denotes the traction vector defined by

(6) τi = σ(ui, pi)ni,

where σ(u, p) = (σjk(u, p))16j,k6d = −pI+ν(∇u+∇uT) is called the stress tensor, I

the identity matrix, and ni the outward unit normal vector to ∂Ωi. Moreover, g is

a prescribed function standing for a jump of tractions across Γ. We assume g ∈
L2(Γ)d for the time being.

R em a r k 2.1. In the model equations (5), we assume ν0 = ν1 in order to avoid

the difficulties related to different kinetic viscosities, and focus on the analysis of

the reformulation using the characteristic function. In the case of ν0 6= ν1, the

convergence of the finite element solutions is studied by Ohmori and Saito [12] under

a suitable geometrical condition on the triangulation.

To deal with the problem precisely, we introduce the notion of weak solution. By

a weak solution to (5), we mean a solution of the following variational equations:

Find (u, p) ∈ H1
0 (Ω)

d × L2
0(Ω) such that

a(u, v) + b(p, v) =

∫

Γ

g · v dΓ ∀ v ∈ H1
0 (Ω)

d,(7a)

b(q, u) = 0 ∀ q ∈ L2
0(Ω),(7b)

where

a(u, v) =
ν

2

∫

Ω

(∂uj

∂xi
+

∂ui

∂xj

)(∂vj
∂xi

+
∂vi
∂xj

)

dx,(8a)

b(p, u) = −
∫

Ω

p(∇ · u) dx.(8b)

Indeed, if there exists a smooth solution (ui, pi) to (5), then (u, p) satisfies (7) with

(9) u =

{

u0 in Ω0,

u1 in Ω1

and p =

{

p0 in Ω0,

p1 in Ω1.

Now we shall verify this. It is obvious that (u, p) defined by (9) belongs to H1
0 (Ω)

d×
L2(Ω), since u is continuous on Γ and vanishes on ∂Ω. Further, since ∇ · ui = 0

in Ωi, u satisfies (7b). In order to derive (7a), multiply (5a) by v ∈ C∞

0 (Ω)d and

integrate over Ωi. Then we have

(10) −ν

∫

Ωi

∆ui · v|Ωi dx+

∫

Ωi

∇pi · v|Ωi dx = 0 ∀ v ∈ C∞

0 (Ω)d, i = 0, 1.
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Using the density of C∞

0 (Ω)d in H1
0 (Ω)

d, Green’s formula, and summing up the two

equations, we obtain

(11) a(u, v) + b(p, v) =

∫

Γ

(σ(u0, p0)n0 + σ(u1, p1)n1) · v dΓ ∀ v ∈ H1
0 (Ω)

d.

Because of the jump condition (5c), the right-hand side equals
∫

Γ
g · v dΓ. This

discussion remains true if pi is replaced by pi + c with any c ∈ R. Finally, we can

choose c ∈ R such that
∫

Ω
(p+ c) dx = 0.

Since v 7→
∫

Γ
g · v dΓ for g ∈ L2(Γ)d is a bounded linear functional on H1

0 (Ω)
d,

the well-posedness of (7) is proved by the standard theory. We recall the following

result.

Lemma 2.1 (cf. [10] and [4]). Let Ω be a connected, bounded, convex polyhedral

domain of Rd, and let h be in H−1(Ω)d. Then there exists a unique weak solution

(w, r) ∈ H1
0 (Ω)

d × L2
0(Ω) of the Stokes problem

(12) −ν∆w +∇r = h in Ω, ∇ · w = 0 in Ω, w = 0 on ∂Ω

satisfying

(13) ‖w‖H1 + ‖r‖L2 6 C1‖h‖H−1 .

Moreover, if h ∈ L2(Ω)d, we have (w, r) ∈ H2(Ω)d ×H1(Ω) and

(14) ‖w‖H2 + ‖r‖H1 6 C2‖h‖L2.

Herein, C1 and C2 denote positive constants depending only on Ω.

Now we proceed to derive an equivalent formulation to (7). To this end, we assume

(A1) Γ is of class C2,

(A2) g ∈ W 2−1/p,p(Γ)d with some p > d.

According to [6], (1.17), we have

(15)

∫

Γ

g · ϕdΓ = 〈g̃(∇χ · ñ), ϕ〉 ∀ϕ ∈ C∞

0 (Ω)d,

where χ is the characteristic function of Ω0 in Ω, i.e.,

(16) χ(x) =

{

1 x ∈ Ω0,

0 x /∈ Ω0.
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Moreover, ñ is a C1 extension of n1 into Ω and g̃ is the extension of g given by

the following lemma. For the reader’s convenience, we recall the proof of (15) in

Appendix A.

Lemma 2.2. Suppose that (A1) and (A2) are satisfied. Then there exists a g̃ ∈
W 2,p(Ω)d ∩W 1,∞(Ω)d such that g̃ = g on Γ and

(17) ‖g̃‖W 1,∞(Ω)d 6 C0‖g‖W 2−1/p,p(Γ)d ,

where C0 denotes a positive constant depending only on Γ and Ω.

The proof is a consequence of the lifting-extension theorem (see [11], Theorem 2-5.8

and Theorem 2-3.9), and the Sobolev embedding theorem (cf. [1], Theorem 4.12).

At this stage, we set

(18) f = g̃(∇χ · ñ).

Then we still have f ∈ H−1(Ω)d and state an equivalent formulation to (7): Find

(u, p) ∈ H1
0 (Ω)

d × L2
0(Ω) such that

a(u, v) + b(p, v) = 〈f, v〉H−1,H1

0

∀ v ∈ H1
0 (Ω)

d,(19a)

b(q, u) = 0 ∀ q ∈ L2
0(Ω).(19b)

Finally, writing down the strong form of (19), we obtain the Stokes equations with

the singular source term defined by (18):

(20) −ν∆u+∇p = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω.

which is equivalent to our problem (5) in the distribution sense.

R em a r k 2.2. Problem (7) can be directly discretized by the finite element

method using the boundary integral on Γ. Such methods were studied in [2] and

[19] for nonstationary Navier-Stokes equations. However, in order to avoid the mov-

ing mesh problem, we study the formulation (19) and apply the finite element method

to it using a uniform mesh.
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3. Regularization to the distribution form with

characteristic function

As explained in Introduction, for computation using a uniform mesh, we introduce

a regularized force field f ε ∈ L2(Ω)d as

(21) f ε = g̃(∇χε · ñ).

Herein, ε > 0 is a regularization parameter and χε is an appropriate approximation

to the characteristic function χ. We assume that χε is a Lipschitz function. For f ε

given as (21), let us consider

(22) −ν∆uε +∇pε = f ε in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω.

Since f ε ∈ L2, there exists a unique weak solution (uε, pε) ∈ H1
0 (Ω)

d × L2
0(Ω) for

all ε > 0. Then, the error of regularization is estimated using Lemma 2.1.

Proposition 3.1. Let (u, p) and (uε, pε) be the weak solutions of (20) and (22),

respectively. Then we have

(23) ‖u− uε‖H1 + ‖p− pε‖L2 6 C∗‖χ− χε‖L2,

where C∗ > 0 is a positive constant depending only on Ω,Γ, and ‖g‖W 2−1/p,p .

P r o o f. By virtue of Lemma 2.1, we have

‖u− uε‖H1 + ‖p− pε‖L2 6 C1‖f − f ε‖H−1 .

It remains to bound ‖f−f ε‖H−1 by ‖χ−χε‖L2 . Indeed, we obtain for all v ∈ H1
0 (Ω)

d

〈f − f ε, v〉H−1,H1

0

= 〈g̃∇(χ− χε) · ñ, v〉H−1,H1

0

= −(χ− χε,∇ · (ñ(g̃ · v)))L2

6 ‖χ− χε‖L2‖ñ(g̃ · v))‖H1

6 ‖ñ‖W 1,∞‖g̃‖W 1,∞‖χ− χε‖L2‖v‖H1 .

Hence, the desired result holds with C∗ = C0C1‖ñ‖W 1,∞‖g‖W 2−1/p,p . �

3.1. Construction of χε. Now we define χε as follows:

(24) χε(x) =

{
1, x ∈ Ω0,

max
{

0, 1− dist(x,Γ)
ε

}

, x /∈ Ω0.
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We have χε ∈ W 1,∞(Ω) and

(25) ‖χ− χε‖L2(Ω) 6 C3

√
ε,

where C3 is a positive constant depending only on Γ. To verify this, we set Γε =

{x ∈ Ω1 ; dist(x,Γ) 6 ε} and calculate as (noting that χ − χε equals χε in Γε and

vanishes outside)

‖χ− χε‖L2(Ω) = ‖χε‖L2(Γε) 6 ‖χε‖L∞

︸ ︷︷ ︸

61

meas(Γε)1/2 6 C3

√
ε.

Therefore, we obtain the regularization error estimate as follows.

Proposition 3.2. Let (u, p) and (uε, pε) be, respectively, the weak solutions

to (20) and (22) with (24). Then we have

(26) ‖u− uε‖H1 + ‖p− pε‖L2 6 C
√
ε.

R em a r k 3.1. Other choices of χε are of course used for implementation. As

seen above, it is enough to suppose χε ∈ W 1,∞ for error estimates, and the order of

regularization error is independent of χε if supp |∇χε| ⊂ Γε. Moreover, we can also

use the function

(27) χε(x) =
1

2

[

1− 2

π

arctan
(dist(x,Γ)

ε

)]

.

Then we have supp χε * Γε, while we can derive the same convergence rates as

for (24) by simple calculation.

4. Discretization by finite element method

This section is dedicated to a study of the finite element approximation to (22).

Let {Th}h be a family of regular triangulations of Ω, i.e., there exists κ > 0 satisfying

hT 6 κ̺T for all T ∈ Th. Here, hT denotes the diameter of T , ̺T the diameter of

the inscribed ball of T , and h = max{hK ; K ∈ Th}.
We employ the P1b/P1 (MINI) element for discretization and set

Vh = {vh ∈ C(Ω)d ∩H1
0 (Ω)

d ; vh|T ∈ [P1(T )⊕ B(T )}]d ∀T ∈ Th},
Qh = {qh ∈ C(Ω) ∩ L2

0(Ω); qh|T ∈ P1(T ) ∀T ∈ Th}.
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Therein, Pk(T ) is the set of all polynomials defined on T ∈ Th of degree 6 k, and

B(T ) = span{λ1λ2 . . . λd+1} is the so-called bubble function with λi the barycentric

coordinates of T . It is well-known that the pair of Vh and Qh satisfies the uniform

Babuška-Brezzi (inf-sup) condition

sup
vh∈Vh

b(vh, qh)

‖vh‖H1

> κ2‖qh‖L2, qh ∈ Qh,

where κ2 > 0 is independent of h.

R em a r k 4.1. We deal with the P1b/P1 element only for the sake of simple

presentation. Similar results can be obtained for an arbitrary pair of conforming

finite element spaces Vh ⊂ H1(Ω)d and Qh ⊂ L2
0(Ω) satisfying the uniform Babuška-

Brezzi condition.

The finite element approximation to (22) is given as follows: Find (uε
h, p

ε
h) ∈

Vh ×Qh such that

a(uε
h, vh) + b(pεh, v) = (f ε, vh)L2 ∀ vh ∈ Vh,(28a)

b(qh, u
ε
h) = 0 ∀ qh ∈ Qh.(28b)

The well-posedness of (28) is a standard result, for example, refer to [16], Theo-

rem 15.3.

4.1. Error estimate. We are now ready to state the error estimates. First, the

discretization error is bounded by the following result.

Proposition 4.1. Let (uε, pε) and (uε
h, p

ε
h) be the solutions of (22) and (28),

respectively. Then we have

‖uε − uε
h‖H1 + ‖pε − pεh‖L2 6 C∗∗h‖χε‖H1 ,(29a)

‖uε − uε
h‖L2 6 C∗∗h2‖χε‖H1 ,(29b)

where C∗∗ denotes a positive constant depending only on Ω, Γ, ‖g‖W 2−1/p,p . More-

over, if χε is given by (24), then we derive

‖uε − uε
h‖H1 + ‖pε − pεh‖L2 6 C∗∗

h√
ε
,(30a)

‖uε − uε
h‖L2 6 C∗∗

h2

√
ε
.(30b)
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P r o o f. It is well known that the finite element approximationmakes the optimal

approximation. That is,

‖uε − uε
h‖H1 + ‖pε − pεh‖L2 6 C4 inf

(vh,qh)∈Vh×Qh

(‖uε − vh‖H1 + ‖pε − qh‖L2) ,

where C4 > 0 depends only on Ω. Refer to [16], Theorem 15.3, for example. Applying

the standard interpolation error estimates and the stability result (14), we obtain

that

‖uε − uε
h‖H1 + ‖pε − pεh‖L2 6 C5h‖f ε‖L2 .

Furthermore, by virtue of the duality technique in [7], Theorem 1.9, §1, Chapter II,

we have

‖uε − uε
h‖L2 6 C5h

2‖f ε‖L2 .

Therein, C5 depends only on Ω. Consequently, estimates (29) are obtained with

C∗∗ = C0C5‖g̃‖W 2−1/p,p‖ñ‖L∞ , since

‖f ε‖L2 = ‖g̃(∇χε · ñ)‖L2 6 ‖g̃‖L∞‖ñ‖L∞‖∇χε‖L2.

When χε is given by (24), we continue to calculate as

‖∇χε‖L2(Ω) =
∥
∥
∥∇dist(x,Γ)

ε

∥
∥
∥
L2(Γε)

6
1

ε
meas(Γε)1/2‖dist(x,Γ)‖W 1,∞ =

1√
ε
‖dist(x,Γ)‖W 1,∞ .

�

At this stage, we apply Propositions 3.2 and 4.1 to deduce the total error estimate

which is the main theorem in this paper.

Theorem 4.1. Let (u, p) and (uε
h, p

ε
h) be, respectively, the solutions to (20) and

(28) with (24). Then we have

‖u− uε
h‖H1 + ‖p− pεh‖L2 6 C

(√
ε+

h√
ε

)

,(31a)

‖u− uε
h‖L2 6 C

(√
ε+

h2

√
ε

)

,(31b)

where C denotes a positive constant depending only on Ω, Γ, and ‖g‖W 2−1/p,p . In

particular, if ε = c1h with a positive constant c1, then

(32) ‖u− uε
h‖H1 + ‖p− pεh‖L2 6 C

√
h.
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Else if ε = c1h
2, then

(33) ‖u− uε
h‖L2 6 Ch,

where C denotes a positive constant depending only on Ω, Γ, ‖g‖W 2−1/p,p , and c1.

R em a r k 4.2. Numerical approximations of other singular source terms δ(Γ, g, x)

defined by

(34)

∫

Rd

δ(Γ, g, x)f(x) dx =

∫

Γ

g(θ)f(X(θ)) dθ, f ∈ Cq(Rd) with some q,

are studied in [20]. Introducing a regularization δε(Γ, g, x) and a uniform Eulerian

grid, the authors consider the quadrature error

E =

∣
∣
∣
∣
hd

∑

j∈Zd

δε(Γ, g, xj)f(xj)−
∫

Γ

g(θ)f(X(θ)) dθ

∣
∣
∣
∣

and report in §3.2 that E = O(1) when δε(Γ, g, x) = g̃(x)δε(dist(x,Γ)) with

ε = h, 1.5h, or 2h. Here δε(x) represents a suitable approximation to the Dirac

delta function and xj = jh. On the other hand, our approach corresponds to the

case δ(Γ, g, x) = g̃∇χ · ñ, where ∇χ · ñ is approximated by the function of dist(x,Γ)
in (24). As in Theorem 4.1, when we use the derivative of characteristic function

instead of the Dirac delta, we can obtain the error of order O(h1/2) in the H1 × L2

norm for ε = c1h.

5. Numerical examples

In this section, we show some results of numerical experiments to verify our the-

oretical results. We consider the Stokes interface problem

− ν∆ui +∇pi = 0, ∇ · ui = 0 in Ωi, i = 0, 1,(35a)

ui = 0 on ∂Ωi \ Γ,(35b)

u0 = u1, τ0 + τ1 = g on Γ,(35c)

for ν > 0.

We want to obtain the solution to (35) numerically. To do this, for fε given by

(21), we consider the stationary Stokes problem

(36) −ν∆u+∇p = f in Ω, ∇ · u = 0 in Ω, u = 0 on ∂Ω,
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and its regularized version

(37) −ν∆uε +∇pε = f ε in Ω, ∇ · uε = 0 in Ω, uε = 0 on ∂Ω.

Then, we solve the following finite element approximation

a(uε
h, vh) + b(pεh, vh) = (f ε + ι, vh)L2 ∀ vh ∈ Vh,(38a)

b(qh, u
ε
h) = 0 ∀ qh ∈ Qh.(38b)

The first example corresponds to the case ∂Ω ∩ Γ = ∅. We refer to [3], §7.1
to provide an analytical solution. Setting Ω = (0, 1)2 ⊂ R2 and Γ = {(x, y) ∈ Ω;
√

(x− 0.5)2 + (y − 0.5)2 = R} for R > 0, we impose ν = 1, g = n/R and ι = (0, 0).

Functions g, n ∈ C∞(Γ)2 have canonical extensions to C∞(Ω \ {0})2. Indeed, we
have g̃, ñ ∈ W 1,∞(Ω)2. Then the problem (35) (or equivalently the problem (36))

has the exact solution

(39) u = 0, p(x) =

{ 1

R
− πR, |x− c0| 6 R,

−πR, |x− c0| > R,

where c0 = (1/2, 1/2). Below, let R = 1/4.

For regularization, we simply use χε as described in (24). For discretization, we

employ the uniform triangulation over Ω, which is divided into N2 isosceles right

triangles with h =
√
2/N . Hence, it is ensured by Theorem 4.1 that

⊲ if ε = c1h then ‖u− uε
h‖H1 + ‖p− pεh‖L2 6 C

√
h,

⊲ if ε = c1h
2 then ‖u− uε

h‖L2 6 Ch.

In the numerical experiments, we only deal with the case ε = c1h, because it is

not possible to implement the case ε = c1h
2. The parameter ε represents the width

of the band around the interface in which the characteristic function is smoothed. If

this width is much smaller than the mesh size h, then we fail to capture the values of

∇χε in computation. To verify the result of Theorem 4.1, we compute the following

quantities:

E
(1)
h = ‖u− uε

h‖L2, E
(2)
h = ‖u− uε

h‖H1 , E
(3)
h = ‖p− pεh‖L2,

and

̺
(j)
h =

logE
(j)
2h − logE

(j)
h

log(2h)− log h
, j = 1, 2, 3.

Herein, ε is chosen as ε = h. All computations were done using FreeFEM++ [8]. The

result is reported in Table 1. We can infer that the convergence rate of the H1 ×L2
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error of (u, p) is 0.5 and the L2 error of u is of order 1, which supports our theoretical

results. We also observe that the L2 error of u does not converge when h = 0.00883.

This is possibly due to numerical oscillations around Γ shown in Figure 2. Numerical

oscillations and non-convergence were observed also for other values of c1.

h E
(1)
h ̺

(1)
h E

(2)
h ̺

(2)
h E

(3)
h ̺

(3)
h

0.14142 8.624e−06 — 1.645e−02 — 9.6066 —

0.07071 1.297e−06 1.366 5.420e−03 0.800 5.414e−01 2.074
0.03535 4.597e−07 0.748 3.045e−03 0.415 2.914e−01 0.446
0.01767 1.193e−07 0.972 1.523e−03 0.499 1.458e−01 0.499
0.00883 6.068e−07 −1.172 9.656e−04 0.328 7.448e−02 0.484

Table 1. Convergence rates of Example 1 for ε = h.

Figure 2. Pressure pεh of Example 1 for h = 0.00883. The pressure becomes a discontinuous
function across the interface Γ where numerical oscillations are observed.

For further investigation, we employ the arctangential approximation (27) for χε

instead of (24). In this case, the function χε becomes smooth in Ω \ {0}. The results
of computation of the same quantities are reported in Table 2 and Figure 3. We

observe no numerical oscillations in Figure 3 and that the L2 error of u is rather
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of order 1.5. This implies that our L2 estimate (33) can be probably improved.

However, numerical oscillations reappeared when ε was taken as h2.

h E
(1)
h ̺

(1)
h E

(2)
h ̺

(2)
h E

(3)
h ̺

(3)
h

0.14142 3.063e−08 — 1.376e−04 — 5.2155 —

0.07071 3.843e−09 1.497 5.403e−05 0.674 6.245e−01 1.530
0.03535 4.472e−10 1.551 2.440e−05 0.573 3.472e−01 0.423
0.01767 5.431e−11 1.520 1.185e−05 0.521 1.842e−01 0.457
0.00883 6.713e−12 1.508 5.869e−06 0.506 9.498e−02 0.477

Table 2. Convergence rates of Example 1 for (27) with ε = h.

Figure 3. Pressure pεh of Example 1 using (27) for h = 0.00883.

The second example corresponds to the case ∂Ω ∩ Γ 6= ∅. We set Ω = (−1, 1) ×
(0, 1) ⊂ R2 and Γ lying on the y axis. In this case, we have the exact solution

u = 0 and p =

{

− 1
2 (x > 0),

1
2 (x 6 0)

in Ω

to (35) for g = n = (−1, 0). We compute the same quantities as in Example 1 and

report them in Tables 3–4 for χε given by (24) and in Table 5 for the arctangential

approximation (27). Figure 4 shows the pressure pεh for (24) with ε = h and ε = 2h.
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h E
(1)
h ̺

(1)
h E

(2)
h ̺

(2)
h E

(3)
h ̺

(3)
h

0.14142 1.601e−04 — 8.266e−03 — 6.889e−02 —

0.07071 5.941e−05 1.430 5.983e−03 0.466 4.851e−02 0.506
0.03535 2.149e−05 1.467 4.279e−03 0.483 3.708e−02 0.387
0.01767 7.682e−06 1.484 3.042e−03 0.491 3.067e−02 0.273
0.00883 2.731e−06 1.492 2.157e−03 0.496 2.715e−02 0.175

Table 3. Convergence rates of Example 2 for (24) with ε = h.

h E
(1)
h ̺

(1)
h E

(2)
h ̺

(2)
h E

(3)
h ̺

(3)
h

0.14142 4.689e−05 — 2.329e−03 — 1.901e−01 —

0.07071 1.758e−05 1.415 1.696e−03 0.457 1.370e−01 0.472
0.03535 6.386e−06 1.460 1.216e−03 0.479 9.785e−02 0.485
0.01767 2.287e−06 1.481 8.661e−04 0.490 6.960e−02 0.491
0.00883 8.139e−07 1.490 6.145e−04 0.495 4.945e−02 0.492

Table 4. Convergence rates of Example 2 for (24) with ε = 2h.

h E
(1)
h ̺

(1)
h E

(2)
h ̺

(2)
h E

(3)
h ̺

(3)
h

0.14142 1.364e−05 — 8.511e−04 — 2.208e−01 —

0.07071 4.906e−06 1.475 6.082e−04 0.484 1.593e−01 0.470
0.03535 1.749e−06 1.487 4.323e−04 0.492 1.138e−01 0.485
0.01767 6.210e−07 1.494 3.065e−04 0.496 8.086e−02 0.493
0.00883 2.200e−07 1.497 2.170e−04 0.498 5.731e−02 0.496

Table 5. Convergence rates of Example 2 for (27) with ε = h.

Figure 4. Pressure pεh of Example 2 for (24) with ε = h (left) and ε = 2h (right) when
h = 0.00883.
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We observe that in Figure 4 the numerical oscillations decrease as the values of c1

in ε = c1h increase, while the reduction of convergence rates of the pressure in Table 3

is recovered in Table 4. In Table 5, this loss of convergence rates is not observed. We

can infer the same convergence rates as in Example 1, which supports our theoretical

results again.

Appendix A. Proof of (15)

In this appendix, we prove the equation

(15)

∫

Γ

g · ϕdΓ = 〈g̃(∇χ · ñ), ϕ〉 ∀ϕ ∈ C∞

0 (Ω)d.

P r o o f. First, we note that the assumptions (A1) and (A2) imply g̃ ∈ W 1,∞(Ω)d

and ñ ∈ H1(Ω)d. Then we have g̃(∇χ · ñ) ∈ H−1(Ω)d by the representation

g̃(∇χ · ñ) =
d∑

i=0

∂

∂xi
(g̃χñi)−

d∑

i=0

χ
∂

∂xi
(g̃ñi).

Furthermore, for all ϕ ∈ C∞

0 (Ω)d, the function (g̃ · ϕ)ñ belongs to H1
0 (Ω)

d. Thus,

we have

〈g̃(∇χ · ñ), ϕ〉 = 〈∇χ, (g̃ · ϕ)ñ〉 = −〈χ, div((g̃ · ϕ)ñ)〉

= −
∫

Ω0

div((g̃ · ϕ)ñ) dx = −
∫

Γ

(g · ϕ)n1 · (−n1) dΓ.

�
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